@ univention

be open.

Univention Developer Reference

Manual for developers

www.univention.de

@ univention

be open.

Alle Rechte vorbehalten./ All rights reserved.
The mentioned brand names and registered trademarks are owned by the respective legal ownersin each case.

Linux® isaregistered trademark of Linus Torvalds.

www.univention.de

@ univention

be open.

Table of Contents

0l LY (o PP 9
1. Packaging SOMtWEIEcuiiie e e e e e e e e e e 11
00 g 11 oo 1 1o o PP 11
O 0 = 1 o 1 11
1.3. Example: Re-building an UCS Packagec.ueiviiiiii it eaee e 11
1.4. Example: Creating anew UCS PaCKagecuuvvviiniii it e e 12
S (U] o I (= o101 (o] Y 17
1.6. Building packages through the openSUSE Build Servicecoovvvviiiiiii i 17
2. UNIivention Config REGISIIYiueii e et e e e e e e e e e ans 19
228 O U £ o [= TP 19
2.1.1. Using UCR from shell ... 19
2.1.2. UsSing UCR from PythOnoooniiiii e 21
2.2. CoNfigUIation fIlESvuiiee e e 22
2.2.1. debi an/ package. uni vention-config-registrycooccoveiiiniinninnnnn.. 22
2200 Fl L i 23
2212 MUl U0 Fi @ i 24
A e o I ¢) 25
P S .o To | 0| = P 25
2.2.2.debi an/ package. uni venti on-confi g-regi stry-variables 25
2.2.3. debi an/ package. uni venti on-confi g-regi stry-categories........... 26
2.2.4. debi an/ package. uni venti on-confi g-regi stry-servi ces 27
2.3. UCR Template filesconffiles/path/to/file ..o, 28
A =T U o 11 o = 1 o 29
AT = 1110 = 29
2.5.1. Minimal File €XampPleooviiii e 29
2.5.2. MUILITIl@ €XaMPIE ... 31
25,3, SEIVICES ettt ettt et 32
T 1o 01 o BN o1 o PPN 35
G 0 N o = o o £ 35
32 JOIN SEALUS ...ttt ettt ettt e e e eaa s 35
GG T (W 0o 1 o o T e 1 o 36
G VY 1 1o I o 1 IR o] £ P 36
3.4.1. BaSIC jOIN SCHPL @XAMPIE ...evnii e e e e e e ees 36
3.4.2. JOIN SCriPt €XIT COUBSvuiiiiiei e e e e e e e ans 38
3.4.3. JOIN SCHPL HDrariEs ... 38
3.4.3.1. UNIVENTION-JOIN ..uiiieieie e e e e e e e e e e e eeens 38
3.4.3.2. shell-univention-lib ... 40
3.5, WItING UNJOIN SCIIPES . evvtiee ittt ettt e et e et e e e ra e e eenes 43
4. Lightweight Directory Access Protocol (LDAP) iNUCScooiiiiiiiiiiieee e 47
T T o PP 47
4.2. Packaging LDAP SChema EXIENSIONSuiiiiitieiiiii ettt e e e eeaens 47
4.3. Packaging LDAP ACL EXIENSIONSc.uuiiiiiiieeiiiiee ettt e s 48
R B e o £ PP 50
4.4.1. PasSNOIT ChANGEeuueiiiii ettt ettt et e e e e e 50
5. UNIvention DIr€CLOrY LISIENEYcouuuiiiiii ettt e et e e 53
5.1. Structure of Listener MOQUIESoouuiiiiiii e 53
5.2. Listener Tasks and EXAMPIEScouuuiiiiiiiiiii et 56
5.2.1. BASIC EXAMPIE ..o 56
5.2.2. RENAME 8N MOVE ...t e e 57
5.2.3. Full Example With Packagingc.uuioiiiiiiiiiii e 58
5.2.4. A Little Bit more Object Orientedccouiiiiiiiiiiii e 62
5.3. TEChNICAl DELAIISeeeieiei et e 65
3
www.univention.de

@ univention

be open.
5.3.1. USer-ID and CredentialSvieeueiiiiii et 65
B5.3.2. INENEl CBCNE ... 65
5321 univention-directory-listener-ctrlcccoociiiiiiiiinniiiinnnn. 65
53.22. univention-directory-listener-dunmp ...cc..ccccoiiiniiiiiinniiiinnnnnn. 65
53.23. univention-directory-listener-verify ..o, 66
53.24.get _Notifier i d. PY oo 66
5.3.3. INENEl WOIKING ..eueieiii et e e 66
6. Univention Directory Manager (UDM)coouue ittt enaes 69
L 20 W [1o o (8 [o o PP UPPTR 69
6.2. Packaging Extended AttIDULESoiiiiiiiii e 70
B.2. 1. SEECHION TGS .eiiiiieiiiii e et e 74
6.2.1.1. StAC SEIECHIONS .. .ieeviee i 74
6.2.1.2. DYNAMIC SEIECLIONS ...oovvuiiiiiie et 74
B.2.2. KNOWN ISSUES ...eittieeeiit ettt ettt e ettt e et e e et et e e e e et n e e e eabeneeeentnaeeeees 76
6.2.3. EXIENEH OPLIONSeeieiiieeeeii ettt ettt e e e et ee 76
6.2.4. Extended Attribute HOOKScovuniiiiiii e 77
6.3, UDM IMOGUIES ...ttt ettt e et e e e e e e b 79
B.4. UDM SYNEBX ...eetneietieitie ettt ettt ettt ettt e et r e e 79
6.4.1. UDM SyNtaX OVEITIAE .. .ceeeuiieiiiiiie ettt eeeans 80
6.4.2. UDM LDAP SEBICN ...t 81
6.5. Packaging UDM HOOKSuuiiiiiiiiiiiii e e 84
6.6. Packaging UDM EXtension MOAUIEScoouuuiiiiiiiiiee et 85
6.7. Packaging UDM Syntax EXIENSIONiiiiiiiiiiiiiii e 86
7. Univention Management Console (UMC)coouuiiiiiiiiicieii et 89
T L UMGC FIlBS et 89
7.1.1. debi an/ package. Unt- MDAUl €Soouuiiiiiiiiii 89
7.1.2. UMC Module Declaration Filec..uiiiiiiiiiii e 89
7.2. LoCaA SyStemM MOUUIEcooviieei e 20
7.3. DOMAIN LDAP MOGUIEcoviiiiiie et 90
7.4. Disahling @ MOUUIEcooiiiiieii e 20
8. WD SEIVICES ..ottt ettt e e e e aaen 93
8.1. EXtending the OVEIVIEW PBOEovvuniiiiiii ettt e s 93
S Y o/ T O 1= PPN 95
9.1, REQUITEIMENES ...ttt ettt ettt ettt et e e et e e et n e et et e e e e et e e e e et e e e e et es 95
9.2. Packaging for the AP CoNLEruuiiiiii e 96
0.3 NEXE SIS ..ottt 96
9.4, ApPlICation MELA FIlEu i e 97
9.5. Optional apPliCation FIlEScccuuiieii e 103
9.6. Uploading the appliCatioNoooiiuuniiiiii e 104
0.7, NOUTICAITONS ...t e e e e e aa s 104
9.8. Updates for the @ppliCalioniiiiiiiiiei e 105
9.9. Integrating the Application iNUCS ..o 105
9.9.1. Automatic integration done by the App Centerovviiiiiniiiiiiin e 105
9.9.2. SCOPE Of the VENGOL .. .ceeieiiiiiii e 106
O.10. BESE PIACHICES ... eeeeiiie ettt ettt ettt aaans 106
9.10.1. Registration of LDAP and UDM EXtENSIONSccuuuieiiiiiiiiiiiiieeeeiineeeeeiieeeee 106
10. Integration Of external FEPOSITONTEScuuu et eeees 107
10.1. Integration of repository components via Univention Management Console..................... 107
10.2. Integration of repository components via Univention Configuration Registry 108
R I =0 TS] o T O PP PP PTT 109
11.1. Univention Management Console translationScocuuuieeiiiinieiiieeceii e 109
11.1.1. Prepare a NeW translalioncceuuieeiiiiiee it 109
11.1.2. Create a new translation PaCKagEccuuuiiiiiiiieeiiii e e 109
11.1.3. Edit tranglation fillESc..uuiiiiii e 110
www.univention.de

