@ univention

be open.

App Tutorial

Building Apps for the Univention App Center

www.univention.de

@ univention

be open.

Alle Rechte vorbehalten./ All rights reserved.
The mentioned brand names and registered trademarks are owned by the respective legal ownersin each case.

Linux® isaregistered trademark of Linus Torvalds.

www.univention.de

@ univention

be open.

Table of Contents

1. Apps and Univention APR CaNLENc.uii i e e e e e e e e e e e e eans 5
2. Prepare the eNVIFONMENT e e e e e e e e e e e et et e e e e e e aeeans 7
2.0 DOWNIOBA ...t 7
A | 41Tz = (o P 7
2.3. Activate the unmaintained FEPOSITONYcvuiiiniii e e e e e 7
2.4. Install required packages for App developmentccveiiiiiiii i 7
3. Package the SOftware SOIULIONcouiiiniii e e e e e e e e eans 9
3.1. Create or use Debian PaCkagesSovvn i 9
A U Tox (N = 1 T A o) o N 9
4, Integration WIth UCS ... e e e e e e e e aans 11
4.1. Read information from the direCtory SErVICEcoviii i 11
4.1.1. AcCeSS the LDAP AIr€CLONYcvnii e 12
4.1.2. Listener-/Notifier MeChaniSMoiiuiiiiii e 13
4.2. Read configuration databaseccuueiuiiiiii e 14
4.3. Domain-Join and UNJOINoiuiiiiie e et e e e e e e e e e e e e e e e aannas 15
4.4. Extend the UCS management SYSEEMc.uiiiiiiiie e e e e e aaaeans 17
4.4.1. Add tabs and OPLIONScouniiieiici e e 17
4.4.2. LDAP SChema XIENSIONuiieiiiiiieei ettt e e e e 19
4.4.3. BUild OWN UDM MOUIES ...t 19
4.4.4. Build oWn UMC MOTUIEiiiiiee e 20
4.5, Further integration SCENAIMOSuiii it e e e e e e e e e eaeees 20
A5. 1. FIrewall SEINGS ..ovueeeiei e e 20
4.5.2. Serving aweb appliCationccouiiiii i 20
4.5.3. Setting links to the web interface in/ UCS- OVer Vi eW.......coooviviiiiiiiiii e 21
4.5.4. Using PostgreSQL OF MYSOL ...uiuiiiiiiiiie e e e e e e e ees 22
L 0LV L= 1T o] o 23
5.1. Create the APP MELA Taac.uoiiiiie e e 23
5.2. Create optional App Meta informMationccooiieiiiiie e e 24
LG T U 1o oo i 1 =1 AN o 24
Lo R o] 1= S 1= AN 25
3
www.univention.de

@ univention

be open.

Chapter 1. Apps and Univention App
Center

Univention App Center providesaplatform for software vendors and an easy-to-use entry point for Univention
Corporate Server (UCS) usersto extend their IT environment with business software. The App Center is part
of the web-based UCS management system and gives an overview of available and installed apps. Its purpose
is to present available business applications for UCS and simplify their installation. This allows their easy
evaluation and fosters the purchase decision.

Apps are the content of the App Center and they consist of the business software and some meta data about
the presentation in the App Center. Most of them come with an integration into UCS, e.g. the management
system or the mailstack. The purpose of an app isto provide the business solution in away that it is ready to
use after the installation and that comes with a decent default configuration to offer a satisfying impression
of the solution. Theinstallation is non-interactive and is done by just aclick. Furthermore, an app utilizesthe
benefits of UCS and the business solution.

The App Center infrastructure consists of two parts: The aready mentioned frontend as part of the web-based
UCS management system and the server side component that stores the app meta data and the app software
packages in their own respective repositories. The server side infrastructure is operated by Univention. The
technological basis for installation and updates of the apps is APT, the well known advanced package tool
from Debian. Therefore, the app needs to consist of so-called Debian packages. The App Center frontend is
responsible for the app's presentation. As soon as an app is clicked to be installed or updated, the App Center
activates the respective repository and the further process is handed over to apt which takes care of the rest
like for example dependency resol ution.

The next sections explain how to prepare your business solution asapp for UCS. It also outlinestheintegration
possibilities and describes what to do by example. Let's go!

www.univention.de

@ univention

be open.
Download
Chapter 2. Prepare the environment
2.1 DOWNIOBA ...ttt 7
A 1o 11 (= < (U] o L PP 7
2.3. Activate the unmaintained rEPOSITONYoiiuniii e e e aeenas 7
2.4. Ingtall required packages for App developmeNt 7

Before you can start with the creation of an app for Univention App Center, you'll need to prepare your UCS
environment. This section guides you through the necessary steps.

2.1. Download Feedback {)

First of all, get yourself acopy of UCSfree of charge at the Univention Website [https.//www.univention.com/
downloads/ucs-download/]. Y ou can choose between an 1SO image or apre-installed virtual machine.

2.2. Initial setup Feedback ()

Please refer to the UCS Quickstart Guide [https://docs.software-univention.de/quickstart-en.html] for the
steps about installation and initial setup.

2.3. Activate the unmaintained repository Feedback £}

UCSisaLinux distribution derived from Debian GNU/Linux. It behaves very similar and therefore software
isinstalled from software repositories. UCS comes with the same packages as Debian (except the packages
from the games section). The packages are provided through two repositories: maintained and unmaintained.
Only the maintained repository is always activated by default.

Toinstall your solution, you may need packages that are in the unmaintained repository. Please activate it:

ucr set repository/online/unnmaintained='yes'

Note

Please remember the packages you need from unmaintained repository and providethelist later with
your upload. Univention will copy those packages besides your app packages and make sure that the
package dependencies from the unmaintained repository are met without prior activation by the user.

