@ univention

be open.

App Tutorial

Building Apps for the Univention App Center

www.univention.de

@ univention

be open.

Alle Rechte vorbehalten./ All rights reserved.
The mentioned brand names and registered trademarks are owned by the respective legal ownersin each case.

Linux® isaregistered trademark of Linus Torvalds.

www.univention.de

@ univention

be open.

Table of Contents

1. Apps and Univention APR CaNLENc.uii i e e e e e e e e e e e e eans 5
2. Prepare the eNVIFONMENT e e e e e e e e e e e et et e e e e e e aeeans 7
2.0 DOWNIOBA ...t 7
A | 41Tz = (o P 7
2.3. Activate the unmaintained FEPOSITONYcvuiiiniii e e e e e 7
2.4. Install required packages for App developmentccveiiiiiiii i 7
3. Package the SOftware SOIULIONcouiiiniii e e e e e e e e eans 9
3.1. Create or use Debian PaCkagesSovvn i 9
A U Tox (N = 1 T A o) o N 9
4, Integration WIth UCS ... e e e e e e e e aans 11
4.1. Read information from the direCtory SErVICEcoviii i 11
4.1.1. AcCeSS the LDAP AIr€CLONYcvnii e 12
4.1.2. Listener-/Notifier MeChaniSMoiiuiiiiii e 13
4.2. Read configuration databaseccuueiuiiiiii e 14
4.3. Domain-Join and UNJOINoiuiiiiie e et e e e e e e e e e e e e e e e aannas 15
4.4. Extend the UCS management SYSEEMc.uiiiiiiiie e e e e e aaaeans 17
4.4.1. Add tabs and OPLIONScouniiieiici e e 17
4.4.2. LDAP SChema XIENSIONuiieiiiiiieei ettt e e e e 19
4.4.3. BUild OWN UDM MOUIES ...t 19
4.4.4. Build oWn UMC MOTUIEiiiiiee e 20
4.5, Further integration SCENAIMOSuiii it e e e e e e e e e eaeees 20
A5. 1. FIrewall SEINGS ..ovueeeiei e e 20
4.5.2. Serving aweb appliCationccouiiiii i 20
4.5.3. Setting links to the web interface in/ UCS- OVer Vi eW.......coooviviiiiiiiiii e 21
4.5.4. Using PostgreSQL OF MYSOL ...uiuiiiiiiiiie e e e e e e e ees 22
L 0LV L= 1T o] o 23
5.1. Create the APP MELA Taac.uoiiiiie e e 23
5.2. Create optional App Meta informMationccooiieiiiiie e e 24
LG T U 1o oo i 1 =1 AN o 24
Lo R o] 1= S 1= AN 25
7. Docker Apps for the Univention APP Centercouiiiiiiii e 27
8 T VY VA I e o 27
7.2. Example: Docker App RadICAIEcovnieeiec e 28
A R (= = o UK (=S 28
7.2.2. The INi FIlE oo e 28
7.2.3. Integration, first iteralionc..veeeiiiii e 30
2 B O I = T 1 TS T) PP 30
7.2.3.2. Storing the data persistentlycooeveiiiii i 31
7.2.4. Integration, SeCONd ITEIatioNcuuiiiniiieie e e e e 33
7.2.4.1. Making the App configurable by the userccooooiii i, 33
7.2.4.2. Making the App LDAP @Warec..ovuuiii i 34
8 T = o 1 o 11 7= P 36
G T T B o o] o =P 37
7.3.2. Docker related variables in the ini file ... 39
2 = o 11 o o [o PP 40
3
www.univention.de

@ univention

be open.

Chapter 1. Apps and Univention App
Center

Univention App Center providesaplatform for software vendors and an easy-to-use entry point for Univention
Corporate Server (UCS) usersto extend their IT environment with business software. The App Center is part
of the web-based UCS management system and gives an overview of available and installed apps. Its purpose
is to present available business applications for UCS and simplify their installation. This allows their easy
evaluation and fosters the purchase decision.

Apps are the content of the App Center and they consist of the business software and some meta data about
the presentation in the App Center. Most of them come with an integration into UCS, e.g. the management
system or the mailstack. The purpose of an app isto provide the business solution in away that it is ready to
use after the installation and that comes with a decent default configuration to offer a satisfying impression
of the solution. Theinstallation is non-interactive and is done by just aclick. Furthermore, an app utilizesthe
benefits of UCS and the business solution.

The App Center infrastructure consists of two parts: The aready mentioned frontend as part of the web-based
UCS management system and the server side component that stores the app meta data and the app software
packages in their own respective repositories. The server side infrastructure is operated by Univention. The
technological basis for installation and updates of the apps is APT, the well known advanced package tool
from Debian. Therefore, the app needs to consist of so-called Debian packages. The App Center frontend is
responsible for the app's presentation. As soon as an app is clicked to be installed or updated, the App Center
activates the respective repository and the further process is handed over to apt which takes care of the rest
like for example dependency resol ution.

The next sections explain how to prepare your business solution asapp for UCS. It also outlinestheintegration
possibilities and describes what to do by example. Let's go!

www.univention.de

@ univention

be open.
Download
Chapter 2. Prepare the environment
P28 I T 1L ' o PP 7
A 1 11 = = U o S 7
2.3. Activate the unmaintained rEPOSITONYuiiiiiiiiii e e e e e e aanas 7
2.4. Install required packages for App devElOpMENEcovuiiiiiiii e 7

Before you can start with the creation of an app for Univention App Center, you'll need to prepare your UCS
environment. This section guides you through the necessary steps.

2.1. Download Feedback ()

First of al, get yourself a copy of UCS free of charge at the Univention Website®. Y ou can choose between
an 1SO image or a pre-installed virtual machine.

2.2. Initial setup Feedback £}

Please refer to the UCS Quickstart Guide? for the steps about installation and initial setup.

2.3. Activate the unmaintained repository Feedback ()

UCSisaLinux distribution derived from Debian GNU/Linux. It behaves very similar and therefore software
isinstalled from software repositories. UCS comes with the same packages as Debian (except the packages
from the games section). The packages are provided through two repositories: maintained and unmaintained.
Only the maintained repository is always activated by default.

Toinstall your solution, you may need packages that are in the unmaintained repository. Please activate it:

ucr set repository/online/unnaintained='yes'

Note

Please remember the packages you need from unmaintained repository and provide thelist later with
your upload. Univention will copy those packages besides your app packages and make sure that the
package dependencies from the unmaintained repository are met without prior activation by the user.

2.4. Install required packages for App development Feedback{)

To build your software on UCS you will need to install build tools for Debian packages. The corresponding
package can beinstalled with

uni vention-install build-essential debhel per

Depending on your app you may furthermore require several development libraries (e.g. libc-dev, php5-dev).
For UCS integration packages, we recommend

ucslint checks for comobn mistakes in a variety of files if enabl ed
in debian/rul es

see https://docs. software-univention. de/ devel oper -

ref erence. ht m #m sc: ucsl i nt

L https://www.univention.com/downl oads/ucs-downl oad/
2 https://docs.software-univention.de/quickstart-en.htm

www.univention.de

https://www.univention.com/feedback/?manual=prepare:download
https://www.univention.com/downloads/ucs-download/
https://www.univention.com/feedback/?manual=prepare:setup
https://docs.software-univention.de/quickstart-en.html
https://www.univention.com/feedback/?manual=prepare:unmaintained
https://www.univention.com/feedback/?manual=prepare:dependencies
https://www.univention.com/downloads/ucs-download/
https://docs.software-univention.de/quickstart-en.html

@ univention

be open.
Install required packages for App devel opment

uni vention-install ucslint

uni vention-config-dev takes care of installing and registering UCR
variables if enabled in debian/rules

see https://docs. sof t ware- uni venti on. de/ devel oper -

ref erence. ht m #chap: ucr

uni vention-install univention-config-dev

If you are devel oping a UMC nodul e to extend the managenent consol e,
you will need
uni vention-install univention-managenent - consol e-dev

If you aready have a source directory with working code
dpkg- checkbui | ddeps

should list the missing build dependencies, if any.

www.univention.de

@ univention

be open.
Create or use Debian packages

Chapter 3. Package the software
solution

3.1. Create or Use Dehian PACKAOESieuu ittt e e e e e 9
S (] el (1 g o] o PP UPTRUPP 9
3.1. Create or use Debian packages Fecdback £}

You as ISV aready distribute your software solution in a certain way. Univention App Center makes heavy
use of the Debian package manager dpkg and the technology around it. Therefore, it is required that the
software is provided in the Debian package format and that it can be installed non-interactively, e.g. the user
will not be asked any questions for software configuration. This step has to be moved to alater step following
the package installation.

Please follow this checklist:

1. If your softwareis provided via. deb files, you already have Debian packages. Please install those pack-
ages on UCS for testing purpose and evaluate if the software works as expected.

2. If your software is not provided via . deb files, Debian packages have to be created. Please follow the
chapter packaging software! in the UCS devel oper reference about how to create Debian packages.

3.2. Structure the App Feedback £}

In most cases packages of an app for Univention App Center in principle consist of:
1. packages including the vanilla software solution of the ISV
2. packages with the integration of the software solution with Univention Corporate Server

For the ease of app maintenance it is recommended to provide the vanilla software from 1. in packages on
their own, independent from UCS. Thisallowsto theoretically use the packages on other Debian-based Linux
Distributions like for example Debian GNU/Linux itself or Ubuntu.

The UCS specific part from 2. should be collected in a separate package. This package depends on the "main”
package from 1. and therefore automatically installs all the other packages needed via the dependency reso-
lution of the package manager.