@ univention

be open.
11.1.4. Update the trangation Packagecocuuieeiiiiiieeiii e 110
11.1.5. Build the tranglation Packageuuiiiiiiiiiiiiii e 111
12, UNIVENLION UPABLEL ...eeeiei ittt ettt e e et e et e e e et e e e e aba s 113
12.1. SEPArate FEPOSITOMIESceeuuieieei ettt e e e ettt e e et e et e e e e b 113
12,2, UPAELEr SCIIPES «evveieeeiiiie ettt ettt et et e et e e et e e e e et e e e e et e e e entanaaeees 113
12.2.1. Digital SIQNAEUME ..euiieiii e e 114
12.3. Release update WalKtNroUghcoouuiiiiiii e 114
G R o= = 115
T DT =07 = = PP PRPPSP 115
R T 0 O 0 o 1 N 115
13002, MY SO et 115
G T2 U L0 3 T o | PP PR P PP 115
T T g Tox o o I R o= == P 117
13.3.2. shell-univention-liD ... 117
13.3.2. python-univention-lib ... 117
CTR N oo [g Ao o= @ 1 (o) PN 118
13.5. NEtWOrK Packet FIITErccovueiiiiiiie et e et e e e eeeees 119
13.5.1. Filter rules by Univention Configuration REQISIYcccveviiiiiiiiieiiiieciieeieeenn, 119
13.5.2. Local filter rulesviai pt abl es commands............ccooeiiiiiiiiniiinci e, 120
13.5.3. Testing Univention Firewall SEttingScocuviviiiiiiiiicii e 120
N = 10 To = o 5 11 oo P 121
ST T o g I 0o = o 1 0o P 123
B.1. PrerequiSites and Preparationce.ueeeuereiieeiieeeiieeeeiieeee e e e e e e e e e e e aaaaea 123
B.2. AN BB e 123
B.3. Debian CONLrol filES ...iiiiiiiieiei e 124
B.3.1. debian/CONIOloeeieiiieeiiii e e e e 126
B.3.2. debian/Copyrightcoouiiiiiiii e 129
B.3.3. debian/ChangelOgcovveiii i 130
B.3.4. dEDIAN/TUIES ...ooveiieeei e 130
B.3.5. debian/preinst, debian/prerm, debian/postinst, debian/postrmcc.ccoeveinen. 132
B4 BUIIAING ..ot 133
B.5. FUIhEr r€a0iNgcouiiiiiii e e e 133
2] ol F 0T ="] Y P 135
g0 1= SR 137
5

www.univention.de

@ univention

be open.

List of Examples

A L UL SN o U [o] G- = S PPN 19
A U X o 0o o = S 20
G R U L N o) B =T U o S o 1 = S 20
24, USE Of UCT UNS BT ittt et e e e e et e et e e e e e eanns 20
25.Use Of UCT Shel I e 20
2.6. Reading a Univention Configuration Registry variable in Pythonccoooiiiiiiin e, 21
2.7. Reading boolean Univention Configuration Registry variablesin Pythoncccocoveiiiniann, 21
2.8. Changing Univention Configuration Registry variablesin Pythoncccccooiiiiiiiincen, 21
2.9. Setting and unsetting Univention Configuration Registry variablesin Python 22
3.1. Service registration IN JOIN SCIPLuiee e e e e e et e e e e eenns 40
3.2. Service unregistration in UNjOIN SCHPLiueiiei e e e e e e e e e e e e e eanes 41
3.3. Check for unused Service in UNjOIN SCIPLiutiii e e e e e e e e ens 41
3.4. EXtension registration iN JOIN SCHPEouuuiee i e e e e e e e e e e e e e e e ees 42
3.5. Schema unregistration in UNjOIN SCIPLiueiii e e e e e e anas 43
4.1. Schema registration 1N JOIN SCIPLuiiii e e e e e e e e e e e e e e enaeens 48
4.2. LDAP ACL registration in JOIN SCHPLovuieeiii e e e e e e e e e e e e e e e eens 49
4.3. Server password Change eXampPleoiuiiiii i 51
6.1. Extended Attribute for custom LDAP SCheMaoiiuiiiiiie e 73
6.2. Dynamic selection list for Extended AttribUteSccoviiiii i, 75
(SC T 4= 10 (=0 I o1 oo 77
132, Local FIrBWEIL TUIE ... e et e e e 119
13.2. Using nmap for firewall port teSNGuvveniiiei e 120

7

www.univention.de

Foreword

This developer guide provides information to extend Univention Corporate Server. It it targeted at third party
vendors who intend to provide applications for the Univention App Center and for power users who wish to
deploy locally built or modified software.

Feedback is very welcome! Please either file a bug (see Appendix A) or send an e-mail to
<f eedback@ni vent i on. de> [mailto:feedback@univention.de].

mailto:feedback@univention.de
mailto:feedback@univention.de

@ univention

be open.
Introduction

Chapter 1. Packaging software

S 1 011 oo 0 o o TP PPN 11
O (= o= o] Y 11
1.3. Example: Re-building an UCS PaCKagec.uuiveriiieiiiee et e e e e e 11
1.4. Example: Creating aNeW UCS PACKAGE «...vuuvvvnieieieeeie e e eeiie e e e e e e e e et s e s e e e eeaaeeanaeees 12
TS = (10 I =001] (oY 17
1.6. Building packages through the openSUSE BUild SENVICEovvvniiiiiiiieei e 17

This chapter describes how software for UCS is packaged. For more details on packaging software in the
Debian format, see Appendix B

1.1. Introduction Feedback ()

UCS is based on the Debian distribution, which is using the deb format to package software. The program
dpkg is used for handling a set of packages. On installation packages are unpacked and configured, while
on un-installation packages are de-configured and the files belonging to the packages are removed from the
system. On top of that the apt-tools provide a software repository, which allows software to be downloaded
from central file servers. Package files provide an index of all packages contained in the repository, which
is used to resolve dependencies between packages: while dpkg works on a set of packages given on the
command line, apt - get builds that set of packages and their dependencies before invoking dpkg on this
set. apt - get isacommand linetool, whichisfully described in its manual page apt-get(8). A more modern
version with atext based user interfaceisapt i t ude, whilesynapt i ¢ provides agraphical frontend.

On UCS systemsthe administrator is not supposed to use thesetoolsdirectly. Instead all software maintenance
can be done through the UM C, which maps the requests to invocations of the commands given above.