2.4. Install required packages for App development Feedback)

To build your software on UCS you will need to install build tools for Debian packages. The corresponding
package can be installed with

uni vention-install build-essential debhel per

Depending on your app you may furthermore require several development libraries (e.g. libc-dev, php5-dev).
For UCS integration packages, we recommend

ucslint checks for comobn mistakes in a variety of files if enabl ed
in debian/rul es

see https://docs. software-uni vention. de/ devel oper -

reference. ht m #m sc: ucsl i nt

uni vention-install ucslint

www.univention.de

https://www.univention.com/feedback/?manual=prepare:download
https://www.univention.com/downloads/ucs-download/
https://www.univention.com/downloads/ucs-download/
https://www.univention.com/downloads/ucs-download/
https://www.univention.com/feedback/?manual=prepare:setup
https://docs.software-univention.de/quickstart-en.html
https://docs.software-univention.de/quickstart-en.html
https://www.univention.com/feedback/?manual=prepare:unmaintained
https://www.univention.com/feedback/?manual=prepare:dependencies

@ univention

be open.
Install required packages for App devel opment

uni vention-config-dev takes care of installing and registering UCR
variables if enabled in debian/rules

see https://docs. soft war e-uni venti on. de/ devel oper -

r ef erence. ht m #chap: ucr

uni vention-install univention-confi g-dev

|If you are devel oping a UMC nodul e to extend t he managenent consol e,
you will need
uni vention-install univenti on-managenent - consol e- dev

If you already have a source directory with working code
dpkg- checkbui | ddeps

should list the missing build dependencies, if any.

www.univention.de

@ univention

be open.
Create or use Debian packages

Chapter 3. Package the software
solution

3.1. Create or Use Dehian PACKAOESieuu ittt e e e e e 9
S (] el (1 g o] o PP UPTRUPP 9
3.1. Create or use Debian packages Fecdback £}

You as ISV aready distribute your software solution in a certain way. Univention App Center makes heavy
use of the Debian package manager dpkg and the technology around it. Therefore, it is required that the
software is provided in the Debian package format and that it can be installed non-interactively, e.g. the user
will not be asked any questions for software configuration. This step has to be moved to alater step following
the package installation.

Please follow this checklist:

1. If your softwareis provided via. deb files, you already have Debian packages. Please install those pack-
ages on UCS for testing purpose and evaluate if the software works as expected.

2. If your softwareisnot provided via. deb files, Debian packageshaveto be created. Pleasefollow the chap-
ter packaging software [https://docs.software-univention.de/devel oper-reference.html#chap: packaging] in
the UCS devel oper reference about how to create Debian packages.

3.2. Structure the App Feedback £}

In most cases packages of an app for Univention App Center in principle consist of:
1. packages including the vanilla software solution of the ISV
2. packages with the integration of the software solution with Univention Corporate Server

For the ease of app maintenance it is recommended to provide the vanilla software from 1. in packages on
their own, independent from UCS. Thisallowsto theoretically use the packages on other Debian-based Linux
Distributions like for example Debian GNU/Linux itself or Ubuntu.

The UCS specific part from 2. should be collected in a separate package. This package depends on the "main”
package from 1. and therefore automatically installs all the other packages needed via the dependency reso-
lution of the package manager.

www.univention.de

https://www.univention.com/feedback/?manual=package:debian
https://docs.software-univention.de/developer-reference.html#chap:packaging
https://docs.software-univention.de/developer-reference.html#chap:packaging
https://www.univention.com/feedback/?manual=package:structure

10

@ univention

be open.
Read information from the directory service

Chapter 4. Integration with UCS

4.1. Read information from the dir€CtOry SEIVICEcc.uiiiiiiiiii e e 11
4.1.1. AcCESS the LDAP IrECIOMY ...ttt ettt e eeeas 12
4.1.2. Listener-/Notifier MEeChaNiSMcovuiiiiiiiii e 13

4.2. Read configuration datalasec..iiiuniiii e 14

4.3. DOMaiN-Join aNd UNJOINoeuniiiiei ettt e et e et e e et e eeeb e eaeaeeas 15

4.4. Extend the UCS Management SYSEEIMiuu ittt et e et e et et e et e et e eea e eenns 17
4.4.1. Add tabs @nd OPLIONSuieiiiii e 17
4.4.2. LDAP SChemMa XIENSIONvuiiiiiiiiieeiei ettt 19
4.4.3. BUild oWn UDM MOTUIESouiiiiiiiie e 19
4.4.4. BUild OWN UMC MOUIE ...ttt 20

4.5. Further integration SCENAITOSiuuu it ettt e et et e et e et et e e e an e e et e eean e 20
A.5.0. FIreWall SEIINGSeeeneeiteee et e et e e e e eaes 20
4.5.2. Serving aWeb apPliCaLIONoieueiii i e 20
4.5.3. Setting links to the web interface in / UCS- OVer Vi eW......cooovviviiiiiiiiiiie e, 21
4.5.4. Using PostgreSQL OF MYSOQL .. .uuuiiiiiiiee ettt e e e e eanns 22

Univention Corporate Server (UCS) isnot just an enterprise Linux distribution. With itsfocus on identity and
infrastructure management it has alot of information saved about the I T infrastructure environment, the user
accounts and the groups and the system configuration, to name afew.

The most obvious integration makes use of the numerous user accounts stored in the UCS directory service.
Apps using this information avoid double effort in user administration. They may technically make just a
simple LDAP bind for user authentication. Or if the app needs certain user attributes in its own persistence
layer (e.g. the database) they may be synchronised viathe Listener-/Notifier mechanism. Furthermore, existing
data can be extended with app specific attributes, e.g., shall auser be allowed to use the app or what role shall
the user occupy for the app. The UCS management system can be extended by attributes and the information
is usually stored in the directory service. It is even possible that certain values or their change may trigger
certain actions. A third integration possibility is to hook up the app in existing solution stacks of UCS, for
example the mail stack or the web server. The app will among others benefit from a working configuration
and a higher communication security because of already present security certificates.