1 https://docs.software-univenti on.de/devel oper-reference. html#chap: packaging

www.univention.de

https://www.univention.com/feedback/?manual=package:debian
https://docs.software-univention.de/developer-reference.html#chap:packaging
https://www.univention.com/feedback/?manual=package:structure
https://docs.software-univention.de/developer-reference.html#chap:packaging

10

@ univention

be open.
Read information from the directory service

Chapter 4. Integration with UCS

4.1. Read information from the direCtory SErVICEcoouuiii i 11
4.1.1. ACCESS the LDAP dir€CIOMY ..eeviiiiiiii ettt 12
4.1.2. Listener-/Notifier MeChanismcoouuiiiiiiii e 13

4.2. Read configuration al@haseiiiiiuiiieiii e 14

4.3. DOMaiN-JOIN @N0 UNJOIN ...ttt et e e et e e e e et e e e e et e e e eabe e e eeatnaeeaees 15

4.4. Extend the UCS ManagemMent SYSEEIMc.uuu ittt e e e e eeaae e e eaees 17
4.4.1. Add tahs aNd OPLIONScceuuiieiiie e 17
4.4.2. LDAP SChemMa EXIENSION ...ooviiiiiiiiiee ettt 19
4.4.3. BUild 0WN UDM MOCUIEScooviiiiiii e 19
4.4.4. BUild OWN UMC MOAUIE ...t et 20

4.5, FUrther integration SCENAMOScuuu ittt e e et e e et e et e e e eba e e eenan s 20
A5 1. FIrewall SEEINGS ..ooveneieiii e 20
4.5.2. Serving aWeb apPliCALIONuuiiiii e 20
4.5.3. Setting links to the web interface in / UCS- 0Ver Vi @W......coovviiiiiiiiiiiiiineeei, 21
4.5.4. Using POStgreSQL OF MYSQL ...uuuiiiiiiiie i 22

Univention Corporate Server (UCS) isnot just an enterprise Linux distribution. With its focus on identity and
infrastructure management it has alot of information saved about the IT infrastructure environment, the user
accounts and the groups and the system configuration, to name afew.

The most obvious integration makes use of the numerous user accounts stored in the UCS directory service.
Apps using this information avoid double effort in user administration. They may technically make just a
simple LDAP bind for user authentication. Or if the app needs certain user attributes in its own persistence
layer (e.g. the database) they may be synchronized viathe Listener-/Notifier mechanism. Furthermore, existing
data can be extended with app specific attributes, e.g., shall auser be allowed to use the app or what role shall
the user occupy for the app. The UCS management system can be extended by attributes and the information
is usually stored in the directory service. It is even possible that certain values or their change may trigger
certain actions. A third integration possibility is to hook up the app in existing solution stacks of UCS, for
example the mail stack or the web server. The app will among others benefit from a working configuration
and a higher communication security because of already present security certificates.

Those arejust afew examplesto outline the possibilities for the integration. There are many more. The guid-
ing question for the integration should be: What information about the infrastructure, the configuration and
identities does UCS offer that the app will benefit from and saves efforts for the administrator?

The following sections give an impression of several integration scenarios. Further information can be found
in the UCS developer reference?.

4.1. Read information from the directory service Fecaback{)

One primary element of the UCS management system isan LDAP directory in which the data required across
the domain for the administration are stored. In addition to the user accounts and similar elements, the data
basis of services such as DHCP is also saved there.

An LDAP directory has atree-like structure, the root of which forms the so-called basis of the UCS domain.
The UCS domain forms the common security and trust context for its members. An account in the LDAP
directory establishes the membership in the UCS domain for users. Computers receive a computer account
when they join the domain.

UCS utilizes OpenLDAP as a directory service server. The directory is provided by the master domain con-
troller and replicated on al domain controllers (DCs) in the domain. The complete LDAP directory is aso

1 https://docs.software-univenti on.de/devel oper-reference.html

_) 11
www.univention.de

https://docs.software-univention.de/developer-reference.html
https://www.univention.com/feedback/?manual=integration:ldap
https://docs.software-univention.de/developer-reference.html

@ univention

be open.
Access the LDAP directory

replicated on a DC backup as this can replace the DC master in an emergency. In contrast, the replication on
DC slaves can be restricted to certain areas of the LDAP directory using ACL s (access control lists) in order
to realize a selective replication.

The OpenLDAP server of UCS listens on port 7389 by default, not on 389. Thisis due to Samba 4 requiring
port 389.

More information about the OpenLDAP server in UCS can be found in the manual 2

4.1.1. Access the LDAP directory Feedback {2}

Sometimes software can use LDAP, but does not use the user accounts directly but is restricted to one specific
user who then is used for further user authentication. This LDAP bind can be done by cresting a app specific
user in UDM. This should be done in a Join script via

| dap_base="%$(ucr get |dap/base)"

APP=' nyapp'

PASSWORD=' secret'

touch "/etc/ $APP. secret"

chown root:root "/etc/$APP. secret" # or so

chnod 600 "/etc/ $APP. secret”

printf '9%' "$PASSWORD' > "/etc/ $APP. secret”

udm users/user create "$@ --position "cn=users, $l dap_base" \
--set usernane="$APP-user" --set | astnanme="3$APP-user" \
--set passwor d="$PASSWORD' --option Idap_pwd || die

Now you can configure your software accordingly. Here the DN will be ui d=$APP- user, cn=users,
$l dap_base.

If more access is needed, it is also possible to use the machine account of the UCS system. Every com-
puter joined into the UCS domain has certain permissions. Computers in cn=dc, cn=conput er s,
$l dap_base (by default DC Master, DC Backup, DC Slave) can even access the (hashed) password attrib-
utes of users and computers. The password for the machine account isstored in/ et ¢/ nachi ne. secr et
(readable by r oot). The machine DN can be found by

ucr get | dap/hostdn

The machine password rotates. This means the password changes over time. If your software needs
to adapt, you may install a script (with executable bit set!) at /usr/1i b/ univention-serv-
er/ server_passwor d_change. d/ xx$app withxx being two digitsfor ordering purposeswith some-
thing like the following content:

#!/ bi n/ sh
case "$1" in
pr echange)
nothing to do before the password i s changed
exit O
nochange)
nothing to do after a failed password change
exit O

post change)
do sonmething with /etc/nmachi ne. secret, e.g.
cp /etc/ machi ne. secret /etc/ $app. secret

2 https://docs.software-univention.de/manual .html#domain:|dap

12 _)
www.univention.de

https://docs.software-univention.de/manual.html#domain:ldap
https://www.univention.com/feedback/?manual=integration:ldap:access
https://docs.software-univention.de/manual.html#domain:ldap

@ univention

be open.
Listener-/Notifier Mechanism

restart daenon after password was changed
i nvoke-rc.d $app restart

esac

4.1.2. Listener-/Notifier Mechanism Feedback {2}

The dataregarding identity and infrastructure management is saved in LDAP. Appsthat are not LDAP-aware
can use this data nonetheless by registering handlers that trigger when certain data is changed (e.g. auser is
created, the IP of a computer is changed). This may be useful if

1. Your software contains some kind of user authentication/authorization, but cannot connect to LDAP
2. Your software hasits own database and the data should be in sync

3. Your software needs to reconfigure as soon as certain parameters of the network topology change
More details can be found in the Devel oper Reference®.

A short example how to sync first name, last name, email of auser to a (theoretical) third-party database. This
script is run every time a user is added, removed or any of these attributes change. As the email is unique
(forced by UCS) and all three attributes are only single-valued (also forced by UCS), this may come down to:

nanme = "app_sync_users"

description = "always be in sync with UCS users"
filter = "(&uid=*)(!(uid=*3$))"

attributes = ["givenNane", "sn", "nmail PrimaryAddress"]

def handl er(dn, new, ol d):
if new and not ol d:
add_user (new)
elif not new and ol d:
renove_user (ol d)
elif new and ol d:
nmodi fy_user (new, ol d)

def add_user(new):
new_nmai | Pri maryAddress = new. get (' mai | Pri maryAddress', [''])[0]
new_gi venNane = new. get (' gi venName', [''])[0]
new _sn = new.get('sn', ["'])[0]
get _db_connection().add(new gi venNane, new sn, new nail Pri maryAddr ess)

def renove_user (ol d):
ol d_nmi | PrimaryAddress = ol d.get (' mail Pri maryAddress', [''])[0]
get _db_connection().renove(ol d _mail Pri nmaryAddr ess)

def nodify_user(new, ol d):
old _mail PrimaryAddress = old.get(' nail Pri maryAddress', ['']
new_mai | Pri maryAddress = new. get (' mai | Pri maryAddress', ['']
new_gi venNane = new. get (' gi venName', [''])[0]
new sn = new. get('sn', ["'])[0]
get _db_connection(). nodify(ol d_mail PrimaryAddress, new gi venNane,
new_sn, new_nail Pri maryAddr ess)

) [0]
) [0]

3 https://docs.software-univention.de/devel oper-reference.htmi#chap:listener

13
www.univention.de

https://www.univention.com/feedback/?manual=integration:ldap:listener
https://docs.software-univention.de/developer-reference.html#chap:listener
https://docs.software-univention.de/developer-reference.html#chap:listener

@ univention

be open.
Read configuration database
def get db_connection():
rai se Notl npl ement edError ()
4.2. Read configuration database Fecavack {)

UCS ships with a key-value store used to save parameters of the environment, the Univention Configuration
Registry (UCR). It holds information about the local host (like hostname or network settings) and to some
extent about the domain configuration (like the domain name or where the DC Master can be found). More
details can be found in the Developer Reference”.

The values can be accessed easily in a script by using
host name=$(ucr get host nane)

Notable variablesinclude:

* host nane

* domai nnane

» | dap/ base

e | dap/ nast er (FQDN of the DC Master)

* | dap/ mast er/ port (Port for LDAP bind)

* | dap/ host dn (May be useful to connect to LDAP with the machine account (password in / et c/
nmachi ne. secr et))

Y ou can use the database to store your own keys and values and use those in your script:
ucr set myapp/ | ogl evel =5

It isalso possibleto set the variable only if it was not set before. Thisis generally preferred asit allows users
to overwrite those values without having to fear that it is overwritten again.

ucr set nyapp/| ogl evel ?4

You do not need to register those variables anywhere, they are just saved. It is also possible to use theses
variablesin your installations scripts as environment variables, for example:

eval "$(ucr shell)"
echo "This UCS system has the FQDN $host nane. $domai nnane "\
"and the LDAP base is $l dap_base."