1.2. Preparations Fecdback £}

This chapter describes some simple examples using existing packages as examples. For downloading and
building them, two packages must be installed on the system used as a development system. subversion is
used to checkout the source files belonging to the packages. build-essential must be installed for building
the package.

This can be achieved by running the following command as user r oot :

apt-get install subversion build-essenti al

1.3. Example: Re-building an UCS package Feedback ()

Source code: http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/devel oper-reference/ pack-
aging/testdeb/

Procedure 1.1. Checking out and building a UCS package
1. Createthetop level working directory

nkdi r wor k
cd wor k/

2. Either fetch the latest source code from the Subversion version control system or download the source
code of the currently packaged version.

e Checkout example package from Univention Subversion

_) 11
www.univention.de

https://www.univention.com/feedback/?manual=pkg:introduction
https://www.univention.com/feedback/?manual=pkg:preparation
https://www.univention.com/feedback/?manual=pkg:rebuild
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/packaging/testdeb/
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/packaging/testdeb/

@ univention

be open.
Example: Creating a new UCS package

SERVER=ht t p: // f or ge. uni venti on. org

svn co $SERVER/ svn/ dev/ br anches/ ucs-4. 0/ ucs- 4. 0- 0/ base/
uni venti on-ssh

cd univention-ssh/

e Fetch the source code from the Univention Repository server
a. Enable unmaintained and source repository once

ucr set repository/online/unmaintai ned=yes \
reposi tory/online/ sources=yes
apt - get update

b. Fetch source code

apt - get source univention-ssh
cd uni vention-ssh-*/

3. Increment the version number of package to define a newer package
debchange --1local work 'Private package rebuild'
4. Build the binary package
dpkg- bui | dpackage -uc -us -b
5. Locally install the new binary package

sudo dpkg -i ../univention-ssh * *. deb

1.4. Example: Creating a new UCS package Feedback £}

Thefollowing exampl e provides awalk-through for packaging aPython script calledt est deb. py. It creates
afilet est deb- DATE-ti me inthe/ t np/ directory.

A directory needs to be crated for each source package, which hosts all other files and sub-directories.

nkdir testdeb-0.1
cd testdeb-0.1

Thefilet est deb. py, which isthe program to be installed, will be put into that directory.

#!/ usr/ bi n/ env python
Exanpl e for creating UCS packages.
i mport tinme

now = time.localtinme()

filename = '/tnp/testdeb-%"' %tine.strftime(’ %iPad%OM , now)
tnpfile = open(filenane, 'a')

tnpfile.close()

In addition to the files to beinstalled some meta-data needs to be created inthedebi an/ sub-directory. This
directory contains severa files, which are needed to build a Debian package. The files and their format will
be described in the following sections.

12 _)
www.univention.de

https://www.univention.com/feedback/?manual=pkg:new

@ univention

be open.
Example: Creating a new UCS package

To create an initial debi an/ directory with all template files, invoke the dh_make(8) command provided
by the dh-make packet:

dh_make --native --single --email user @xanpl e.com

Here several options are given to create the files for a source package, which contains al filesin one archive
and only creates one binary package at the end of the build process. More details are given in Section B.2.

The program will output the following information:

Mai nt ai ner nane : John Doe

Enai | - Addr ess . user @xanpl e. com

Dat e . Thu, 28 Feb 2013 08:11: 30 +0100
Package Nane . testdeb

Ver si on : 0.1

Li cense . bl ank

Type of Package : Single
Ht <enter> to confirm

The package nametestdeb and version “0.1" were determined from the name of thedirectory t est deb- 0. 1,
the maintainer name and address were gathered from the UNIX account information.

After pressing the enter key some warning message will be shown:

Currently there is no top | evel Makefile. This may require additional
tuni ng. Done. Please edit the files in the debian/ subdirectory now
You shoul d al so check that the testdeb Mikefiles install into $DESTD R
and not in /

Sincethisexampleiscreated from scratch, the missing Makef i | e isnormal and thiswarning can beignored.
Instead of writing aMakefiletoinstall thesingleexecutable, dh_i nst al | will beused later toinstall thefile.

Since the command completed successfully, severa files were created in the debi an/ directory. Most of
them are template files, which are unused in this example. To improve understandability they are deleted:

rm debi an/ *. ex debi an/ *. EX
rm debi an/ READVMVE* debi an/ doc

Theremaining files are required and control the build process of al binary packages. Most of them don't need
to be modified for this example, but others must be completed using an editor.

debi an/ contr ol
The file contains general information about the source and binary packages. It needs to be modified to
include a description and contain the right build dependencies:

Source: testdeb

Secti on: univention

Priority: optional

Mai nt ai ner: John Doe <user @xanpl e. con>
Bui | d- Depends: debhel per (>= 7)

St andar ds- Version: 3.7.2

Package: testdeb
Architecture: all
Depends: ${ni sc: Depends}
Description: An exanpl e package for the devel oper guide
Thi s purpose of this package is to describe the structure of a
Debi an

13
www.univention.de

@ univention

be open.
Example: Creating a new UCS package

packages. It al so docunents

the structure of a Debi an/ Uni venti on package
installati on process.

content of packages

format and function of control files

o T

For nore informati on about UCS, refer to:
htt p: //ww. uni venti on. de/

debi an/rul es
Thisfile has a Makefile syntax and controls the package build process. Because there is no specia han-
dling needed in this example, the default file can be used unmodified.

#! [usr/ bi n/ make -f

%
dh $@

Note that tabulators must be used for indention in thisfile.

debi an/testdeb.install
To compensate the missing Makef i | e, dnh_install(1) isused to install the executable. dh_i nst al | is
indirectly called by dh fromthedebi an/ r ul es file. Toinstall the programinto/ usr / bi n/ , thefile
needs to be created manually containing the following single line:

t est deb. py usr/ bi n/
Note that the path is not absolute but relative.

debi an/ t est deb. posti nst
Since for this example the program should be invoked automatically during package installation, thisfile
needs to be crated. In addition to just invoking the program shipped with the package itself, it also shows
how Univention Configuration Registry variables can be set (see Section 2.1.1):

#!' /[bi n/sh
set -e

case "$1" in

confi gure)

i nvoke sanpl e program

t est deb. py

Set UCR variable if previously unset

ucr set repository/online/server?updates. sof t war e- uni venti on. de
Force UCR variabl e on upgrade from previ ous package only
i f dpkg --conpare-versions "$2" [t-nl 0.1-2

t hen

ucr set timeserverl=tinme.fu-berlin.de

fi
abort - upgr ade| abort - r enove| abort - deconfi gure)
%)

echo "postinst called with unknown argunent \ " $1'" >&2
exit 1

14 _)
www.univention.de

@ univention

be open.
Example: Creating a new UCS package

esac
#DEBHEL PER#

exit O

debi an/ changel og
The file is used to keep track of changes done to the packaging. For this example the file should look
likethis:

testdeb (0.1-1) unstable; urgency=I ow
* Initial Release

-- John Doe <user @xanpl e.con> Mbn, 21 Mar 2013 13:46: 39 +0100

debi an/ copyri ght
Thisfile is used to collect copyright related information. It is critical for Debian only, which need this
information to guarantee that the package is freely redistributable. For this example the file remains
unchanged.