Those arejust afew examples to outline the possibilities for the integration. There are many more. The guid-
ing question for the integration should be: What information about the infrastructure, the configuration and
identities does UCS offer that the app will benefit from and saves efforts for the administrator?

The following sections give an impression of several integration scenarios. Further information can be found
in the UCS devel oper reference [https://docs.software-univention.de/devel oper-reference.html].

4.1. Read information from the directory service Feedback{)

One primary element of the UCS management system isan LDAP directory in which the datarequired across
the domain for the administration are stored. In addition to the user accounts and similar elements, the data
basis of services such as DHCP is also saved there.

An LDAP directory has atree-like structure, the root of which forms the so-called basis of the UCS domain.
The UCS domain forms the common security and trust context for its members. An account in the LDAP
directory establishes the membership in the UCS domain for users. Computers receive a computer account
when they join the domain.

UCS utilises OpenLDAP as a directory service server. The directory is provided by the master domain con-
troller and replicated on al domain controllers (DCs) in the domain. The complete LDAP directory is also
replicated on a DC backup as this can replace the DC master in an emergency. In contrast, the replication on

_) 11
www.univention.de

https://docs.software-univention.de/developer-reference.html
https://docs.software-univention.de/developer-reference.html
https://www.univention.com/feedback/?manual=integration:ldap

@ univention

be open.
Access the LDAP directory

DC slaves can be restricted to certain areas of the LDAP directory using ACLs (access control lists) in order
to realize a selective replication.

The OpenLDAP server of UCS listens on port 7389 by default, not on 389. Thisis due to Samba 4 requiring
port 389.

More information about the OpenLDAP server in UCS can be found in the manual [https://docs.software-
univention.de/manual .html#domain:ldap].

4.1.1. Access the LDAP directory Feedback {2}

Sometimes software can use LDAP, but does not use the user accounts directly but is restricted to one specific
user who then is used for further user authentication. This LDAP bind can be done by cresting a app specific
user in UDM. This should be done in a Join script via

| dap_base="$(ucr get |dap/base)"

APP=" nyapp'

PASSWORD=' secr et '

touch "/etc/ $APP. secret”

chown root:root "/etc/$APP.secret" # or so

chnmod 600 "/ etc/$APP. secret”

printf '9%"' "$PASSWORD' > "/etc/ $APP. secret”

udm users/user create "$@ --position "cn=users, $l dap_base" \
--set usernane="$APP-user" --set | astnane="3$APP-user" \
--set password="$PASSWORD' --option Idap_pwd || die

Now you can configure your software accordingly. Here the DN will be ui d=$APP- user, cn=users,
$l dap_base.

If more access is needed, it is also possible to use the machine account of the UCS system. Every com-
puter joined into the UCS domain has certain permissions. Computers in cn=dc, cn=conput er s,
$l dap_base (by default DC Master, DC Backup, DC Slave) can even access the (hashed) password attrib-
utes of users and computers. The password for the machine account isstored in/ et ¢/ nachi ne. secr et
(readable by r oot). The machine DN can be found by

ucr get | dap/hostdn

The machine password rotates. This means the password changes over time. If your software needs
to adapt, you may install a script (with executable bit set!) at /usr/1i b/ univention-serv-
er/ server_passwor d_change. d/ xx$app withxx being two digitsfor ordering purposeswith some-
thing like the following content:

#!/ bi n/ sh
case "$1" in
pr echange)
nothing to do before the password i s changed
exit O
nochange)
nothing to do after a fail ed password change
exit O

post change)
do sonmething with /etc/machi ne. secret, e.g.
cp /etc/ machi ne. secret /etc/ $app. secret
restart daenon after password was changed

12 _)
www.univention.de

https://docs.software-univention.de/manual.html#domain:ldap
https://docs.software-univention.de/manual.html#domain:ldap
https://docs.software-univention.de/manual.html#domain:ldap
https://www.univention.com/feedback/?manual=integration:ldap:access

@ univention

be open.
Listener-/Notifier Mechanism

i nvoke-rc.d $app restart

esac

4.1.2. Listener-/Notifier Mechanism Feedback {2}

The dataregarding identity and infrastructure management is saved in LDAP. Appsthat are not LDAP-aware
can use this data nonetheless by registering handlers that trigger when certain data is changed (e.g. auser is
created, the IP of acomputer is changed). This may be useful if

1. Your software contains some kind of user authentication/authorization, but cannot connect to LDAP
2. Your software hasits own database and the data should be in sync
3. Your software needs to reconfigure as soon as certain parameters of the network topology change

More details can be found in the Developer Reference [https://docs.software-univention.de/develop-
er-reference.html#chap:listener].

A short example how to sync first name, last name, email of auser to a (theoretical) third-party database. This
script is run every time a user is added, removed or any of these attributes change. As the email is unique
(forced by UCS) and al three attributes are only single-valued (also forced by UCS), this may come down to:

nanme = "app_sync_users"

description = "always be in sync with UCS users"
filter = "(&uid=*)(!(uid=*3$))"

attributes = ["givenNane", "sn", "nmail PrimaryAddress"]

def handl er(dn, new, ol d):
if new and not ol d:
add_user (new)
elif not new and ol d:
renove_user (ol d)
elif new and ol d:
nmodi fy_user (new, ol d)

def add_user(new):
new_nmai | Pri maryAddress = new. get (' mai | Pri maryAddress', [''])[0]
new_gi venNane = new. get (' gi venName', [''])[0]
new _sn = new.get('sn', ["'])[0]
get _db_connection().add(new _gi venNane, new sn, new nail Pri maryAddr ess)

def renove_user (ol d):
ol d_nmi | PrimaryAddress = ol d.get (' mail Pri maryAddress', [''])[0]
get _db_connection().renove(ol d_mail Pri maryAddr ess)

def nodify_user(new, ol d):
old mail PrimaryAddress = ol d.get(' mail Pri maryAddress', |
new_nmai | Pri maryAddress = new. get (' mai | Pri mar yAddress', [
new_gi venNane = new. get (' gi venName', [''])[0]
new _sn = new.get('sn', ["'])[0]
get _db_connection(). nodify(ol d_mail PrimaryAddress, new gi venNane,
new_sn, new_nail Pri maryAddr ess)