A very powerful ability of UCR isits usage in templates. Y ou may ship files that are recreated when certain
variables change. For example, your app's configuration file needs to be updated every time alocale of the
system is added or removed. Say your main package (myapp.deb) ships/ et ¢/ nyapp. conf :

configuration of nyapp

title=My App
| ocal es=en_US. UTF- 8: UTF- 8

Y our integration package (univention-myapp.deb) can ship thisfile, too:

@@ICRWARNI NG=# @@
configuration of nyapp

4 https://docs.software-univention.de/devel oper-reference.html#chap: ucr

14 _)
www.univention.de

https://www.univention.com/feedback/?manual=integration:ucr
https://docs.software-univention.de/developer-reference.html#chap:ucr
https://docs.software-univention.de/developer-reference.html#chap:ucr

@ univention

be open.
Domain-Join and Unjoin

title=My App
| ocal es=@4 ocal e @@

Thisfile shall trigger each time
ucr set |locale=...
iscalled.

Y ou need to add the file above in univention-myapp's directory at conf f i | es/ et ¢/ myapp. conf . Fur-
thermore you need to add the following in debi an/ r ul es:

override _dh_auto install:
uni vention-install-config-registry
dh_auto_install

%
dh $@

Now you need to tell the system when to recreate it. For this, create a file debi an/ uni ven-
ti on-myapp. uni venti on-confi g-regi stry with

Type: file

Fil e: etc/nyapp. conf

Vari abl es: | ocal e

And this should do the trick. Templates can even use a Python runtime to do more than just writing the exact
content of certain UCR variables. See the Developer Reference for details.

4.3. Domain-Join and Unjoin Feedback{)

Integration into the UCS domain works by writing into the domain wide LDAP directory. The package can
only change something in the LDAP directory through a join script, otherwise the functionality is not guar-
anteed. Furthermore, the hostname and other basic configuration settings are first defined when the join script
is executed.

A join script is just an executable script living in/ usr/1i b/ uni vention-install/. The nameis
something like xx$app. i nst (xx aretwo digits for ordering purposes). The file must have the executable
permission bits set.

Join scripts are commonly used to (but of course not limited to):

* Create users, groups, etc, as well as modifying existing ones

* Registering an LDAP schema extension

« Extending the form for creating/modifying a user (or acomputer, ...) by Extended Attributes

» Adding a service entry to the local host

» Configuring the app with parameters read from LDAP

Join scripts are normally run asr oot .

This example shows how to register a schema extension as well as adding widgets to the user form.

root @uaster: ~# cat /usr/lib/univention-install/50app.inst
#!/ bi n/ bash

_) 15
www.univention.de

https://www.univention.com/feedback/?manual=integration:join

@ univention

be open.

Domain-Join and Unjoin

16

VERSI ON has to be set for external prograns to parse

join scripts will in general onyl be run once per VERSI ON

so you need to increnent this val ue when you are changing the script
VERSI ON="1"

[usr/ share/ univention-1lib/ldap.sh
[usr/ shar e/ uni vention-join/joinscripthelper.lib

this function of joinscripthelper.lib initializes sonme inportant
variables as well as aborting if this script has al ready been run
joinscript _init

eval "$(ucr shell)"
SERVI CE=" MW/ App"
APP="app"

"$@ is | MPORTANT, because this includes paraneters for LDAP bind
Ot herwi se these functions will fail on systenms != DC naster

An exanpl e schena file is in the section "Extend the UCS nanagenent
systent

ucs_regi st er LDAPExt ensi on "$@ --schema "/ usr/shar e/ $APP/ $APP. schema"

create a contai ner where the extended attri butes shall |ive
udm cont ai ner/cn create "$@ \
--ignore_exists \
--position "cn=custom attributes, cn=uni vention, $l dap_base" \
--set name="$APP" || die # if this fails, abort join script

for nore details, see the section "Extend the UCS managenent systent
udm setti ngs/extended attri bute create "$@ \
--ignore_exists \
--position "cn=$APP, cn=custom attri butes, cn=uni venti on, $l dap_base" \
--set nodul e="users/user" \
#oN
--set name="3$APP-enabl ed" || die

Best practice: Adds the service to the host. Then LDAP can be queri ed
to | ookup where the app is already installed. Al so useful for unjoin
ucs_addServi ceToLocal host "${SERVICE}" "$@

when everything worked fine, tell the systemthat this VERSI ON does
not need to be run again

j oi nscri pt_save_current_version

exit O

An unjoin script ismore or less the same, except that it livesin/ usr/ i b/ uni venti on-uni nstal |/
(and endswith . ui nst). Its purposeisto be called after the app is uninstalled. After uninstallation, it might
be appropriate to clean up those objects that have been added in the join script. Keep in mind that the app may
be installed on different servers in the domain. So one must take care to not delete important objects when
another host is still running this service.

root @master: ~# cat /usr/lib/univention-uninstall/50app-uninstall. uinst
#!/ bi n/ bash
VERSI ON=1

/usr/share/ univention-1ib/ldap.sh

www.univention.de

@ univention

be open.
Extend the UCS management system

[usr/ shar e/ uni vention-join/joinscripthelper.lib
joinscript _init

eval "$(ucr shell)"
SERVI CE=" MW/ App"
APP="app"

revert ucs_addServi ceToLocal host
ucs_renoveServi ceFronlocal host "${SERVICE}" "$@

check whether this app is still installed el sewhere
if ucs_isServiceUnused "${SERVICE}" "3$@; then
revert other changes made by 50app. i nst
just renove the container, the extended attribute is renoved
automatically
udm cont ai ner/cn renove --dn \
"cn=$APP, cn=cust om at tri but es, cn=uni venti on, $l dap_base"

DO NOT revert ucs_regi ster LDAPExt ension "$@ --schema

schema ext ensi ons shoul d be kept forever. If attributes defined
there were set during the tine the app was installed

it may break LDAP if the attribute definition gets renpved!

See http://sdb. univention.de/ 1274

R OH H R H®

f

revert joinscript_save current_version - so that the join script
would run again if the app is reinstalled
joinscript _renove script fromstatus file app

exit O

Now the scripts need to be packaged. Some steps have to be doneinthe post i nst, pr er m post r mfiles
of the package. There is ahelper script that does that automatically. In debi an/ r ul es, add

override_dh_auto_install:
uni vention-install-joinscript
dh_aut o_install

%
dh $@

The join script needs to lie in the root directory of the source code and has to be named after the package,
e.g. 50uni venti on- nyapp. i nst and 50uni vent i on- nyapp- uni nstal | . ui nst. If you need
more control, just do not uni venti on-i nstal | -j oi nscri pt, details what to do can be found in the
Developer Reference’.

4.4. Extend the UCS management system Feedback ()
4.4.1. Add tabs and options Feedback{)

The form for creating LDAP objects can be customized by apps. Technically thisis done by writing special
objectsinto LDAP. As such, customization is generally donein ajoin script. The objects are created with the
Univention Directory Manager (UDM).

5 https://docs.software-univention.de/devel oper-reference.htmi# oin:write

17
www.univention.de

https://docs.software-univention.de/developer-reference.html#join:write
https://www.univention.com/feedback/?manual=integration:udm
https://www.univention.com/feedback/?manual=integration:udm:ea
https://docs.software-univention.de/developer-reference.html#join:write

@ univention

be open.
Add tabs and options

This example creates a checkbox in the users form's tab "Advanced settings'. This makes it possible to save
whether the user should be allowed to use the app. The value has to be queried by the app afterwards.

APP="nyapp"
SERVI CE=" My App"
for nore details, see
htt ps://docs. sof t war e- uni vent i on. de/ devel oper - ref er ence. ht m #udm ea
"$@ is here because this should go into a join script and there
passing the argunents of the script invocation to udmis necessary
udm settings/ extended_attribute create "$@ \
--ignore_exists \
--posi tion "cn=$APP, cn=custom attri but es, cn=uni venti on, $l dap_base" \
--set nodul e="users/user" " # extending users’ \
--set | dapMappi ng="${ APP} Enabl ed" " # LDAP attribute fromthe schema \
--set objectC ass="${APP}-user" \
--set nanme="$APP-enabled" # this is the nane for UDM \
--set shortDescription="AlIlow $SERVI CE" \
--set | ongDescripti on="Wether this user shall be allowed ..." \
--set transl ationShortDescription="\"de DE\" \"$SERVI CE erl auben\"" \
--set transl ati onLongDescription="\"de DE\" \"Zeigt an, ob ...\"" \
--set tabName="$SERVICE" "# This may create a newtab in the form \
--set transl ati onTabNanme="\"de DE\" \"$SERVICE\"" \
--set tabAdvanced='0" \
--set tabPosition="1" \
--set syntax='TrueFal seUp' "# should be a CheckBox \
--set mayChange='1"' \
--set default="TRUE || die

Note the
--set syntax='TrueFal seUp'

which semantically turns this attribute into a boolean field. Other syntax definitions exist, for example
string ori pAddr ess. More examples can be found in the following file / usr / shar e/ pyshar ed/
uni venti on/ adm n/ synt ax. py.

It is also possible to create own drop downs. The following example adds a combo box with two options
"Admi n" or "User "

udm setti ngs/extended attri bute create "$@ \
--ignore_exists \
--posi tion "cn=$APP, cn=custom attri butes, cn=uni venti on, $| dap_base" \
--set nodul e="users/user" \
--set | dapMappi ng="${ APP} Rol e" \
--set objectd ass="${APP}-user" \
--set name="$APP-rol e" \
--set shortDescription="Role in $SERVI CE" \
--set |ongDescription="Wich role the user has for $SERVI CE" \
--set transl ati onShortDescription="\"de DE\" \"$SERVICE-Rol [e\"" \
--set translati onLongDescription="\"de DE\" \"Wlche Rolle ...\"" \
--set tabName="$SERVI CE" \
--set transl ati onTabNanme="\"de DE\" \"$SERVICE\"" \
--set tabAdvanced='1"' \
--set tabPosition="1" \
--set syntax="${APP} User Or Adm n" \
--set mayChange='1" \

18
www.univention.de

@ univention

be open.
LDAP schema extension

--set default="user' || die
The syntax is a Python class and needs to be defined in a separate file:

cl ass nyappUser Or Admi n(sel ect):
choi ces=[('user', '"User'), (‘admn', 'Admn')]

Thisfile needsto be registered in ajoin script:

ucs_regi st er LDAPExt ensi on "$@ \
--udm syntax "/usr/share/ $APP/ ${ APP} synt ax. py"

4.4.2. LDAP schema extension Feedback {2}

The Extended Attributes are generally stored in LDAP as attributes not defined by default. A schema file
needs to be created and registered for the Extended Attributes to actually work. See this section® for details
of how to write a schemafile.