Thecopyri ght and changel og fileareinstalledtothe/ usr/ shar e/ doc/ t est deb/ directory
on the target system.

debi an/ conpat ,

debi an/ sour ce/ f or mat
Thesefilescontrol someinternal aspectsof the package build process. They can beignored for the moment
and are further described in Section B.3.

Now the package is ready and can be built by invoking the following command:
dpkg- bui | dpackage -us -uc
The command should then produce the following output:

dpkg- bui | dpackage: source package testdeb
dpkg- bui | dpackage: source version 0.1-1
dpkg- bui | dpackage: source changed by John Doe <user @xanpl e. con®
dpkg- bui | dpackage: host architecture and64
dpkg-source --before-build testdeb
f aker oot debi an/rul es cl ean
dh cl ean
dh_testdir
dh_aut o_cl ean
dh_cl ean
dpkg-source -b testdeb
dpkg-source: Information: Quellformat »3.0 (native)« wird verwendet
dpkg-source: Information: testdeb wird in testdeb 0.1-1.tar.gz gebaut
dpkg-source: Information: testdeb wird in testdeb_0.1-1.dsc gebaut
debi an/rul es build
dh build
dh_testdir
dh_aut o_configure
dh_auto_build
dh_aut o_t est
faker oot debi an/rul es binary
dh binary

_) 15
www.univention.de

@ univention

be open.

Example: Creating a new UCS package

16

dh_testroot

dh_prep

dh_installdirs

dh_auto_install

dh_install

dh_instal |l docs

dh_i nst al | changel ogs

dh_i nst al | exanpl es

dh_i nstal | man

dh_i nstal | cat al ogs

dh_installcron

dh_i nst al | debconf

dh_instal |l emacsen

dh_installifupdown

dh_installinfo

dh_pysupport
dh_pysupport: This programis deprecated, you should use dh_python2

instead. Mgration guide: http://deb.li/dhs2p

dh_installinit

dh_i nstal | nrenu

dh_instal |l m ne

dh_i nst al | nodul es

dh_instal |l | ogcheck

dh_installl ogrotate

dh_instal | pam

dh_install ppp

dh_i nstal | udev

dh_i nstal | wm

dh_install xfonts

dh_instal |l gsettings

dh_bugfil es

dh_ucf

dh_lintian

dh_gconf

dh_i cons

dh_perll

dh_usrl ocal

dh_li nk

dh_conpress

dh_fi xperns

dh_install deb

dh_gencontr ol

dh_nd5suns

dh_bui | ddeb
dpkg-deb: buil di ng package "testdeb' in ~../testdeb 0.1-1 all.deb'.
dpkg- genchanges -b >../testdeb_0.1-1 and64. changes
dpkg- genchanges: bi nary-only upl oad - not including any source code
dpkg-source --after-build testdeb
dpkg- bui | dpackage: full upload; Debian-native package (full source is

i ncl uded)

The binary packagefilet est deb_0. 1-1_al | . deb is stored in the parent directory. When it isinstalled
manually usingdpkg -i ../testdeb_0. 1-2_al | . deb asroot, thePythonscriptisinstalled as/ usr /
bi n/ t est deb. py. It is automatically invoked by the post i nt script, so afile named / t np/ t est -
deb- dat e- t i ne has been created, too.

www.univention.de

@ univention

be open.
Setup repository

Congratulations! Y ou've successfully built your first own Debian package.

1.5. Setup repository Fecaback{)

Until now the binary package is only available locally, thus for installation it needs to be copied manually to
each host and must be installed manually using dpkg - i . If the package required additional dependencies,
the installation process will abort, since packages are not downloaded by dpkg, but by apt . To support
automatic installation and dependency resol ution, the package must be put into an apt repository, which needs
to be made available through ht t p or some other mechanism.

For this example the repository is created below / var / wwwi/ r eposi t or y/ , which is exported by default
on al UCS systems, where apache2 is installed. Below that directory several other sub-directories and files
must be created to be compatible with the UCS Updater. The following example commands create arepository
for UCS version 3.1 with the component namet est conp:

WAV BASE="/ var / ww/ r eposi t ory/ 4. 0/ mai nt ai ned/ conponent "
TESTCOWP="t est conp/ al | "
install -n¥55 -d "$WWV BASE/ $TESTCOWP"
install -nb44 -t "$WWV BASE/ $TESTCOWP" *. deb
(cd "$WW BASE" &&
rm-f "$TESTCOW/ Packages"* &&
apt - ftparchi ve packages "$TESTCOV" > "Packages" &&
gzip -9 < "Packages" > "$TESTCOW/ Packages. gz" &&
nv " Packages" "$TESTCOW/ Packages")

This repository can be included on any UCS system by appending the following line to /
etc/apt/sources.|ist, assuming the FQDN of the host providing the repository is named
repository. server:

deb http://repository. server/repository/ 4.0/ mintai ned/ conponent
testconp/all/

Note

It isimportant that the directory, from werethe apt - f t par chi ve command isinvoked, matches
the first string given inthe sour ces. | i st file after the deb prefix. The URL together with the
suffix t est conp/ al | / not only specifies the location of the Packages file, but is also used as
the base URL for all packages listed in the Packages file.

Instead of editing the sour ces. | i st file directly, the repository can aso be included as a component,
which can be configured by setting several UCR variables. AsUCR variables can also be configured through
UDM policies, this simplifies the task of installing packages from such a repository on may hosts. For the
repository above the following variables need to be set:

ucr set \
reposi t ory/ onl i ne/ conponent / t est conp=yes \
reposi t ory/ onl i ne/ conponent / t est conp/ server =reposi tory. server \
reposi t ory/ onl i ne/ conponent / t est conp/ pr ef i x=r epository

1.6. Building packages through the openSUSE Build Feeavack{)
Service

The openSUSE Build Service (OBS) is aframework to generate packages for a wide range of distributions.
Additional information can be found at https://build.opensuse.org/. If OBSis aready used to build packages

17
www.univention.de

https://www.univention.com/feedback/?manual=pkt:repository
https://www.univention.com/feedback/?manual=pkg:obs
https://build.opensuse.org/

@ univention

be open.
Building packages through the openSUSE Build Service

for other distributions, it can also be used for Univention Corporate Server builds. The build target for UCS 4.0
is caled Univention UCS4.0. Note that OBS doesn't handle the integration steps described in later chapters
(e.g. the use of Univention Configuration Registry templates).

18))
www.univention.de

@ univention

be open.
Using UCR

Chapter 2. Univention Config Registry

2.1 USING UCR ittt e ettt e e e e e e e e et e e ba e e e e e e e e e aeba e e e e aaaeeeaaas 19
2.1.1. USINg UCR from Shellieeiii et 19
2.1.2. UsSing UCR from PYthONooooiiiiiiii et e 21

2.2, ConfIgQUIAioN TIIESuueee e et 22
2.2.1. debi an/ package. uni venti on-confi g-regi Stry ...cccooooveiiiiiiiiiiiiiiiiiieeeens 22

2200 Fi L @ i et aaae 23
2202 MUL LT F i L @ oo e 24
G S o g I o) ST SPP PP 25
2204, MOAUL B e a e 25
2.2.2. debi an/ package. uni vention-config-registry-variables 25
2.2.3. debi an/ package. uni venti on-config-regi stry-categories 26
2.2.4. debi an/ package. uni vention-config-regi Stry-servicescoeeeeevevnnnnn. 27

2.3. UCR Template filesconffil es/path/ t o/ fil e . 28

2.4, BUI INEEGIELION ...ttt ettt e et e et e e et a e e e et e e e ena s 29

2.5, EXBIMPIES ..ottt 29
251 Minimal File @XampPleoiiiii e 29
2.5.2. MUILITIlE @XAMPIE ... et 31
25,3, SEIVICES .ttt aaans 32

The Univention Config Registry (UCR) is a local mechanism, which is used on all UCS system roles to
consistently configure all services and applications. It consists of a database, were the currently configured
values are stored, and a mechanism to trigger certain actions, when values are changed. This is mostly used
to create configuration files from templates by filling in the configured values. In addition to using simple
place holders its aso possible to use Python code for more advanced templates or to call external programs
when values are changed. UCR values can al so be configured through an UDM policy in Univention directory
service (LDAP), which alows values to be set consistently for multiple hosts of a domain.