10
EPIRY

def get db_connection():
rai se Not | npl ement edError ()

13
www.univention.de

https://www.univention.com/feedback/?manual=integration:ldap:listener
https://docs.software-univention.de/developer-reference.html#chap:listener
https://docs.software-univention.de/developer-reference.html#chap:listener
https://docs.software-univention.de/developer-reference.html#chap:listener

@ univention

be open.
Read configuration database

4.2. Read configuration database Feedvack{)

UCS ships with a key-value store used to save parameters of the environment, the Univention Configu-
ration Registry (UCR). It holds information about the local host (like hosthame or network settings) and
to some extent about the domain configuration (like the domainname or where the DC Master can be
found). More details can be found in the Developer Reference [https://docs.software-univention.de/devel op-
er-reference.html#chap:ucr].

The values can be accessed easily in a script by using
host name=$(ucr get host nane)

Notable variables include;

* host nane

e domai nnane

e | dap/ base

e | dap/ nast er (FQDN of the DC Master)

* | dap/ mast er/ port (Port for LDAP bind)

* | dap/ host dn (May be useful to connect to LDAP with the machine account (password in / et c/
machi ne. secret))

Y ou can use the database to store your own keys and values and use those in your script:
ucr set nyapp/| ogl evel =5

It isalso possible to set the variable only if it was not set before. Thisis generally preferred asit allows users
to overwrite those values without having to fear that it is overwritten again.

ucr set myapp/ | ogl evel ?4

You do not need to register those variables anywhere, they are just saved. It is also possible to use theses
variablesin your installations scripts as environment variables, for example:

eval "$(ucr shell)"
echo "This UCS system has the FQDN $host nane. $domai nnane "\
"and the LDAP base is $l dap_base."

A very powerful ability of UCR isits usage in templates. Y ou may ship files that are recreated when certain
variables change. For example, your app's configuration file needs to be updated every time alocale of the
system is added or removed. Say your main package (myapp.deb) ships/ et ¢/ nyapp. conf :

configuration of nyapp

title=My App
| ocal es=en_US. UTF- 8: UTF- 8

Y our integration package (univention-myapp.deb) can ship thisfile, too:

@@JCRWARNI NG=# @@
configuration of nyapp

title=My App
| ocal es=@4 ocal e @@

14 _)
www.univention.de

https://www.univention.com/feedback/?manual=integration:ucr
https://docs.software-univention.de/developer-reference.html#chap:ucr
https://docs.software-univention.de/developer-reference.html#chap:ucr
https://docs.software-univention.de/developer-reference.html#chap:ucr

@ univention

be open.
Domain-Join and Unjoin

Thisfile shall trigger each time
ucr set |ocale=...
iscalled.

Y ou need to add the file above in univention-myapp's directory at conf f i | es/ et ¢/ nyapp. conf . Fur-
thermore you need to add the following in debi an/ r ul es:

override _dh_auto install:

uni vention-install-config-registry
dh_auto_install

%
dh $@

Now you need to tell the system when to recreate it. For this, create a file debi an/ uni ven-
ti on-myapp. uni vention-confi g-regi stry with

Type: file
Fil e: etc/nyapp. conf
Vari abl es: | ocal e

And this should do the trick. Templates can even use a Python runtime to do more than just writing the exact
content of certain UCR variables. See the Devel oper Reference for detals.

4.3. Domain-Join and Unjoin Fecdback{)

Integration into the UCS domain works by writing into the domain wide LDAP directory. The package can
only change something in the LDAP directory through a join script, otherwise the functionality is not guar-
anteed. Furthermore, the hostname and other basic configuration settings are first defined when the join script
is executed.

A join script is just an executable script living in /usr/1i b/ uni vention-install/. The nameis
something like xx$app. i nst (xx aretwo digits for ordering purposes). The file must have the executable
permission bits set.

Join scripts are commonly used to (but of course not limited to):

 Create users, groups, etc, as well as modifying existing ones

» Registering an LDAP schema extension

« Extending the form for creating/modifying a user (or acomputer, ...) by Extended Attributes

» Adding a service entry to the local host

 Configuring the app with parameters read from LDAP

Join scripts are normally run asr oot .

This example shows how to register a schema extension as well as adding widgets to the user form.

root @uaster: ~# cat /usr/lib/univention-install/50app.inst
#!/ bi n/ bash

VERSI ON has to be set for external prograns to parse

_) 15
www.univention.de

https://www.univention.com/feedback/?manual=integration:join

@ univention

be open.