The example above needs afile like this:

attributetype (1.3.6.1.4.1.10176.99998. xxx. 1.1 NAME ' nyapp- enabl ed'
DESC ' My App al | owed'
EQUALI TY casel gnor eMat ch
SUBSTR casel gnor eSubst ri ngshat ch
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 15 SI NGLE- VALUE
)
attributetype (1.3.6.1.4.1.10176.99998. xxx. 1.2 NAME ' nyapp-rol e’
DESC ' My App role'
EQUALI TY casel gnor eMat ch
SUBSTR casel gnor eSubst ri ngshat ch
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 15 SI NGLE- VALUE
)
objectclass (1.3.6.1.4.1.10176.99998. xxx. 0.1 NAME ' nyapp- user'
DESC ' My App user'
SUP top AUXI LI ARY

MUST (cn)
MAY (nyapp-enabl ed $ nyapp-role)
)

Notethe"xxx" inthe so called OIDs. Y ou need aunique (worldwide!) identifier for your attributes and object
classes. Either request one’ or (probably better) talk to us, as Univention has its own namespace and any
schema extension can be defined "beneath” it.

Thisfile needs to be registered in ajoin script:

ucs_regi st er LDAPExt ensi on "$@ --schena "/ usr/share/ $APP/ $APP. schena"

4.4.3. Build own UDM modules FeedbackQ

The Univention Directory Manager (UDM) is a collection of modules written in Python to add powerful
capabilities around Python's LDAP bindings. In general, vendors will extend those existing modules using
Extended Attributes. But if a completely new class of object shall be saved, a new UDM module may be
useful, e.g., if the app manages buildings which cannot be simply "extended groups or containers'.

5 http://www.openl dap.org/doc/admin23/schema.html
7 http://pen.iana.org/pen/PenApplication.page

19
www.univention.de

https://www.univention.com/feedback/?manual=integration:ldap:schema
http://www.openldap.org/doc/admin23/schema.html
http://pen.iana.org/pen/PenApplication.page
https://www.univention.com/feedback/?manual=integration:udm:module
http://www.openldap.org/doc/admin23/schema.html
http://pen.iana.org/pen/PenApplication.page

@ univention

be open.
Build own UMC module

When writing a UDM module, it is best to look out for existing modules that can be copied and customized
for one's own needs. They livein/ usr/ shar e/ pyshar ed/ uni vent i on/ adm n/ handl ers/ . The
moduleappcent er / app. py isarather simple module which shows how a basic module should ook like:

svn co https://forge.univention. org/svn/dev/branches/ucs-4. 1/ ucs-4.1-4/\
managenent / uni vent i on- managenent - consol e- nodul e- appcent er/\
udm handl er s/ appcent er/

4.4.4. Build own UMC module FeedbackQ

The Univention Management Console (UM C) isthe web based frontend which isused to administratethe UCS
domain. It consists of separate modules and vendors may write such modules to further extend the Console.
Thismay be agood idea if

» The app can be customized but currently lacks afrontend
» The app needs to be activated or manually configured to work properly

Note that many UCS users are used to UMC and the fact that everything can be configured in one place. So
adding a UM C module may greatly enhance the user experience.

UMC modules are very versatile (both the JavaScript based frontend part as well as the Python backend part)
and can be used for nearly anything. This guide cannot cover everything there is about UMC modules. One
starting point may be

uni vention-install univenti on- managenent - consol e- dev
unc-creat e-nodul e --hel p

Or you use UMC and look out for modules that to some extend do what you are trying to accomplish and
copy the source code, e.g.

svn co https://forge.univention. org/svn/dev/branches/ucs-4.1/ucs-4.1-4/\
/ managenent / uni vent i on- managenent - consol e- nodul e-t op

4.5. Further integration scenarios Feedback £}
4.5.1. Firewall settings Feedback {2}

In the default setting, al incoming ports are blocked by the UCS firewall. Every package can provide rules,
which free up the ports required. In this example the port 6644 is opened for TCP and UDP. It can berunin
thepost i nst script or in the join script:

configure firewall

uni vention-config-registry set \
security/ packetfilter/package/"$APP"/tcp/ 6644/ al | =" ACCEPT" \
security/ packetfilter/package/"$APP"/tcp/ 6644/ all/en="3$APP" \
security/ packetfilter/package/"$APP"/ udp/ 6644/ al | =" ACCEPT" \
security/ packetfilter/package/"$APP"/ udp/ 6644/ al | / en="$APP"

[-x "/etc/init.d/ univention-firewall"] &&
i nvoke-rc.d univention-firewall restart

4.5.2. Serving a web application Feedback {2}

UCS comes with a running Apache HTTP Server used by the UMC server as a proxy. This means that apps
cannot use port 80/443 easily: It is aready used. Apps can use Apache, though, by shipping afile/ et c/

20 _)
www.univention.de

https://www.univention.com/feedback/?manual=integration:umc:module
https://www.univention.com/feedback/?manual=integration:scenarios
https://www.univention.com/feedback/?manual=integration:scenarios:firewall
https://www.univention.com/feedback/?manual=integration:scenarios:apache

@ univention

be open.
Setting links to the web interfacein/ ucs- over vi ew

apache2/ si t es- avai | abl e/ $APP. Apache can then act as a proxy to the app's server (running on a
different port).

m ni mal

ProxyPass /$APP/ http://127.0.0.1: $APP_PORT/

ProxyPassReverse /$APP/ http://127.0.0. 1: $APP_PORT/

The site needs to be enabled by alineinthe post i nst of the package:

a2ensite "$APP"

It is highly recommended to use Apache for it is the service with port 80/443. While it is possible to just
let the app respond to requests on port say, 8080, many firewalls will block the app without taking further
actions. One prominent example are the default security rules of the Amazon Web Services. The app may not
be accessible without using Apache as a proxy!

4.5.3. Setting links to the web interface in / ucs- overvi ew Feedback{)

The start page of any UCS system (ht t p: / / $host nane/) lists available services on this server, notably
UMC. If an app provides a web interface, this can be listed, too. The easiest way is by stating this in the
i ni file

Webl nt er f ace=/ $APP/

#Webl nterfaceNanme=. .. # defaults to Nanme=
one of the two categories in /ucs-overvi ew.
"services" (default) or "adm n"

#UCSOver vi ewCat egor y=ser vi ces

If WeblInterface is given in thei ni , the App Center takes care of the integration on the overview site. But
sometimes thisis not powerful enough. This level of "automated integration” cannot handle ports other than
80/443 (as it will always use the current port which is 80 or 443) and cannot add more than one link. If a
deeper level isrequired, thisshould bedoneinthepost i nst and post r mscripts of theintegration package
using UCR:

posti nst
#DEBHEL PER#

ucs/ web/ overvi ew entri es/service/... or
ucs/ web/overvi ew entri es/adnmn/. ..

export P="ucs/web/overview entries/service"
ucr set \
"$P/ $APP"/ descri pti on/ de="Description of link to $APP (Gernman)" \
"$P/ $APP"/ descri pti on="Description of link to $APP (English)" \
"$P/ $APP" /i con="/url/to/icon/ $APP. png" \
"$P/ $APP"/ | abel / de="Headl i ne of |ink to $APP (Gernman)" \
"$P/ $APP"/ | abel ="Headl i ne of |ink to $APP (English)" \
"$P/ $APP" /1 i nk="htt ps: // $host nane. $donmai nnane: $APP_PORT/ webi nt er f ace/ "
\
"$P/ $SAPP"/priority=xx-digits-for-sorting-or-just-dont-set

postrm

#DEBHEL PER#

21
www.univention.de

https://www.univention.com/feedback/?manual=integration:scenarios:overview

Using PostgreSQL or MySQL

ucr unset \
ucs/ web/ overvi ew entri es/ servi
ucs/ web/ overvi ew entri es/ servi
ucs/ web/ overvi ew entri es/ servi
ucs/ web/ overvi ew entri es/ servi
ucs/ web/ overvi ew entri es/ servi
ucs/ web/ overvi ew entri es/ servi
ucs/ web/ overvi ew entri es/ servi

cel
cel

cel
cel

cel

4.5.4. Using PostgreSQL or MySQL

" SAPP!
" SAPP!
cel"
" SAPP!
" SAPP!
cel"
" SAPP!

$APP

$APP

@ univention

be open.

"/ description/de \
"/description \
"/icon \

"/ | abel / de \

"/ | abel \
"/1ink \
"/priority

Feedback Q

When your application uses PostgreSQL, your package should depend on univention-postgres and you
need to ship afilein/ et ¢/ post gresql / 9. 1/ mai n/ pg_hba. conf . d/ or, maybe even better, in/
etc/univention/tenplates/files/etc/postgresql/9.1/ main/pg _hba. conf.d/ (see

UCR):

| ocal $app_db_nane $app_db_user nd5

When your application uses MySQL, you may access the administrator password by reading / et c/
nmysql . secr et . A dependency on the package mysgl-server is enough as we patch the Debian package.

22

www.univention.de

https://www.univention.com/feedback/?manual=integration:scenarios:db

@ univention

be open.
Create the App meta data
Chapter 5. Provide the App
5.1. Create the APP MELA ABEAvveiiei e e e e e e e e e e e e e et e e e eanas 23
5.2. Create optional App MEta infOrMationuuiiiiiiiiier e e e e e e e e 24
LG T U o = I L= o o 24

Until now you should have your software solution packaged as Debian package(s) including a separate pack-
age taking care of the UCS integration. To finish the app, you'll need to add the meta data for the App Center
and upload it to Univention.

Note

Starting with UCS 4.0, only 64 bit installation images are provided. Univention does support 32
bit for at least UCS 4.x, though. When using a 32 bit UCS 3.2, one may update to UCS 4.0. It is
therefore recommended (but not required) to provide the app for and64 and 1386. If 1386 shall not be
supported, one may specify Suppor t edAr chi t ect ur es=and64 intheini file, see Section 5.1.

For the archive to be uploaded, the following directory structure is recommended:
+ et adat a/
» packages/
e all/
» amd64/
* 386/
* readne

Put your packages in the appropriate subdirectories below packages/ .