2.1. Using UCR

Univention Configuration Registry provides two interfaces, which allows easy access from shell scripts and
Python programs.

2.1.1. Using UCR from shell

uni venti on-confi g-regi stry (anditsaliasucr) can beinvoked directly from shell. The most com-
monly used functions are;

ucr set[key=val ue]|[keyal ue]..
Set Univention Configuration Registry variable key to the givenval ue. Using = forces an assignment,
while ? only setsthe value if the variable is unset.

Example 2.1. Useof ucr set

ucr set print/papersize?ad \
vari abl e/ name=val ue

ucr getkey
Return the current value of the Univention Configuration Registry variable key.

_) 19
www.univention.de

Feedback Q

Feedback Q

https://www.univention.com/feedback/?manual=ucr:usage
https://www.univention.com/feedback/?manual=ucr:usage:shell

@ univention

be open.

Using UCR from shell

20

Example 2.2. Useof ucr get

case "$(ucr get systemrole)" in
domai ncontrol | er _*)
echo "Running on a UCS Donain Controller"

esac

For variables containing boolean values the shell-library-functioni s_ucr _true key from/ usr/
shar e/ uni vention-1i b/ ucr. sh should be used. It returns O (success) for the values"1", "yes",
"on", "true", "enable", "enabled", 1 for the negated values"0", "no", "off", "false", "disable", "disabled".
For all other valuesit returns avalue of 2 to indicate inappropriate usage.

Example2.3. Useof i s_ucr _true

[usr/share/uni vention-1lib/ucr.sh
if is_ucr_true repository/online/unmaintained
t hen
echo "Unmai ntai ned i s enabl ed"
fi

ucr unsetkey ...
Unset the Univention Configuration Registry variable key.

Example2.4. Useof ucr unset

ucr unset print/papersize vari abl e/ nanme

ucr shell [key ..]
Export some or al Univention Configuration Registry variablesin ashell compatible manner as environ-
ment variables. All shell-incompatible charactersin variable names are substituted by underscores ().

Example 2.5. Useof ucr shel |

eval "$(ucr shell)"
case "$server _role" in
domai ncontrol | er _*)
echo "Running on a UCS Domai n Controller serving $l dap_base"

esac

It is often easier to export al variables once and than reference the values through shell variables.

Warning

Be careful with shell quoting, since several Univention Configuration Registry variables contain
shell meta characters. Useeval "$(ucr shell)".

Note

ucr isinstaled as/ usr/ sbi n/ ucr, which is not on the search path $PATH of normal users.
Changing variables requiresroot accessto/ et ¢/ uni vent i on/ base. conf , but reading works
for normal userstoo, if / usr/ shi n/ ucr isinvoked directly.

www.univention.de

@ univention

be open.
Using UCR from Python

2.1.2. Using UCR from Python Feedback {)

UCR dso provides a Python binding, which can be used from any Python program. An instance of
uni vention. config_registry. Confi gRegi stry needsto be crated first. After loading the cur-
rent database state with | oad() the values can be accessed by using the instance like a Python dictionary:

Example 2.6. Reading a Univention Configuration Registry variable in Python

from uni vention.config registry inport ConfigRegistry
ucr = ConfigRegistry()

ucr. | oad()
print ucr['variabl e/ nane']
print ucr.get('variable/nane', '<not set>')

For variables containing boolean values the methodsi s _true() andi s_fal se() should be used. The
former returns Tr ue for the values "1", "yes’, "on", "true", "enable", "enabled", while the later one returns
Tr ue for the negated values 0", "no", "off", "false", "disable", "disabled". Both methods accept an optional
argument def aul t , which isreturned as-is when the variable is not set.

Example2.7. Reading boolean Univention Configuration Registry variablesin Python

if ucr.is_true('repository/online/unnmaintained):

print "unmaintained is explicitly enabl ed"

if ucr.is _true('repository/online/unnmaintained , True):
print "unmai ntained i s enabl ed"

if ucr.is_fal se('repository/online/unnaintained):

print "unmaintained is explicitly disabl ed"

if ucr.is false('repository/online/unnaintained , True):
print "unmaintained is disabl ed"

Modifying variables requires a different approach. The functionucr _updat e() should be used to set and
unset variables.

Example 2.8. Changing Univention Configuration Registry variablesin Python

from uni vention.config registry.frontend i nport ucr_update
ucr __updat e(ucr, {

'foo': 'bar',
"baz': '42',
"bar': None,
})

Thefunctionucr _updat e() requiresaninstance of Conf i gRegi st ry asitsfirst argument. The method
is guaranteed to be atomic and internally uses file locking to prevent race conditions.

The second argument must be a Python dictionary mapping UCR variable namesto their new value. Thevalue
must be either a string or None, which is used to unset the variable.

Asan dternative the old functionshandl er _set () andhandl er _unset () can still be used to set and
unset variables. Both functions expect an array of strings with the same syntax as used with the command
linetool ucr . Asthefunctionshandl er _set () andhandl er _unset () don't automatically update any
instance of Conf i gRegi stry, the method | oad() has to be called manually afterwards to reflect the
updated values.

_) 21
www.univention.de

https://www.univention.com/feedback/?manual=ucr:usage:python

@ univention

be open.
Configuration files

Example 2.9. Setting and unsetting Univention Configuration Registry variables in

Python

fromuni vention.config registry inport handl er_set, handl er _unset
handl er _set ([' foo=bar', 'baz?42'])

handl er _unset (['foo', 'bar'])

2.2. Configuration files Fecdback{)

Packages can use the UCR functionality to create customized configuration files themselves. UCR diverts
files shipped by Debian packages and replaces them by generated files. If variables are changed, the affected
files are committed, which regenerated their content. This diversion is persistent and even outlives updates,
so they are not overwritten by configuration files of new packages.

For this, packages need to ship additional files:

conffiles/path/to/file
Thistemplate file is used to create the target file. There exist two variants. A singe file template consists
of only asinglefile, from which thetarget fileis created, while amulti file template can consist of multiple
filefragments, which are concatenated to form thetarget file. See Section 2.3 below for moreinformation.

debi an/ package. uni vention-config-registry
This mandatory information file describes the each templatefile. It specifies the type of the template and
lists the UCR variable names, which shall trigger the regeneration of the target file. See Section 2.2.1
below for more information.

debi an/ package. uni venti on-confi g-regi stry-vari abl es
This optional file can add descriptions to UCR variables, which should describe the use of the variable,
its default and allowed values. See Section 2.2.2 below for more information.

debi an/ package. uni venti on-confi g-regi stry-categories
Thisoptional file can add additional categoriesto group UCR variables. See Section 2.2.3 bel ow for more
information.

debi an/ package. uni venti on-confi g-regi stry-services
This optional file is used to define long running services. See Section 2.2.4 below for more information.