Domain-Join and Unjoin

16

join scripts will in general onyl be run once per VERSI ON
so you need to increnent this val ue when you are changi ng the script
VERSI ON="1"

[usr/ share/ univention-1lib/ldap.sh
[usr/ shar e/ uni vention-join/joinscripthelper.lib

this function of joinscripthelper.lib initializes sonme inportant
variables as well as aborting if this script has al ready been run
joinscript _init

eval "$(ucr shell)"
SERVI CE=" MW/ App"
APP="app"

"$@ is | MPORTANT, because this includes paraneters for LDAP bind
Ot herwi se these functions will fail on systenms != DC naster

An exanpl e schena file is in the section "Extend the UCS nanagenent
systent

ucs_regi st er LDAPExt ensi on "$@ --schema "/ usr/shar e/ $APP/ $APP. schema"

create a contai ner where the extended attri butes shall |ive
udm cont ai ner/cn create "$@ \
--ignore_exists \
--position "cn=custom attributes, cn=uni vention, $l dap_base" \
--set name="$APP" || die # if this fails, abort join script

for nore details, see the section "Extend the UCS managenent systent
udm setti ngs/extended attri bute create "$@ \
--ignore_exists \
--position "cn=$APP, cn=custom attri butes, cn=uni venti on, $l dap_base" \
--set nodul e="users/user" \
#oN
--set name="3$APP-enabl ed" || die

Best practice: Adds the service to the host. Then LDAP can be queri ed
to | ookup where the app is already installed. Al so useful for unjoin
ucs_addServi ceToLocal host "${SERVICE}" "$@

when everything worked fine, tell the systemthat this VERSI ON does
not need to be run again

j oi nscri pt_save_current_version

exit O

An unjoin script ismore or less the same, except that it livesin/ usr/ 1i b/ uni venti on-uni nstal |/
(and endswith . ui nst). Its purposeisto be called after the app is uninstalled. After uninstallation, it might
be appropriate to clean up those objects that have been added in the join script. Keep in mind that the app may
be installed on different servers in the domain. So one must take care to not delete important objects when
another host is still running this service.

root @master: ~# cat /usr/lib/univention-uninstall/50app-uninstall. uinst
#!/ bi n/ bash
VERSI ON=1

/usr/share/ univention-1ib/ldap.sh

/usr/ share/ uni venti on-j oi n/joi nscripthel per.lib

www.univention.de

@ univention

be open.
Extend the UCS management system

joinscript _init

eval "$(ucr shell)"
SERVI CE=" MW/ App"
APP="app"

revert ucs_addServi ceToLocal host
ucs_renoveServi ceFronlocal host "${SERVICE}" "$@

check whether this app is still installed el sewhere
if ucs_isServiceUnused "${SERVICE}" "3$@; then
revert other changes made by 50app. i nst
just renove the container, the extended attribute is renoved
automatically
udm cont ai ner/cn renove --dn \
"cn=$APP, cn=cust om at tri but es, cn=uni venti on, $l dap_base"

DO NOT revert ucs_regi ster LDAPExt ension "$@ --schema

schema ext ensi ons shoul d be kept forever. If attributes defined
there were set during the tine the app was installed

it may break LDAP if the attribute definition gets renpved!

See http://sdb. univention.de/ 1274

R OH H R H®

f

revert joinscript_save current_version - so that the join script
would run again if the app is reinstalled
joinscript _renove script fromstatus file app

exit O

Now the scripts need to be packaged. Some steps have to be doneinthe post i nst, pr er m post r mfiles
of the package. Thereis ahelper script that does that automatically. In debi an/ r ul es, add

override _dh_auto install:
uni vention-install-joinscript
dh_aut o_i nstall

%
dh $@

The join script needs to lie in the root directory of the source code and has to be named after the package,
e.g. 50uni venti on- myapp. i nst and 50uni vent i on- myapp- uni nstal | . ui nst . If you need
more control, just do not uni venti on-i nstal | -j oi nscri pt, details what to do can be found in the
Developer Reference [https://docs.software-univention.de/devel oper-reference.html#j oin:write].

4.4. Extend the UCS management system Feedback{)
4.4.1. Add tabs and options Feedback{)

The form for creating LDAP objects can be customized by apps. Technically thisis done by writing special
objectsinto LDAP. As such, customization is generally donein ajoin script. The objects are created with the
Univention Directory Manager (UDM).

This example creates a checkbox in the users form's tab "Advanced settings'. This makes it possible to save
whether the user should be allowed to use the app. The value has to be queried by the app afterwards.

17
www.univention.de

https://docs.software-univention.de/developer-reference.html#join:write
https://docs.software-univention.de/developer-reference.html#join:write
https://www.univention.com/feedback/?manual=integration:udm
https://www.univention.com/feedback/?manual=integration:udm:ea

@ univention

be open.
Add tabs and options

APP="nyapp"
SERVI CE=" My App"
for nore details, see
htt ps://docs. sof t war e- uni vent i on. de/ devel oper - r ef er ence. ht ml #udm ea
"$@ is here because this should go into a join script and there
passing the argunents of the script invocation to udmis necessary
udm setti ngs/extended attri bute create "$@ \
--ignore_exists \
--position "cn=$APP, cn=custom attri butes, cn=uni venti on, $l dap_base" \
--set nodul e="users/user" "# extending users \
--set | dapMappi ng="${ APP} Enabl ed" “# LDAP attribute fromthe schema \
--set objectd ass="3${APP}-user" \
--set name="$APP-enabl ed" "# this is the name for UDM \
--set shortDescription="Allow $SERVI CE" \
--set | ongDescripti on="Wether this user shall be allowed ..." \
--set transl ati onShortDescription="\"de DE\" \"$SERVI CE erl auben\"" \
--set translati onLongDescription="\"de DE\" \"Zeigt an, ob ...\"" \
--set tabNane="$SERVICE" “# This may create a new tab in the form \
--set transl ati onTabNane="\"de DE\" \"$SERVICE\"" \
--set tabAdvanced='0"' \
--set tabPosition="1" \
--set syntax='TrueFal seUp' "# should be a CheckBox ™ \
--set mayChange='1" \
--set default="TRUE || die

Note the
--set syntax='TrueFal seUp'

which semantically turns this attribute into a boolean field. Other syntax definitions exist, for example
string ori pAddr ess. More examples can be found in the following file/ usr / shar e/ pyshar ed/
uni venti on/ adm n/ synt ax. py.