5.1. Create the App meta data Fecdback{)

The Debian packages take care of the installation of your software solution on UCS through the Debian
package manager. But, the App Center does not know what to present to the user. This gap isfilled with the
App metadatacomprising of text information like description, website, contact, visual information likealogo
and optional screenshots, optional detailed information for the usersin several readmefiles.

Please provide the following information together with packages:

1. Atextfileinthe. i ni format including information like description, several website links, contact infor-
mation, conflicting apps, etc. Please refer to the Devel oper Reference for atemplate and the description
of every attribute.

2. A product logo in SVG format, ratio: square.

The. i ni file hasthe attribute ID. Simply namethe. i ni file and the product logo after that ID (note that
you need to specify the logo file in theini file!):

e nyapp.ini
* nyapp. svg

1 https://docs.software-univention.de/devel oper-reference. html#app:iniFile

_) 23
www.univention.de

https://www.univention.com/feedback/?manual=provide:meta
https://docs.software-univention.de/developer-reference.html#app:iniFile
https://docs.software-univention.de/developer-reference.html#app:iniFile

@ univention

be open.
Create optional App meta information

Put those files below the net adat a/ directory.

Note

The meta data contains the attributes NotifyVendor and NotificationEmail. If you want to receive
daily email natifications upon the installation of your app, please set them appropriately. The email
address here may differ from the contact address. If set to Tr ue the user will be informed about the
delivery of such anotification before installing the app.

Note

Note to sales: You as independent software vendor are responsible for the contacts and it is up to
you how to organize the follow-up. Try to contact the users very fast. The experience shows that it
makes sense to organize afollow up within one week.

A detailed explanation about the notifications can be found in the Developer Reference’.

5.2. Create optional App meta information Fecaback{)

Y ou may add optional app meta data information. Please refer to the Optional application files section in the
developer reference for the choice of files.

1. Another product logo in SVG format. This time, no ratio requirements. It will be shown in the details of
the app rather than in the overview.

2. Screenshot of your solution: The filename of the screenshot is given in the app meta data with the attribute
Screenshot. Recommended name: myapp_scr eenshot . png (you may aso provideaj pg).

3. License agreement: If you require the user to confirm alicense agreement before installation, provide the
file Ll CENSE_AGREEMENT_ENand LI CENSE_AGREEMENT_DE.

4. README files: You may add different readme files depending on action taking place. For example, you
may present text before installation or before update only. Please refer to the Optional application files
section® for the set of possible readmefiles.

Please use simple HTML in al those files and split the text into reasonable paragraphs. Copy the files below
the readme directory in the recommended structure. The file names have to match the definitions.

5.3. Upload the App Feedback{)

Finally, upload the whole app according to the following steps:

1. Takethe above directory structure, create an archive, for examplet ar. gz or zi p.

2. Upload the archive to https://upload.univention.de/ and remember the upload-id shown there.
3. Send the upload-id via email to <appcent er @uni venti on. de>.

Congratulations! That'sit, you are finished for the moment.

2 https://docs.software-univention.de/devel oper-reference. html#app:notification
8 https://docs.software-univention.de/devel oper-reference. htmli#app:optional Files

24 _)
www.univention.de

https://docs.software-univention.de/developer-reference.html#app:notification
https://www.univention.com/feedback/?manual=provide:meta:optional
https://docs.software-univention.de/developer-reference.html#app:optionalFiles
https://docs.software-univention.de/developer-reference.html#app:optionalFiles
https://www.univention.com/feedback/?manual=provide:upload
https://upload.univention.de/
mailto:appcenter@univention.de
https://docs.software-univention.de/developer-reference.html#app:notification
https://docs.software-univention.de/developer-reference.html#app:optionalFiles

@ univention

be open.

Chapter 6. What happens next?

After you sent the upload-id to Univention, a Univention employee will extract your files and copy them to
the Test App Center. You'll receive a short note about how to activate the Test App Center for final testing
of your app. After the app passed the automatic tests at Univention concerning the packages and you as
vendor gave your written approval, the app will be published in the App Center. Due to feedback and further
communication the approval process may last a couple of days. Further uploads may be necessary to fix issue
that have been found during thisiterating process.

Note

The automatic tests run after the packages have been copied into the Test App Center, only cover
UCS core functionality, e.g., whether LDAP still works after adding a schemafile. They do not test
the App itself.

_) 25
www.univention.de

26

@ univention

be open.
Why Docker?
Chapter 7. Docker Apps for the
Univention App Center
7.1 WHY DOCKEI? ..ottt ettt et e et e e e e e s 27
7.2. Example: Docker App RAOICEIEuiiiiii e 28
721, PrEfEUUISITESeiite ettt ettt ettt ettt e ettt e e et e e et e e e e n e e e e e aen 28
7.2.2. The INi FIlE oo e 28
7.2.3. Integration, first itEralioNc.uuiiiiii e 30
7.2.3.1. TRE JOIN SCIIPE e eeteieeeet ettt e et e et e e e e e 30
7.2.3.2. Storing the data persiStentlyoooevuniiiiii e 31
7.2.4. Integration, SECONM ITEIaIIONccieueieiiiii et e et e et e e et aeees 33
7.2.4.1. Making the App configurable by the User ... 33
7.2.4.2. Making the AP LDAP GWEIEcoouuuiiiiiii ettt 34
7.3 EPIOQUE ..ttt e e e e e aeen 36
7.3. 1. DOCKES SCITES evtueeeeeti ettt ettt ettt ettt ettt e et e ettt e et et e e e ena e e eenans 37
7.3.2. Docker related variables in the ini file ... 39
LA D L= o8 s o1 o PP PP UPPPTR 40

Starting with UCS 4.1 the Univention App Center will support Docker. Docker is an OS level virtualization
software that hel ps deploying applications in isolated containers. In this chapter we will discuss the reasoning
and aim of the Docker support, give some technical insights and also go through example apps.

7.1. Why Docker? Feedback{)

Prior to UCS 4.1, Apps in the Univention App Center were installed next to all other system packages. This
made the development of enterprise applications for UCS fairly easy but had some shortcomings:

» Some applications required newer versions of certain packages like PHP. This had impact on the stability
of the operating system and aso led to (not obvious) conflicts between apps.

» With a growing number of apps in the App Center catalog it got harder for Univention to verify that the
App did not break anything by enabling/disabling features of certain software components. With the Debian
Maintainer scripts, App vendors had effectively root access on the system.

By supporting Docker, we aim to overcome those pointswhile preserving the simplicity of developing an App.

If you have already worked with Docker, you may know that Docker is sometimes advertised as away to en-
capsulate each and every task into its own container, sometimes referred to as Micro services. In the Univen-
tion App Center we currently focus on a different route: We start minimal, yet fully functional UCS systems
inwhich one App isinstalled and started.

| mportant

For App development this means that an ISV still programs against aUCS. Thereisno need to build
adedicated Docker Container. Univention already provides such a container along with the tools to
actually install Debian packages just like the App would be installed on metal (or just like it was
prior to UCS 4.1).

An ISV needs to provide Debian packages, not Docker images (very much the same as in UCS <
4.1). The integration of the App into the UCS infrastructure may be done via an additional package
or via separate scripts that live unpackaged on the App Center server (see below for an example).

_) 27
www.univention.de

https://www.univention.com/feedback/?manual=docker:goal

@ univention

be open.
Example: Docker App Radicale

7.2. Example: Docker App Radicale Feedback{)

In this section we will develop a Docker based App step by step.

We use the software Radicalefor it. Radicaleisa CardDAV and CalDAV server already packaged in Debian
and therefore available in UCS. So we do not really develop something from scratch but use an existing
application and put it into the Univention App Center.

Note

In general, apps need to come in the Debian package format (. deb). If you do not have your appli-
cation packaged in this way, you may want to check the chapter packaging® in the UCS devel oper
reference as a starting point. Here we will use a pre-packaged application aready present in (the
unmaintained repository of) UCS.

7.2.1. Prerequisites Feedback {2}

Y ou need arunning UCS 4.1 system (master domain controller for the sake of convenience). As Radicalewill
be installed from the UCS repository, not from the App Center and Radicale is unmaintained by Univention,
you need to activate the unmaintained repository:

ucr set repository/online/unmaintai ned='yes'

Also, make sure your system has the following packages installed: univention-appcenter, univention-app-
center-docker, univention-appcenter-dev

After this has been done, run

uni venti on- app dev-set up-| ocal - appcent er

722 The |n| flle FeedbackQ

An App consists of the actual packages and metainformation about the App. The App may ship one or more
screenshots, various READVME files and so on. But every App hasto haveani ni file.

| mportant

Every version of an App (i.e. the origina upload and every update of it) hasitsowni ni file! It may
bejust acopy of the original file with the Ver si on= increased, yet anew ini fileis necessary.

Create afile~/ r adi cal e. i ni (nameit asyou like...) and put the very first content in it:

[Appl i cati on]
Can be chosen arbitrarily but after it has been chosen,

needs to stay the same in each version

| D=r adi cal e

Code is necessary, but given by Univention. Normally, you do not
need to specify it

Code=RD

Nanme=Radi cal e

The version will be set to that of the repository:

Ver si on=0. 7

1 https://docs.software-univenti on.de/devel oper-reference. html#chap: packaging

28 _)
www.univention.de

https://www.univention.com/feedback/?manual=docker:example
https://docs.software-univention.de/developer-reference.html#chap:packaging
https://www.univention.com/feedback/?manual=docker:example:prerequisites
https://www.univention.com/feedback/?manual=docker:example:ini
https://docs.software-univention.de/developer-reference.html#chap:packaging

@ univention

be open.
Theini file

Radicale is developed by Kozea, we are "only" doing the integration work. If you develop the software and
do the integration, you only need the first two lines:

Vendor =Kozea

Websi t eVendor =htt p: // kozea. fr/

Mai nt ai ner =Uni vent i on

Websi t eMai nt ai ner =htt p: //ww. uni venti on. de/

Radicale can be used to manage shared calendars, so this makesit a Collaboration App:

Cat egor i es=Col | abor ati on

Note

The following categories are allowed (multiple can be specified, separated by ","): Administration,

Business, Collaboration, Education, System services, Virtualization (+ UCS Components, but these

are meant for Univention Software)
Now theimportant parts: The Debian packagethat isto beinstallediscalled radicale. It will liveinarepository
created for this App on the App Center server. The package is unmaintained by Univention, so it needsto be
copied from the unmaintained repository to the App's repository (thisis done later).