In addition to these files code needs to be inserted into the package maintainer scripts (see Section B.3.5),
which registers and unregisters these files. This is done by calling uni venti on-i nstall -con-
fig-registry fromdebi an/ r ul es during the package build bi nary phase. The command is part of
the univention-config-dev package, which needs to be added as a Bui | d- Depends build dependency of
the source packagein debi an/ cont r ol .

2.2.1. debi an/ package. uni venti on-config-registry Feedback{ D}

Thisfile describes all template files in the package. Thefileis processed and copied by uni venti on-i n-
stal |l -config-registryinto/etc/univention/tenplates/info/ whenthepackageisbuilt.

It can consist of multiple sections, where sections are separated by one blank line. Each section consists
of multiple key-value-pairs separated by a colon followed by one blank. A typical entry has the following
structure:

Type: <type>

[MultifilelFile]: <filename>

[Subfile: <fragnent-filenanme>]
Vari abl es: <vari abl el>

22 _)
www.univention.de

https://www.univention.com/feedback/?manual=ucr:conf
https://www.univention.com/feedback/?manual=ucr:info

@ univention

be open.
debi an/ package. uni venti on-config-registry

Type specifies the type of the template, which the following sections describe in more detail.
22.11.File

A singlefiletemplateis specified astypef i | e. It defines atemplate, were thetarget fileis created from only
asingle source file. A typical entry hat the following structure:

Type: file

File: <fil enane>

Vari abl es: <vari abl el1>
User: <owner >

G oup: <group>

Mode: <fil e- node>

Prei nst: <nodul e>
Posti nst: <nodul e>

The following keys can be used:

Fi | e (required)
Specifies both the target and source file name, which areidentical. The source file containing thetemplate
must be put below theconf fi | es/ directory. Thefile can contain any textual content and is processed
as described in Section 2.3.

Thetemplatefileisinstalledto/ et ¢/ uni venti on/tenpl ates/fil es/.

Var i abl es (optional)
This key can be given multiple times and specifies the name of UCR variables, which trigger the file
commit process. Thisis normally only required for templates using @ @Python code regions. Variables
used in @@sections do not need to be listed explicitly, sinceucr extracts them automatically.

The variable name is actually a Python regular expression, which can be used to match, for example, all
variable names starting with a common prefix.

User (optional),

Gr oup (optional),

Mbde (optional)
These specify the symbolic name of the user, group and octal file permissions for the created target file.
If no values are explicitly provided, then r oot : r oot isused by default and the file mode is inherited
from the source template.

Pr ei nst (optiona),

Post i nst (optional)
These specify the name of a Python module located in / et ¢/ uni vent i on/ t enpl at es/ nod-
ul es/, which is called before and after the target file is re-created. The module must implement the
following two functions:

def preinst(config_registry, changes):
pass

def postinst(config registry, changes):
pass

Each function receives two arguments: The first argument confi g_regi stry is areference to an
instance of Conf i gRegi st ry. Thesecond argument changes isadictionary of 2-tuples, which maps
the names of al changed variablesto (ol d- val ue, new val ue).

_) 23
www.univention.de

Feedback Q

https://www.univention.com/feedback/?manual=ucr:file

debi an/ package. uni venti on-config-registry

uni vention-install-config-registry

tion/tenpl at es/ nodul es/ .

@ univention

be open.

installs the module file to /etc/univen-

If ascript/ et ¢/ uni vention/tenpl ates/scripts/full-path-to-fil eexists,itwill becaled
after the file is committed. The script is called with the argument post i nst . It receives the list of changed

variables as documented in Section 2.2.1.3.

2212 Ml tifile

24

Feedback Q

A multi filetemplate is specified onceastypenul ti f i | e, which describes the target file name. In addition
to that multiple sections of type subf i | e are used to describe source file fragments, which are concatenated

to form the final target file. A typical multifile has the following structure:

Type: multifile

Multifile: <target-fil ename>
User: <owner >

G oup: <group>

Mode: <fil e- nbde>

Prei nst: <nodul e>

Posti nst: <nodul e>

Vari abl es: <vari abl el>

Type: subfile

Multifile: <target-fil ename>
Subfile: <fragnent-fil enane>
Vari abl es: <vari abl e1>

The following keys can be used:

Mul tifile (required)

This specifies the target file name. It is also used to link themul ti fi | e entry to its corresponding

subfi | e entries.

Subfi | e (required)

The source file containing the template fragment must be put below the conf f i | es/ directory in the
Debian source package. The file can contain any textual content and is processed as described in Sec-
tion 2.3. Thetemplatefileisinstalledto/ et ¢/ uni venti on/tenpl ates/fil es/.

Common best practice is to start the filename with two digits to allow consistent sorting and to put
the file in the directory named like the target filename suffixed by . d, that is conffil es/tar -

get-fil enane. d/ 00f ragnment - fi | enane.

Vari abl es (optional)

Variables can be declared in boththemul ti fi | e and subfi | e sections. The variables from all sec-
tions trigger the commit of the target file. Until UCS-2.4 only therrul ti fi | e section was used, since

UCS-3.0thesubf i | e section should be preferred (if needed).

User (optional),

G oup (optional),

Mbode (optional),

Pr ei nst (optiona),

Post i nst (optional)
Same as aboveforfi | e.

The same script hook as above for f i | e isalso supported.

www.univention.de

https://www.univention.com/feedback/?manual=ucr:multifile

@ univention

be open.

debi an/ package. uni venti on-confi g-reg-
i stry-vari abl es

2.2.1.3.Scri pt FeedbackQ

A script template allows an external program to be called when specific UCR variables are changed. A typical
script entry has the following structure:

Type: script
Script: <fil ename>
Vari abl es: <vari abl el>

The following keys can be used:

Scri pt (required)
Specifies the filename of an executable, which is installed to /etc/univention/tem
pl ates/scripts/.

The script is called with the argument gener at e. It receives the list of changed variables on standard
input. For each changed variable a line containing the name of the variable, the old value, and the new
value separated by @@is sent.

Vari abl es (required)
Specifies the UCR variable names, which should trigger the script.

2.2.1.4. Mobdul e FeedbackQ

A module template allows a Python module to be run when specific UCR variables are changed. A typical
module entry has the following structure;

Type: nodul e
Modul e: <fil enane>
Vari abl es: <vari abl el>

The following keys can be used:

Modul e (required)
Specifies the filename of a Python module, which is installed to /et c/ uni vention/tem
pl at es/ nodul es/ .

The module must implement the following function:

def handl er(config_registry, changes):
pass

The function receives two arguments: The first argument conf i g_r egi st ry isareference to an in-
stance of Conf i gRegi st ry. The second argument changes isadictionary of 2-tuples, which maps
the names of all changed variablesto (ol d- val ue, new val ue).

uni vention-install-config-registry installsthemoduleto/ et ¢/ uni venti on/tem
pl at es/ nodul es/ .