It is also possible to create own drop downs. The following example adds a combo box with two options
"Admi n" or "User "

udm settings/ extended_attribute create "$@ \
--ignore_exists \
--posi tion "cn=$APP, cn=custom attri butes, cn=uni venti on, $| dap_base" \
--set nodul e="users/user" \
--set | dapMappi ng="${ APP} Rol e" \
--set objectC ass="${APP}-user" \
--set name="$APP-rol e" \
--set shortDescription="Role in $SERVI CE" \
--set |ongDescription="Wich role the user has for $SERVI CE" \
--set transl ationShortDescription="\"de DE\" \"$SERVICE-Rol [e\"" \
--set transl ati onLongDescription="\"de DE\" \"Wlche Rolle ...\"" \
--set tabName="$SERVI CE" \
--set transl ati onTabNane="\"de DE\" \"$SERVICE\"" \
--set tabAdvanced='1" \
--set tabPosition="1" \
--set syntax="${APP} User Or Adnmi n" \
--set mayChange='1" \
--set default="user' || die

The syntax is a Python class and needs to be defined in a separate file:

18
www.univention.de

@ univention

be open.
LDAP schema extension

cl ass nyappUser Or Admi n(sel ect):
choices=[('user', '"User'), (‘admn', 'Admn')]

Thisfile needsto be registered in ajoin script:

ucs_regi st er LDAPExt ensi on "$@ \
--udm syntax "/usr/share/ $APP/ ${ APP} _synt ax. py"

4.4.2. LDAP schema extension Feedback {)

The Extended Attributes are generally stored in LDAP as attributes not defined by default. A schema file
needs to be created and registered for the Extended Attributes to actually work. See this section [http:/
www.openldap.org/doc/admin23/schema.html] for details of how to write a schemafile.

The example above needs afilelike this:

attributetype (1.3.6.1.4.1.10176.99998. xxx. 1. 1 NAME ' nyapp- enabl ed'
DESC ' My App al | oned'
EQUALI TY casel gnor eMat ch
SUBSTR casel gnor eSubst ri ngsiat ch
SYNTAX 1.3.6.1.4.1.1466.115. 121. 1. 15 SI NGLE- VALUE
)
attributetype (1.3.6.1.4.1.10176.99998. xxx. 1.2 NAME ' nyapp-rol e’
DESC ' My App role'
EQUALI TY casel gnor eMat ch
SUBSTR casel gnor eSubst ri ngsiat ch
SYNTAX 1.3.6.1.4.1.1466.115. 121. 1. 15 SI NGLE- VALUE
)
objectclass (1.3.6.1.4.1.10176.99998. xxx. 0.1 NAME ' myapp- user'
DESC ' My App user'
SUP top AUXI LI ARY

MUST (cn)
MAY (myapp-enabl ed $ nmyapp-role)
)

Notethe"xxx" intheso called OIDs. Y ou need aunique (worldwide!) identifier for your attributes and object
classes. Either request one [http://pen.iana.org/pen/PenApplication.page] or (probably better) talk to us, as
Univention has its own namespace and any schema extension can be defined "beneath” it.

Thisfile needs to be registered in ajoin script:

ucs_regi st er LDAPExt ensi on "$@ --schema "/ usr/share/ $APP/ $APP. schenn"

4.4.3. Build own UDM modules FeedbackQ

The Univention Directory Manager (UDM) is a collection of modules written in Python to add powerful
capabilities around Python's LDAP bindings. In general, vendors will extend those existing modules using
Extended Attributes. But if a completely new class of object shall be saved, a new UDM module may be
useful, e.g., if the app manages buildings which cannot be simply "extended groups or containers'.

When writing a UDM module, it is best to look out for existing modules that can be copied and customized
for one's own needs. They livein/ usr/ shar e/ pyshar ed/ uni vent i on/ adm n/ handl ers/ . The
moduleappcent er / app. py isarather simple module which shows how a basic module should ook like:

svn co http://forge. univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/\
managemnent / uni vent i on- managenent - consol e- nodul e- appcent er/\

19
www.univention.de

https://www.univention.com/feedback/?manual=integration:ldap:schema
http://www.openldap.org/doc/admin23/schema.html
http://www.openldap.org/doc/admin23/schema.html
http://www.openldap.org/doc/admin23/schema.html
http://pen.iana.org/pen/PenApplication.page
http://pen.iana.org/pen/PenApplication.page
https://www.univention.com/feedback/?manual=integration:udm:module

@ univention

be open.
Build own UMC module

udm handl er s/ appcent er/

4.4.4. Build own UMC module FeedbackQ

The Univention Management Console (UM C) isthe web based frontend which isused to administratethe UCS
domain. It consists of separate modules and vendors may write such modules to further extend the Console.
Thismay be agood idea if

» The app can be customized but currently lacks afrontend
» The app needs to be activated or manually configured to work properly

Note that many UCS users are used to UMC and the fact that everything can be configured in one place. So
adding a UM C module may greatly enhance the user experience.