Def aul t Packages=r adi cal e
It shall beinstalled as a Docker App, so the following needs to be specified:
Docker | mage=docker . sof t war e- uni venti on. de/ ucs- appbox- and64: 4. 1- 0

This means that the package is not installed on your system but rather in a Docker Container running on your
system. To access the relevant bits of the container (i.e. the calendars and contacts), you need to forward the
port (which happensto be 5232 for Radicale):

Port sExcl usi ve=5232
You coul d al so use PortsRedirecti on=1234: 5232

Note

Univention provides a set of images at docker . sof t war e- uni venti on. de, at least one per
minor version of UCS. If unsure, it is probably a good idea to have the image's UCS version match
the UCS version of the Docker Host. But this is absolutely not mandatory. In fact, it is one of the
advantages of Docker apps that their OS may differ from the host's. For alist of the images, ask
Univention.

Together, this makes:

[Appl i cati on]
| D=r adi cal e

Code=RD
Nane=Radi cal e

Ver si on=0. 7

Vendor =Kozea

Websi t eVendor =htt p: // kozea. fr/
Mai nt ai ner =Uni venti on

Websi t eMai nt ai ner=http://ww. uni venti on. de/

Cat egor i es=Col | abor ati on

_) 29
www.univention.de

@ univention

be open.
Integration, first iteration

Def aul t Packages=r adi cal e
Docker | mage=docker . sof t war e- uni vent i on. de/ ucs- appbox- and64: 4. 1-0

Por t sExcl usi ve=5232

Finally, put the ini file into the (local) App Center (do not forget to upload the Debian packages - here this
means two unmaintained packages already built):

uni venti on- app dev- popul at e- appcenter --new \
--ini ~/radicale.ini \
--unnmai nt ai ned radi cal e python-radi cal e

7.2.3. Integration, first iteration Feedback {2}

Radicale should already be installable. Alas, it will not work. Thisis due to the way Radicale is packaged in
Debian. To make it work as expected, we need to modify it. Here starts the integration work of the App.

First of al, Radicale is not started by default. To change that, we need to modify / et ¢/ def aul t / r ad-

i cal e and uncomment #ENABLE_RADI CALE. The Univention App Center supports various scripts that
can be added to the App and will be executed at various points in time. Maybe the most important one is
thejoin script.

7.2.3.1. TthOin SCI’ipt FeedbackQ

Thejoin script isafundamental feature of UCS. UCSisused to run and administrate adomain. New computers
may "join" the domain. The computer searches for the Domain Controller Master (DC Master) and adds itsel f
to LDAP (hostname, | P address, etc). Join scripts are used to "join software packages' into the domain. This
means that if you install, say, radicale, it may need to register Radicale somewhere and make some changes
in the domain.

The domain is administrated by manipulating the core database on the DC Master, the LDAP database. Nor-
mally, thisis done by using tools provided by Univention, mainly the Univention Directory Manager, udm

But here, we do not really need to alter LDAP. We just want to change alocal file. We are just making use
of the fact that the join script is executed after the package is installed. (In terms of the App Center: after
the App isinstalled)

Note

We need to distinguish between the Docker Host - thisisthe "rea” UCSinstalled. The Docker Host
is running the Docker Containers. These may also be UCS systems, but they essentially only run
the App packages.

The App Center provides an easy way to add a join script to the App by just adding it to the repository on
the App Center server. Thejoin script is then executed on the Docker Host after the Docker Container is set
up. So the join script is not executed locally with respect to the App, but the Docker Host may access thefile
system of the Container anyway.

To add ajoin script, just create afile~/ r adi cal e. i nst and add the following to it:

#! / bi n/ sh
VERS| ON=1

/usr/ shar e/ uni vent i on- appcent er/j oi nscri pt hel per. sh

30 _)
www.univention.de

https://www.univention.com/feedback/?manual=docker:example:integration1
https://www.univention.com/feedback/?manual=docker:example:join

@ univention

be open.
Integration, first iteration

joinscript _init

eval "$(ucr shell |dap/base)"
joinscript_run_in_container sed -i /etc/default/radicale -e "s/
#ENABLE_RADI CALE/ ENABLE_RADI CALE/" || die

j oi nscript_save_current_version

exit O
Now you can add it to the App Center:

uni venti on- app dev- popul at e-appcenter --new \
--ini ~/radicale.ini \
--join ~/radicale.inst \
- -unmai nt ai ned radi cal e pyt hon-radical e

Note

uni venti on- app dev- popul at e- appcent er --new

will create a new version of the App and write the internal component to the screen (In this case
something liker adi cal e_yyyymudd). But if you are fast enough, it will overwrite the existing
App version because the date does not (yet) differ. Correct would be something like

uni venti on- app dev- popul at e- appcent er \
--conponent radical e 20150929 \
--join ~/radical e.inst

to really alter the App.

7.2.3.2. Storing the data persistently Feedback {_)

Now the App should be instalable and run as expected. As specified in the ini ucs-app-
box- and64: 4. 1- 0 will be used as the Docker image. It is downloaded from a docker registry set up at
Univention and started on the Docker Host. The image contains a minimal UCS member server which will
eventually contain the App packages.

| mportant

There are some things you should be aware of when developing a Docker App for the Univention
App Center:

* Thedefault imageisaminimal, yet fully functional UCS.

» The system will join into the domain. The Docker App will be listed as a member server when
showing all hosts of the domain.

» Thesystemwill not run something like/ usr / bi n/ r adi cal e directly. Instead it runs/ sbi n/
i nit (itisactually adlightly altered version of the original / shi n/i ni t of UCS). The App
will berun becauseit is somehow configured to be started on acertain run-level (somehow means:
Thisisthe job of the corresponding Debian package).

» TheDocker imageiswritable, i.e. the App can create and modify all filesit wantsand after restart-
ing the container, the files persist. Thisalso holds for updates: The Docker Container may install

_) 31
www.univention.de

https://www.univention.com/feedback/?manual=docker:example:store

@ univention

be open.
Integration, first iteration

package updates released by Univention (so called errata updates) and even new major versions
of the operating system. This means that the image can be used "forever".

Last point for this section will be storing and restoring datafrom the Docker Container. Although the container
may be used forever, it may be that the underlying image needs to be exchanged. Thisis done by effectively
removing the old container and setting up a completely new one. Thus, we need to store the App data just
before removing the old container and restore it in the new one.

Radicale has some backends where to store the data, but preconfigured is the file backend - which makes it
very easy for usto backup thedata. The calender and contact dataisstoredat/ var/ | i b/ r adi cal e/ col -
| ections/. Wejust need to save this directory and restore it accordingly. Luckily, the Univention App
Center provides a shared directory where the App can store its data easily. This directory is/ var/ i b/
uni venti on- appcent er/ apps/ $APPI D) dat a/ .

Createthefile~/ r adi cal e. st or e_dat a with the following content:

#!/ bi n/ sh

[usr/ shar e/ uni venti on- docker - cont ai ner - node/ restore_data_after_setup \
n $@

cp -r /var/lib/radical e/collections \
/var/lib/appcenter/app/radi cal e/ dat a/

exit O
Next, create~/ r adi cal e. rest ore_dat a:

#! [/ bi n/ sh

[usr/ shar e/ uni venti on- docker - cont ai ner - node/ restore_data_after_setup \
"$@

rm-r /var/lib/radical e/collections
cp -r /var/lib/appcenter/app/radical e/ data/col | ections \
/var/lib/radical e/

exit O

| mportant

/var/1ib/univention-appcenter/apps/$APPI DY dat a/ is aways mounted into the
Docker Container. The very same directory exists on the Docker Host. If your App can be configured
to save its data on a different location, you may want to consider using this directory. Not only will
it make storing and restoring data in the image exchange process very easy, it should also be faster
because it does not rely on the Docker storage driver, thereby reducing overhead. In fact, Radicale
should have been configured to store its collection data there in the first place instead of copying it
inst or e_dat a. But thiswould render the script useless and it shall be part of the tutorial!

Finally, make these scripts known to the App by specifying them in the ini file. Y ou can use any name you
like. The scriptswill be copied to that place in the container. Y ou may even overwrite existing files.

Docker Scri pt St or eDat a=/ usr/ shar e/ uni vent i on- appcent er/ app/ r adi cal e/
store_data

Docker Scri pt Rest or eDat aAf t er Set up=/ usr/ shar e/ uni vent i on- appcent er/ app/
radi cal e/restore_data

32 _)
www.univention.de

@ univention

be open.
Integration, second iteration

Note

All Docker scripts that may be specified in the ini file have a reasonable default already installed in
the default container. So it is generally a good ideato execute the default script in your script.

Warning

When using custom scripts (like st or e_dat a) you should also set the corresponding Dock-
er Scri pt variableintheini file. The default of thisvariable isthe path to the default script. If you
want to run that default script in your custom script (as advised) you will instead call yourself!

Add the new scriptsto your App Center:

uni venti on- app dev- popul at e- appcenter --new \

--ini ~/radicale.ini \

--join ~/radicale.inst \

--store-data ~/radicale.store _data \
--restore-data-after-setup ~/radicale.restore _data \
--unnmai nt ai ned radi cal e python-radi cal e

7.2.4. Integration, second iteration Feedback {2}

The App should be in afunctional state now.
uni venti on-app install radicale
should give you arunning CalDAV/CardDAYV service at port 5232 on your Docker Host.

The configuration of the service is not optimal, though. Every user, even an anonymous user can create and
change any calender and contact. We want to limit the access to domain users. And they should only be able
to change their own calendars. Note that Radicale provides mechanisms for even finer grained control. This
is not scope of this example, though.

7.2.4.1. Making the App configurable by the user Feedback {)

Radical€'s rights management can be configured in various ways. We want to let the administrator decide
whether the App's configuration is owner _wri t e (users need to have valid credentials; their own calen-
ders/contacts can be modified, others can beread) or aut hent i cat ed (same, but others can also be mod-
ified).

Thisis achieved by adding ~/ r adi cal e. ucr . This file defines some Univention Configuration Registry
variables (UCR). These are a core feature of UCS and thus of a Docker App based on UCS.