Var i abl es (required)
Specifies the UCR variable names, which should trigger the module.
2.2.2. debi an/ package. uni venti on-confi g-regi stry-vari- rewax()
abl es

For UCR variables adescription should be registered. Thisdescription is shown in the Univention Config Reg-
istry module of the UM C asamouse-over. It can also be queried by runningucr i nf o vari abl e/ nane
on the command line.

_) 25
www.univention.de

https://www.univention.com/feedback/?manual=ucr:script
https://www.univention.com/feedback/?manual=ucr:module
https://www.univention.com/feedback/?manual=ucr:variables

@ univention

be open.
debi an/ package. uni venti on-confi g-reg-
i stry-categories

The description is provided on a per-package basis as a file, which uses the ini-style format. The file is
processed and copied by uni venti on-install-config-registry-info into/etc/univen-
tion/registry.info/variables/. The command uni vention-install-config-reg-
i stry-infoisinvokedindirectly by uni venti on-install-config-regi stry,whichshouldbe
caledinstead from debi an/ r ul es.

For each variable a section of the following structure is defined:

[<vari abl e/ nanme>]

Descri pti on[en] =<descri pti on>

Descri pti on[<l anguage>] =<descri pti on>
Type=<type>

ReadOnl y=<yes| no>

Cat egori es=<category, ...>

[vari abl e/ nane] (required)
For each variable description one section needs to be created. The name of the section must match the
variable name.

To describe multiple variables with acommon prefix and/or suffix, theregular expression. * can be used
to match any sequence of characters. Thisisthe only supported regular expression!

Descri ption[| anguage] (required)
A descriptive text for the variable. It should mention the valid and default values. The description can be
given in multiple languages, using the two-letter-code following [1SO639].

Type (required)
The syntax type for thevalue. Thisisunused in UCS-3.1, but future versions might use thisfor validating
theinput. Valid valuesinclude st r for strings, bool for boolean values, and i nt for integers.

ReadOnl y (optional)
This declares a variable as read-only and prohibits changing the value through UMC. The restriction is
not applied when using the command line tool ucr . Valid values aret r ue for read-only and f al se,
which is the default.

Cat egor i es (required)
A list of categories, separated by comma. This is used to group related UCR variables. New categories
don't need to be declared explicitly, but it is recommended to do so following Section 2.2.3.

2.2.3. debi an/ package. uni venti on-config-regi stry-cate- remf)
gori es

UCR variables can be grouped into categories, which can help administrators to find related settings. Cate-
gories are referenced from . uni vent i on-confi g-regi stry-vari abl es files (see Section 2.2.2).
They are created on-the-fly, but can be described further by explicitly defining them in a . uni ven-
tion-config-registry-categories file

The description is provided on a per-package basis as a file, which uses the ini-style format. The file is
processed and copied by uni vention-install-config-registry-infointo/etc/univen-
tion/registry.info/categories/. The command uni vention-install-config-reg-
i stry-infoisinvokedindirectly by uni vention-install-config-registry,whichshouldbe
caledinstead from debi an/ r ul es.

For each category a section of the following structure is defined:

[<cat egor y- nane>]

26 _)
www.univention.de

https://www.univention.com/feedback/?manual=ucr:categories

@ univention

be open.

debi an/ package. uni venti on-confi g-reg-
i stry-services

nane[en] =<nane>
nane[<l anguage>] =<t r ansl at ed- nane>
i con=<fil e- name>

[cat egory- nane]
For each category description one section needs to be created.

nane[| anguage] (required)
A descriptive text for the category. The description can be given in multiple languages, using the two-
letter-code following [1SO639].

i con (required)
Thefile name of aniconin either the Portable Network Graphics (PNG) format or Graphics I nterchange
Format (GIF). Thisis unused in UCS-3.1, but future versions might display this icon for variables in
this category.

2.2.4. debi an/ package. uni venti on-confi g-regi stry-ser- Feedback)
vi ces

Long running services should be registered with UCR and UMC. This enables administratorsto control these
daemons using the UM C module System services.

The description is provided on a per-package basis as a file, which uses the ini-style format. The
file is processed and copied by uni vention-install-service-info into /etc/univen-
tion/service.info/services/.Thecommanduni venti on-install-service-infoisin-
voked indirectly by uni venti on-i nstal | - confi g-regi st ry, which should be called instead from
debi an/rul es.

For each service a section of the following structure is defined:

[<servi ce- nane>]

descri pti on[<l anguage>] =<descri pti on>
start _type=<servi ce-nane>/ aut ost art

i con=<service/icon_nanme>

pr ogr ans=<execut abl e>

[servi ce- nane]
For each daemon one section needs to be created. The service-name should match the name of the init-
scriptin/etc/init.d/.

descri ption[| anguage] (required)
A descriptive text for the service. The description can be given in multiple languages, using the two-
letter-code following [1SO639].

start _type (required)
Specifies the name of the UCR variable, which controls if the service should be started automatically. It
isrecommended to usethe shell library / usr / shar e/ uni venti on-config-registry/init-
aut ostart. | i btoevaluatethesetting fromtheinit-script of theservice. If thevariableisset tof al se
or no, the service should never be started. If the variableis set to manual | y, the service should not be
started automatically, but invoking the init-script directly with st ar t should still start the service.

pr ogr ams (required)
A comma separated list of commands, which must be running to qualify the service as running. Each
command name is checked against / pr oc/ */ cndl i ne. To check the processes for additional argu-
ments, the command can also consist of additional shell-escaped arguments.

_) 27
www.univention.de

https://www.univention.com/feedback/?manual=ucr:services

@ univention

be open.
UCR Templatefilesconffil es/ path/to/file

i con (optional)
The file name of an icon in either Portable Network Graphics (PNG) format or Graphics Interchange
Format (GIF) format. Thisisunused in UCS-3.1, but future versions might display theicon for the service.

2.3. UCR Template files conffil es/path/to/file Feedback{)

For each file, which should be written, one or more template files need beto created below theconf fi | es/
directory. For asingle-File template (see Section 2.2.1.1), the filename must match the filename given in the
Fi | e: stanzaof thefile entry itself. For a Multifile template (see Section 2.2.1.2), the filename must match
thefilenamegivenintheFi | e: stanzaof the subfile entries.

Each template file is normally a text file, where certain sections get substituted by computed values during
the file commit. Each section starts and ends with a special marker. UCR currently supports the following
kinds of markers:

@/g@variable reference
Sections enclosed in @/@are simple references to Univention Configuration Registry variable. The sec-
tionisreplaced inline by the current value of the variable. If the variableis unset, an empty string is used.

ucr scans al fil es and subfil es on registration. All Univention Configuration Registry vari-
ables used in @@ are automatically extracted and registered for triggering the template mecha-
nism. They don't need to be explicitly enumerated with Vari abl es: -statements in the file de-
bi an/ package. uni venti on-confi g-registry.

@ @Python code
Sections enclosed in @ @contain Python code. Everything printed to STDOUT by these sectionsisin-
serted into the generated file. The Python code can access the conf i gRegi st r y1 variable, which is
an aready loaded instance of Conf i gRegi st ry. Each section is evaluated separately, so no state is
kept between different Python sections.

All Univention Configuration Registry variablesused in a@ @Python section must be manually matched
by aVari abl es: statement in the debi an/ package. uni venti on-confi g-regi stry file
Otherwise the file is not updated on changes of the UCR variable.