UMC modules are very versatile (both the JavaScript based frontend part as well as the Python backend part)
and can be used for nearly anything. This guide cannot cover everything there is about UMC modules. One
starting point may be

uni vention-install univenti on-managenent - consol e- dev
unc- cr eat e- nodul e --hel p

Or you use UMC and look out for modules that to some extend do what you are trying to accomplish and
copy the source code, e.g.

svn co http://forge. univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/\
/ managenent / uni vent i on- managenent - consol e- nodul e-t op

4.5. Further integration scenarios Feedback{)
4.5.1. Firewall settings Feedback {2}

In the default setting, al incoming ports are blocked by the UCS firewall. Every package can provide rules,
which free up the ports required. In this example the port 6644 is opened for TCP and UDP. It can berunin
thepost i nst script or in the join script:

configure firewall

uni vention-config-registry set \
security/ packetfilter/package/"$APP"/tcp/ 6644/ al | =" ACCEPT" \
security/ packetfilter/package/"$APP"/tcp/ 6644/ all/en="3$APP" \
security/ packetfilter/package/"$APP"/ udp/ 6644/ al | =" ACCEPT" \
security/ packetfilter/package/"$APP"/ udp/ 6644/ al | / en="$APP"

[-x "/etc/init.d/ univention-firewall"] &&
i nvoke-rc.d univention-firewall restart

4.5.2. Serving a web application Feedback {2}

UCS comes with a running Apache HTTP Server used by the UMC server as a proxy. This means that apps
cannot use port 80/443 easily: It is aready used. Apps can use Apache, though, by shipping afile/ et c/
apache2/ si t es- avai | abl e/ $APP. Apache can then act as a proxy to the app's server (running on a
different port).

m ni mal
ProxyPass / $APP/ http://127.0.0. 1: SAPP_PORT/
ProxyPassReverse [/ $APP/ http://127.0.0. 1: $SAPP_PORT/

20 _)
www.univention.de

https://www.univention.com/feedback/?manual=integration:umc:module
https://www.univention.com/feedback/?manual=integration:scenarios
https://www.univention.com/feedback/?manual=integration:scenarios:firewall
https://www.univention.com/feedback/?manual=integration:scenarios:apache

@ univention

be open.
Setting links to the web interfacein/ ucs- over vi ew

The site needs to be enabled by alineinthe post i nst of the package:
aZensite "$APP"

It is highly recommended to use Apache for it is the service with port 80/443. While it is possible to just
let the app respond to requests on port say, 8080, many firewalls will block the app without taking further
actions. One prominent example are the default security rules of the Amazon Web Services. The app may not
be accessible without using Apache as a proxy!

4.5.3. Setting links to the web interface in / ucs-overvi ew Feedback {2}

The start page of any UCS system (ht t p: / / $host nane/) lists available services on this server, notably
UMC. If an app provides a web interface, this can be listed, too. The easiest way is by stating this in the
i ni file

Wbl nt er f ace=/ $APP/

#Webl nt erfaceNanme=. .. # defaults to Name=
one of the two categories in /ucs-overvi ew.
"services" (default) or "adm n"

#UCSOver vi ewCat egor y=ser vi ces

If Weblnterface is given in thei ni , the App Center takes care of the integration on the overview site. But
sometimes this is not powerful enough. Thislevel of "automated integration” cannot handle ports other than
80/443 (as it will always use the current port which is 80 or 443) and cannot add more than one link. If a
deeper level isrequired, thisshould bedoneinthepost i nst and post r mscripts of theintegration package
using UCR:

postint
#DEBHEL PER#

ucs/ web/overvi ew entri es/service/... or
ucs/ web/ overview entries/admn/...

export P="ucs/web/overvi ew entries/service"
ucr set \
"$P/ $APP"/ descri pti on/ de="Description of link to $APP (German)" \
"$P/ $APP" / descri pti on="Description of link to $APP (English)" \
"$P/ $APP" /i con="/url/tol/icon/ $APP. png" \
"$P/ $APP"/ | abel / de="Headl i ne of |ink to $APP (Gernman)" \
"$P/ $APP" /| abel =" Headl i ne of link to $APP (English)" \
"$P/ $APP"/ | i nk="ht t ps: // $host nane. $domai nnane: $APP_PORT/ webi nt er f ace/ "
\
"$P/ $APP"/priority=xx-digits-for-sorting-or-just-dont-set

postrm

#DEBHEL PER#

ucr unset \
ucs/ web/ overvi ew entri es/ servi ce/ "$APP"/ descri ption/de \
ucs/ web/ overvi ew entri es/ servi ce/ "$APP"/ descri ption \
ucs/ web/ overvi ew entri es/servi ce/ "$APP"/icon \
ucs/ web/ overvi ew entri es/ servi ce/ "$APP"/ | abel / de \
ucs/ web/ overvi ew entri es/ servi ce/ "$APP"/ | abel \
ucs/ web/ overvi ew entri es/servi ce/ "$APP"/1ink \

21
www.univention.de

https://www.univention.com/feedback/?manual=integration:scenarios:overview

@ univention

be open.
Using PostgreSQL or MySQL
ucs/ web/ overvi ew entri es/service/ "$SAPP"/priority
4.5.4. Using PostgreSQL or MySQL Feedback {2}

22

When your application uses PostgreSQL, your package should depend on univention-postgres and you
need to ship afilein/ et ¢/ post gresql / 9. 1/ mai n/ pg_hba. conf. d/ or, maybe even better, in/
etc/univention/tenplates/files/etc/postgresql/9.1/ main/pg _hba.conf.d/ (see

UCR):
| ocal $app_db_nane $app_db_user nd5

When your application uses MySQL, you may access the admin password by reading /etc/
nmysql . secr et . A dependency on the package mysgl-server is enough as we patch the Debian package.

www.univention.de

https://www.univention.com/feedback/?manual=integration:scenarios:db

@ univention

be open.
Create the App meta data
Chapter 5. Provide the App
5.1. Create the APP MELA ABEAceuniiit e et e 23
5.2. Create optional App Meta infOrMaLionviiuiiiii e e e e 24
R U o [T o i 10T N o o PP 24

Until now you should have your software solution packaged as Debian package(s) including a separate pack-
age taking care of the UCS integration. To finish the app, you'll need to add the meta data for the App Center
and upload it to Univention.

Note

Starting with UCS 4.0, only 64 bit installation images are provided. Univention does support 32
bit for at least UCS 4.x, though. When using a 32 bit UCS 3.2, one may update to UCS 4.0. It is
therefore recommended (but not required) to provide the app for amd64 and 1386. If 1386 shall not be
supported, one may specify Suppor t edAr chi t ect ur es=and64 intheini file, see Section 5.1.
For the archive to be uploaded, the following directory structure is recommended:
* net adat a/
e packages/
e all/
e and64/
* 386/

e readne

Put your packages in the appropriate subdirectories below packages/ .