[radi cal e/rights/type]
Descri ption[de] =Recht ever gabe fir Kal ender, Kontakte
Descri ption[en] =Access control for cal endars, contacts

Type=li st
Label s[de] ="All e | esen, eigene schrei ben" "Alle | esen, alle schrei ben"
Label s[en] ="Read all, wite own" "Read all, wite all"

Val ues=owner _write authenticated
Def aul t =owner _write
Cat egor i es=apps

The definition itself is not very useful onitsown. It just sets the variable in the database. The interesting part
of UCR are the triggers and the templates. One may define triggers that are executed whenever avariableis
changed. And one may define templates that overwrite existing files depending on UCR variables.

_) 33
www.univention.de

https://www.univention.com/feedback/?manual=docker:example:integration2
https://www.univention.com/feedback/?manual=docker:example:ucr

@ univention

be open.
Integration, second iteration

Normally, onewould now create a package with all thetriggers. But for this example, we do not want to create
packages at al. We may abuse the join script to add this trigger and atemplate in the container.

Note

The integration part starts getting complicated. One should really create a package univention-rad-
icale and add the UCR definition there. One could also do the modification of / et ¢/ de-
faul t/radical e there, eg. by using dpkg- di vert . The package would depend on exactly
one package (radicale) and be defined as the only Def aul t Packages intheini file.

We will show what to do in the next section as the join script is modified one more time.

7.2.4.2. Making the App LDAP aware Feedback {)

Radicale comeswith LDAP support. We just need to configureit. Radicale bindsto LDAP and can then check
any credentials. But for that we need a bi nddn for Radicale. A new user for that App needs to be created
in LDAP.

After that this very user has to be specified in the configuration file of Radicale, / et ¢/ r adi cal e/ conf.

This should be donein the join script. We change~/ r adi cal e. i nst sothat it addsanew user for usand
creates a file in the container. Note that the latter operation is quick and dirty and is only done because we
would have to create a package for basically one file otherwise.

#!/ bi n/ sh
VERSI| ON=1

/usr/ shar e/ uni vent i on- appcent er/j oi nscri pt hel per. sh
/usr/share/univention-lib/all.sh
joinscript_init
eval "$(ucr shell |dap/base)"
ucs_addSer vi ceToLocal host "${SERVICE}" "$@
joinscript_add_sinple app _system user "$@

cat > "$(joinscript_container file touch /etc/univention/tenplates/
files/var/lib/radical e/.config/radicale/config)" <<- EOF
@/@UCRWARNI NG=# @@

[rights]
type = @4 adi cal e/ ri ghts/type@@

[aut h]

Access net hod

Val ue: None | htpasswd | LDAP | PAM| courier
type = LDAP

Usernanes used for public collections, separated by a conma
#publ i c_users = public

Usernanes used for private collections, separated by a coma
#private users = private

www.univention.de

https://www.univention.com/feedback/?manual=docker:example:ldap

@ univention

be open.
Integration, second iteration

Ht passwd fil enanme

#ht passwd_fil enane = /etc/radical e/users
Ht passwd encryption net hod

Value: plain | shal | crypt

#ht passwd_encrypti on = crypt

LDAP server URL, with protocol and port

| dap_url = | dap:// @4 dap/ server/ name @@ @4 dap/ ser ver/ port @D

LDAP base path

| dap_base = @4@ dap/ base @@

LDAP login attribute

#l dap_attribute = uid

LDAP filter string

placed as X in a query of the form (& ...)X

exanpl e: (obj ect Cat egor y=Per son) (obj ect Cl ass=User)

(rmenber O =cn=cal ender user s, ou=user s, dc=exanpl e, dc=or g)

leave enpty if no additional filter is needed

#l dap_filter =

LDAP dn for initial login, used if LDAP server does not all ow
anonynous sear ches

Leave enpty if searches are anonynous

| dap_bi nddn = ui d=r adi cal e- syst emuser, cn=user s, @4 dap/ base @@

LDAP password for initial login, used with | dap_bi nddn

@@

#| dap_password =

print 'ldap_password = %' % open('/etc/radicale.secret').read()

@@

LDAP scope of the search

| dap_scope = SubTree

PAM group user shoul d be nenber of
#pam gr oup_nenbership =

Path to the Courier Authdaenon socket
#couri er_socket =
ECF

cat > "$(joinscript_container_file /etc/univention/tenplates/info/
uni vention-radicale.info)" <<- EOF

Type: file

File: var/lib/radical e/.config/radicale/config

Vari abl es: radicale/.*

Vari abl es: | dap/ base

Vari abl es: | dap/ server/ port

Vari abl es: | dap/ server/ nanme

ECF

joinscript_run_in_container ucr update
joinscript_run_in_container ucr conmt /var/lib/radicale/.config/
radi cal e/ confi g

joinscript_run_in_container sed -i /etc/default/radicale -e "s/
#ENABLE_RADI CALE/ ENABLE_RADI CALE/" || die
joinscript_run_in_container invoke-rc.d radicale restart

_) 35
www.univention.de

@ univention

be open.
Epilogue

j oi nscript_save_current_version

exit O

Notethat ucs_addSer vi ceToLocal host wasadded. Thisisabest practice to make the domain admin-
istrator aware where the application Radicale isinstalled.

| mportant

Thecommanducs_addSer vi ceToLocal host should bereverted when the Appisuninstalled.
But even moreimportantly, the join script needs to be run again as soon asthe App isuninstalled and
then installed again (changing / et c/ def aul t / r adi cal e and soon...). Asthejoin script saved
the information bit that it was successfully executed at the end of itself, we need to revert that, too.
To do so, we need an unjoin script. Technically it is similar to ajoin script but run after uninstalling
the App, not after installing it. The script would simple do this (saveto ~/ r adi cal e. ui nst):

#! / bi n/ sh
VERSI| ON=1

/usr/ shar e/ uni venti on- appcent er/j oi nscri pt hel per. sh
[usr/share/univention-lib/all.sh

joinscript_init
ucs_r enpoveServi ceFronlLocal host "${SERVI CE}" "$@
joinscript_renove_script_fromstatus file radicale

exit O
One last time we need to update our App Center server:

uni vent i on- app dev- popul at e- appcenter --new \

--ini ~/radicale.ini \

--join ~/radicale.inst \

--unjoin ~/radical e. ui nst \

--store-data ~/radicale.store data \
--restore-data-after-setup ~/radicale.restore_data \
--ucr ~/radicale.ucr \

--unmai nt ai ned radi cal e pyt hon-radi cal e

Now we can test and use our application:
uni vention-app install radicale

The configuration option regarding the rights management can now be set in the Univention Management
Console or via

uni venti on-app configure radicale \
--set radical e/rights/type=authenti cated
uni vention-app restart radicale

7.3. Epilogue Feedback ()

In this section we will go briefly over things we may have missed in the example.

36 _)
www.univention.de

https://www.univention.com/feedback/?manual=docker:epilogue

@ univention

be open.
Docker scripts

7.3.1. Docker scripts Feedback £}

For every App, the App Center server holds a repository containing the Debian packages. But it also may
hold several scripts that do not need to be packaged. In theory one may integrate one's App without needing
to build an additional integration package. That being said, with increasing complexity, it is advised to build
such a package nonetheless. Furthermore, not everything can be achieved easily with these scripts. There are
interfaces rarely used that the App Center does not support. Should your App require these interfaces, it may
be necessary to create a package.

We need to distinguish between outer scriptsand inner scripts. An outer script is called on the Docker Host,
inner scripts are called in the running Docker Container.

All scriptsare called with root privileges. For inner scriptsthis meansthe local root of the Docker Container.
Some scripts may get LDAP credentials. Normally these credentials are that of the Administrator account.

Note

None of thefollowing scriptsis mandatory, all have reasonable defaults/ fallbacks. But every scripts
may be overridden! Just upload them along with the ini file and Univention will place them on the
App Center server. See also Section 7.3.2 on how to specify these scriptsin theini file.

The following scripts are for installation and uninstallation. Upgrades use these scripts, too, if (and only
if) the upgrade includes an image exchange (i.e. the new version with the new ini file specifies a different
Docker | mage). In that case the old App is uninstalled and the new App isinstalled.

pr ei nst
An outer script called before the Docker Container is initialized, even before the image is downl oaded.
Its purposeisto check whether installation may be successful. For example, the preinst may fail if certain
hardware requirements are not met. Any exit code other than O will result in cancellation of theinstallation
process. If the installation of an App is the result of an image exchange (and thus more of an upgrade)
the preinst is also called.

restore_data_before_setup
An inner script called before setup is called, right after the container is started. Its purpose is to restore
those hits that may be needed to successfully run the setup script. May be useful in an upgrade process
where one needs to restore the state the old container was in instead of setting up the container asiif it
were fresh.

setup
Aninner script and heart of the whole installation process. By default it joins the system, (ascript called
uni venti on-j oi n provided by Univention), adds the repository that was created on the App Center
server and installs Def aul t Packages specified in theini file. After that it once again joins, running
all scripts that may have been installed during the App installation. If the script fails (exit code != 0) the
installation is aborted.

restore_data after_setup
Aninner script called after setup is called. Its purpose is to actually restore the data that may have been
saved in store_data — now that the App is up and running but the database is still empty.

i nst
Also called join script. An outer script called after the Docker Container is configured. Think of it asa
postinst of the App. See the Developer Reference? for how to write ajoin script. If the join script runs
successfully, the join script may save this information in a status file. If this does not happen, the user
is constantly reminded to re-run the join script. So the join script does not need to run successfully. The

2 https://docs.software-univention.de/devel oper-reference.htmi# oin:write

_) 37
www.univention.de

https://www.univention.com/feedback/?manual=docker:epilogue:scripts
https://docs.software-univention.de/developer-reference.html#join:write
https://docs.software-univention.de/developer-reference.html#join:write

@ univention

be open.

Docker scripts

installation will not be aborted at thispoint. But of course at some point it should run through successfully.
The main purpose of the join script is to set up the domain for the new App, e.g. by adding a domain
user that can be used asthe LDAP bi nddn that your App may need to authenticate against the central
user management of UCS.

prerm
An outer script called before the Docker Container is removed. Its purpose is to check whether an unin-
stallation may be successful. But it may be used to somehow prepare the system for the uninstallation.
For example, the prerm may fail if other software still dependsonit. Any exit code other than O will result
in cancellation of the uninstallation process.

store_data

Aninner script called before removing the Docker Container. In fact the App is not really uninstalled.
The container isjust thrown away. Thisalso happens during image upgrades: The current imageisthrown
away and a new image is set up. Therefore it is important to store the data of the current App to be
able to start into exactly that state when the container was removed. You may call any App specific
commands like myapp- backup --full orjust copy the important files. The App Center always
mounts the following directory into the container, which can be used to store the data (and later restore
the data from there as the very same directory will be mounted into the new container): / var/ | i b/

uni venti on- appcent er/ apps/ $APPI D/ dat a/ .

ui nst
Also called unjoin script. An outer script called after the Docker Container isremoved. Think of it asa
postrm of the App. See the Developer Reference® for how to write an unjoin script. It should somehow
revert most (if not all) changes doneintheinst script (or join script). With the notabl e exception of schema
registration. An LDAP schema extension should never be removed once it was registered.

The following scripts are for upgrading the software within the Docker Container. Three possible scenarios
have to be covered:

» Upgrade of system packages (security fixes, UCS calls them Errata Updates)

» Upgrade of the operating system (a new patchlevel release or even a minor/major update of UCS (4.1-1
or 4.2-0)

» Upgrade of App packages, i.e. anew version (with the same Docker | mage) was released

updat e_avai l abl e
Aninner script called when the App Center wants to find out whether the container may install package
updates or release updates. By defaullt, thisis done automatically once aday. It can betriggered manually,
too, though. The script needsto echo the result:

» packages if mere package updates are available. These include security fixes for operating system
packages.

» release; RELEASE if anew version of the operating itself is available. RELEASE can be anything, it
isjust presented to the user.

Note

The script does not search for App updates, nor does it search for a change in the Docker | -
mage! Thisisdone by the "outer" App Center.

updat e_packages
Aninner script called when (all) updates of existing packages shall be installed.

3 https://docs.software-univention.de/devel oper-reference.htmi# oin:write

38

www.univention.de

https://docs.software-univention.de/developer-reference.html#join:write
https://docs.software-univention.de/developer-reference.html#join:write

@ univention

be open.
Docker related variablesin theini file

updat e_rel ease
Aninner script called when anew version of the operating system shall be installed.

updat e_app_versi on
Aninner script called when anew version of the App packages shall beinstalled. This script is different
fromupdat e_packages. This has technical reasons, because for normal UCS based Docker images,
this requires a new repository to be registered. But it also has usability reasons: First, users may want
to distinguish between necessary, stability improving package updates and (potentially) ground-shaking
App updates; second, at least the UCS containers are configured to install security / stability updates
automatically.

7.3.2. Docker related variables in the ini file

We used some of theini's variablesto adjust the Docker App to our needs. Hereisabrief overview regarding
all Docker related variables:

Docker | mage
The image the container will be based on. The Univention App Center will provide alist of UCS based
images that can be used to run the application. Other images may work but are strongly discouraged as
they will lack domain functionality that would be required to integrate the App into the UCS domain.

Note

If you want to develop a Docker App, this variable is required. The following variables on the
other hand have meaningful defaults (or are empty, which isfine, too).

Docker Al | owedl mages
When the App does not rely on a well defined basis, it may be convenient to update Docker | mage
every now and then (e.g. when a new minor version of UCS is released). This is not required, but not
doing so would configure an outdated base image that needs to be upgraded after the App installation.
This may take along time depending on the age of the image.

If Docker | mage ischanged, the App Center recognizes this and will exchange the image by removing
the container and setting up anew one. Thisis of course not necessary for an old, but constantly updated
image. So one can put the old image name in the Docker Al | owedl nages list and the App Center
will accept it. New apps will be installed with Docker | nage, though.

Docker Vol unes
Apart from /var/|i b/ uni venti on-appcent er/ apps/ $APPI D/ { dat a, conf }/, one may
choose further directoriesthat shall be mounted into the Docker Container. Thisisagood ideaif it makes
storing / restoring data easy and also provides the benefit of increased 1/O performance. The syntax is
Docker Vol unes=/ pat h/ on/ host/:/path/in/container/,....

Docker Ser ver Rol e
The Univention App Center addsacomputer object for the container inthe LDAP database. Thiscomputer
object can either be a nenber ser ver (default) or a domai ncontrol | er _sl ave. The latter is
useful if the container needs more rights (DC systems may have more rights in the ACL definitions of
LDAP). Other than that, both roles are free to choose their software selection (depending on the App
package definitionsinitsdebi an/ cont r ol).

Docker Scri pt *
ThevariousDocker Scri pt * variables are used to specify the path to the script that shall be executed.
So an App package may shipitsown Docker Scri pt St or eDat a and theini file can point to it. More
importantly though, the App can ship these scripts unpackaged along with theini file and the App Center
will install these scripts at that destination and then call it. See Section 7.3.1 for a brief overview over the
scripts. The namein theini filefor st or e_dat a isDocker Scri pt St or eDat a and so on.

_) 39
www.univention.de

Feedback Q

https://www.univention.com/feedback/?manual=docker:epilogue:ini

@ univention

be open.
Debugging

Por t sExcl usi ve
Not really limited to Docker Apps, but this variable will be essential to make your Docker App work: It
specifies a comma separated list of ports that the Docker Container shall expose publicly. If your App
opens port, say, 3000, you need to specify that in the ini file, otherwise the port will not be accessible
from any host but the Docker Container itself. The Docker Host will configure the container according
to this variable on startup. By default, no port is exposed. One exception isa port toaWebl nt er f ace
(also to be specified in the ini file) which is handled automatically by the Univention App Center.

Note

univention-firewall on the Docker Host will be reconfigured automatically to allow connections
to these ports.

Por t sRedi rection
Just like Por t sExcl usi ve but with an the option to map thelocal port to one other port on the Docker
Host. Useful when exposing a service that is used commonly and therefore will generate port conflicts.
E.g., if your App shall be accessible via SSH, you cannot exclusively claim port 22. But you can specify
Por t sRedi recti on=10022: 22.

Wbl nt erface
Not exclusive to Docker Apps, but a bit different asto what happensin the background: If your App pro-
videsawebinterface (e.g.,/ r adi cal e/), you can specify it here. In this case, the Univention App Cen-
ter will automati cally makethe Docker Container'sweb interface publicly accessible by using mod_proxy
of apache (using the port range 40000 up to 41000, controlled by the Univention App Center itself).

Note
The proxy entry in the Apache configuration will be something like:
ProxyPass /radicale http://127.0.0.1: 40000/ r adi cal e

where the port 40000 is mapped to Docker Container's port Vbl nt er f acePort HTTP
(which defaults to 80). So your App needs to make / r adi cal e/ accessible, too. Note that
there will be a separate entry for HTTPS, too.

Note

HTTP or HTTPS access can be disabled by specifying Wbl nt er f acePor t HTTP=0 (W\é-
bl nt er f acePor t HTTPS respectively).

Please refer to the Developer Reference* for atemplate and the description of every attributein theini file.

7.4. Debugging Feedback ()

So you developed the App, put it into the App Center and now that you want to test it, something fails?
If something goes wrong really badly (like the installation of packages fails), the App Center reverts the
installation (i.e. it removes the container). This means you cannot look into it to see what exactly happened.
For testing purposes you may use the undocumented options - - do- not - revert (still using Radicale):

uni vention-app install radicale --do-not-revert

This will leave you with a running, yet somewhat "unconfigured” container. You may now login into this
container by doing

4 https://docs.software-univention.de/devel oper-reference. html#app:iniFile

40 _)
www.univention.de

https://docs.software-univention.de/developer-reference.html#app:iniFile
https://www.univention.com/feedback/?manual=docker:debugging
https://docs.software-univention.de/developer-reference.html#app:iniFile

@ univention

be open.
Debugging

docker ps -a

which will list your container. Find the container and call:

docker exec -it "$CONTAI NER "/ bi n/ bash

Normally you should be able to do this without finding the container by hand:

CONTAI NER="$(ucr get appcenter/apps/radical e/ contai ner)"
docker exec -it "S$CONTAI NER' /bi n/bash

From here you can debug the system as normal.
Maybe it is sufficient to look into the log files to know what went wrong. Important log files are:
* /var/log/univention/appcenter.| og

e /var/ | og/ uni venti on/ managenent - consol e- nodul e- appcent er. | og (if you installed
the App viathe UMC module - which is actually a good idea as users will install it that way, too).

» /var/l og/ docker. | og

)) 41
www.univention.de

42

	App Tutorial
	Table of Contents
	Chapter 1. Apps and Univention App Center
	Chapter 2. Prepare the environment
	2.1. Download
	2.2. Initial setup
	2.3. Activate the unmaintained repository
	2.4. Install required packages for App development

	Chapter 3. Package the software solution
	3.1. Create or use Debian packages
	3.2. Structure the App

	Chapter 4. Integration with UCS
	4.1. Read information from the directory service
	4.1.1. Access the LDAP directory
	4.1.2. Listener-/Notifier Mechanism

	4.2. Read configuration database
	4.3. Domain-Join and Unjoin
	4.4. Extend the UCS management system
	4.4.1. Add tabs and options
	4.4.2. LDAP schema extension
	4.4.3. Build own UDM modules
	4.4.4. Build own UMC module

	4.5. Further integration scenarios
	4.5.1. Firewall settings
	4.5.2. Serving a web application
	4.5.3. Setting links to the web interface in /ucs-overview
	4.5.4. Using PostgreSQL or MySQL

	Chapter 5. Provide the App
	5.1. Create the App meta data
	5.2. Create optional App meta information
	5.3. Upload the App

	Chapter 6. What happens next?
	Chapter 7. Docker Apps for the Univention App Center
	7.1. Why Docker?
	7.2. Example: Docker App Radicale
	7.2.1. Prerequisites
	7.2.2. The ini file
	7.2.3. Integration, first iteration
	7.2.3.1. The join script
	7.2.3.2. Storing the data persistently

	7.2.4. Integration, second iteration
	7.2.4.1. Making the App configurable by the user
	7.2.4.2. Making the App LDAP aware

	7.3. Epilogue
	7.3.1. Docker scripts
	7.3.2. Docker related variables in the ini file

	7.4. Debugging