5.1. Create the App meta data Feedvack{)

The Debian packages take care of the installation of your software solution on UCS through the Debian
package manager. But, the App Center does not know what to present to the user. This gap isfilled with the
App metadatacomprising of text information like description, website, contact, visual information likealogo
and optional screenshots, optional detailed information for the usersin several readme files.

Please provide the following information together with packages:

1. Atextfileinthe. i ni formatincluding information like description, several website links, contact infor-
mation, conflicting apps, etc. Pleaserefer to the Developer Reference [https://docs.software-univention.de/
devel oper-reference.html#app:iniFile] for atemplate and the description of every attribute.

2. A product logo in PNG format, size: 50x50 pixels, with transparent background.

The. i ni filehasthe attribute ID. Simply namethe. i ni file and the product logo after that ID:

nyapp. i ni
nyapp. png

Put those files below the net adat a/ directory.

_) 23
www.univention.de

https://www.univention.com/feedback/?manual=provide:meta
https://docs.software-univention.de/developer-reference.html#app:iniFile
https://docs.software-univention.de/developer-reference.html#app:iniFile
https://docs.software-univention.de/developer-reference.html#app:iniFile

@ univention

be open.
Create optional App meta information

Note

The meta data contains the attributes NotifyVendor and NotificationEmail. If you want to receive
daily email notifications upon the installation of your app, please set them appropriately. The email
address here may differ from the contact address. If set to Tr ue the user will be informed about the
delivery of such a notification before installing the app.

Note

Note to sales: You as independent software vendor are responsible for the contacts and it is up to
you how to organize the follow-up. Try to contact the users very fast. The experience shows that it
makes sense to organize afollow up within one week.

A detailed explanation about the notifications can befound in the Devel oper Reference [https://docs.software-
univention.de/devel oper-reference.html#app:notification].

5.2. Create optional App meta information Feedback ()

Y ou may add optional app meta datainformation. Please refer to the Optional application files section in the
developer reference for the choice of files.

1. Screenshot of your solution: The filename of the screenshot is given in the app meta data with the attribute
Screenshot. Recommended name: myapp_scr eenshot . png (you may aso provideaj pg).

2. License agreement: If you require the user to confirm a license agreement before installation, provide the
file LI CENSE_AGREEMENT _ENand LI CENSE_AGREEMENT _DE.

3. README files: You may add different readme files depending on action taking place. For example, you
may present text before installation or before update only. Please refer to the Optional application files sec-
tion [https://docs.software-univention.de/devel oper-reference.htmi#app:optional Files] for the set of possi-
ble readmefiles.

Please use simple HTML in all those files and split the text into reasonable paragraphs. Copy the files below
the readme directory in the recommended structure. The file names have to match the definitions.

5.3. Upload the App Feedback ()

Finally, upload the whole app according to the following steps:

1. Takethe above directory structure, create an archive, for examplet ar . gz or zi p.

2. Upload the archive to https://upload.univention.de/ and remember the upload-id shown there.
3. Send the upload-id via email to <appcent er @ini vent i on. de>.

Congratulations! That'sit, you are finished for the moment.

24 _)
www.univention.de

https://docs.software-univention.de/developer-reference.html#app:notification
https://docs.software-univention.de/developer-reference.html#app:notification
https://docs.software-univention.de/developer-reference.html#app:notification
https://www.univention.com/feedback/?manual=provide:meta:optional
https://docs.software-univention.de/developer-reference.html#app:optionalFiles
https://docs.software-univention.de/developer-reference.html#app:optionalFiles
https://docs.software-univention.de/developer-reference.html#app:optionalFiles
https://www.univention.com/feedback/?manual=provide:upload
https://upload.univention.de/

@ univention

be open.

Chapter 6. What happens next?

After you sent the upload-id to Univention, a Univention employee will extract your files and copy them to
the Test App Center. You'll receive a short note about how to activate the Test App Center for final testing
of your app. After the app passed the automatic tests at Univention concerning the packages and you as
vendor gave your written approval, the app will be published in the App Center. Due to feedback and further
communication the approval process may last a couple of days. Further uploads may be necessary to fix issue
that have been found during thisiterating process.

Note

The automatic tests run after the packages have been copied into the Test App Center, only cover
UCS core functionality, e.g., whether LDAP still works after adding a schemafile. They do not test
the App itself.

_) 25
www.univention.de

26

	App Tutorial
	Table of Contents
	Chapter 1. Apps and Univention App Center
	Chapter 2. Prepare the environment
	2.1. Download
	2.2. Initial setup
	2.3. Activate the unmaintained repository
	2.4. Install required packages for App development

	Chapter 3. Package the software solution
	3.1. Create or use Debian packages
	3.2. Structure the App

	Chapter 4. Integration with UCS
	4.1. Read information from the directory service
	4.1.1. Access the LDAP directory
	4.1.2. Listener-/Notifier Mechanism

	4.2. Read configuration database
	4.3. Domain-Join and Unjoin
	4.4. Extend the UCS management system
	4.4.1. Add tabs and options
	4.4.2. LDAP schema extension
	4.4.3. Build own UDM modules
	4.4.4. Build own UMC module

	4.5. Further integration scenarios
	4.5.1. Firewall settings
	4.5.2. Serving a web application
	4.5.3. Setting links to the web interface in /ucs-overview
	4.5.4. Using PostgreSQL or MySQL

	Chapter 5. Provide the App
	5.1. Create the App meta data
	5.2. Create optional App meta information
	5.3. Upload the App

	Chapter 6. What happens next?