@EICRWARNI NG=%REFI X@@
@EICRWARNI NG_ASCI | =%°REFI X@@
This variant of the variable reference inserts awarning text, which looks like this:

Warning: This file is auto-generated and m ght be overwitten by

uni venti on-confi g-registry.

Pl ease edit the following file(s) instead:

Warnung: Diese Datei wurde automati sch generiert und kann durch

uni venti on-confi g-regi stry Uberschri eben werden.

Bitte bearbeiten Sie an Stelle dessen die fol gende(n)
Dat ei (en):

#

/etc/univention/tenplates/files/etc/hosts. d/ 00-base

/etc/univention/tenplates/files/etc/hosts.d/20-static

/etc/univention/tenplates/files/etc/hosts. d/90-ipv6defaults

#

It should be inserted once at the top to prevent the user from editing the generated file. For single File
templates, it should be on the top of the template file itself. For Multifile templates, it should only be
on the top the first subfile.

1 Historically Univention Configuration Registry was named “Univention Base Config”. For backward compatibility the alias baseConf i g is still
provided. It should not be used anymore and will be removed in afuture version of UCS.

28 _)
www.univention.de

https://www.univention.com/feedback/?manual=ucr:conffiles

@ univention

be open.
Build integration

Everything between the equal sign and the closing @@defines the PREFI X, which is inserted at the
beginning of each line of the warning text. For shell scripts, thisshould be# , but other files use different
characters to start acomment. For files, which don't allow comments, the header should be skipped.

Warning

Several file formats require the file to start with some magic data. For example shell scripts
must start with a hash-bang (#!) and XML files must start with <?xm ver si on="1. 0"
encodi ng="UTF- 8" ?> (if used). Make sure to put the warning after these headers!

The UCRWARNI NG_ASCI | variant only emits 7-bit ASCII characters, which can be used for files, which
are not 8 bit clean or unicode aware.

2.4. Build integration Fecdback{)

During package buildtimeuni venti on-i nstal | - confi g-regi st ry needsto becalled. Thisshould
be done by overridingthedh_aut o_i nstal | _target indebi an/ rul es:

override _dh_auto install:
uni vention-install-config-registry
dh_aut o_install

This invocation copies the referenced files to the right location in the binary package staging
area debi an/ package/ et ¢/ uni vention/. Internaly uni venti on-install-config-reg-
i stry-infoandunivention-install-service-info areinvoked, which should not be called
explicitly anymore. The calls also insert code into the files debi an/ package. pr ei nst . subst , de-
bi an/ package. posti nst. subst anddebi an/ package. postrm subst toregister and un-reg-
ister the templates. Thereforeit'simportant that customized maintainer scripts use the # DEBHEL PER# mark-
er, so that the generated code gets inserted into the corresponding pr ei nst, posti nst and post r mfiles
of the generated binary package.

Theinvocation also addsunivention-configton sc: Depends to ensurethat the packageisavailableduring
package configuration time. Therefore it'simportant that ${ m sc: Depends} isused inthe Depends line
of the package section inthe debi an/ cont r ol file.

Package: .
Depends: ..., ${m sc: Depends},

25 Examples Feedback {)}

This sections contains several simple examples for the use of Univention Configuration Registry. The com-
plete source of these examples is available separately. The download location is given in each example be-
low. Since amost al Univention Corporate Server packages use UCR, their source code provides additional
examples.

2.5.1. Minimal File example Feedback {)

Thisexample provides atemplatefor / et ¢/ paper si ze, which is used to configure the default paper size.
A Univention Configuration Registry variable pr i nt / paper si ze isregistered, which can be used to con-
figure the papersize.

Source code: http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/devel oper-reference/ucr/
papersize/

_) 29
www.univention.de

https://www.univention.com/feedback/?manual=ucr:build
https://www.univention.com/feedback/?manual=ucr:example
https://www.univention.com/feedback/?manual=ucr:example:minimal
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/ucr/papersize/
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/ucr/papersize/

@ univention

be open.
Minimal File example

conffil es/etc/papersize
The template file only contains one line. Please note that this file does not start with the “UCR-
WARNING", since the file must only contain the paper size and no comments.

@/4r i nt/ paper si ze @@

debi an/ paper si ze. uni venti on-confi g-regi stry
The file defines the templates and is processed by uni venti on-install-config-registry
during the package build and afterwards by uni vent i on- confi g-r egi st ry during normal usage.

Type: file
File: etc/papersize

debi an/ paper si ze. uni venti on-confi g-regi stry-vari abl es
The file describes the newly defined Univention Configuration Registry variable.

[print/ papersize]

Description[en] =specify preferred paper size [a4]

Descri ption[de] =Legt di e bevorzugte Papi ergrotlRe fest [a4]
Type=str

Cat egor i es=servi ce- cups

debi an/ paper si ze. post i nst
Sets the Univention Configuration Registry variable to a default value after package installation.

#!/ bin/ sh
#DEBHEL PER#
ucr set print/papersize?a4d

exit O

debi an/rul es
Invokeuni vention-instal |l -confi g-regi stry during package build to install the filesto the
appropriate location. It also creates the required commands for the maintainer scripts (see Section B.3.5)
to register and unregister the templates during package installation and removal.

#! [usr/ bi n/ make -f

override dh auto_install:
dh_aut o_i nst al |
uni vention-install-config-registry

%
dh $@

Note that tabulators must be used for indention in this Makefile-type file.

debi an/ contr ol
The automatically generated dependency on univention-config is inserted by uni venti on-i n-
stal | -config-regi stry viadebi an/ paper si ze. substvars.

Sour ce: papersize
Section: univention
Priority: optional

30 _)
www.univention.de

@ univention

be open.
Multifile example

Mai nt ai ner: Uni venti on GrbH <packages@ni venti on. de>
Bui | d- Depends: debhel per (>= 7),

uni venti on-confi g- dev,
St andar ds- Version: 3.7.2

Package: papersize
Architecture: all
Depends: ${m sc: Depends}
Description: An exanpl e package to configure the papersize
Thi s purpose of this package is to show how Uni vention Config
Regi stry is used.

For nore informati on about UCS, refer to:
htt p: //ww. uni venti on. de/

2.5.2. Multifile example

This example provides templates for / et ¢/ host s. al | owand / et ¢/ host s. deny, which is used to
control access to system services. See hosts access(5) for more details.

Source code: http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/devel oper-reference/ucr/
hosts/

conffiles/etc/hosts. al | ow. d/ OOheader,

conffiles/etc/hosts. deny. d/ O0Oheader
The first file fragment of the file. It starts with @4@JCRWARNI NG=# @4@ which is replaced by the
warning text and alist of all subfiles.

@E@CRWARNI NG=# @D

/etc/hosts.allow list of hosts that are allowed to access the
system

See the manual pages hosts_access(5) and
hosts_options(5).

conffiles/etc/hosts. all ow. d/ 50dynani c,

conffil es/etc/hosts. deny. d/ 50dynani c
A second file fragment, which uses Python code to insert access control entries configured through the
Univention Configuration Registry variableshost s/ al | ow and host s/ deny/ .

@@
for key, value in sorted(configRegistry.itenms()):
if key.startswith(' hosts/allow'):

print val ue

@@

debi an/ host s. uni venti on-confi g-registry
The file defines the templates and is processed by uni venti on-i nstall -config-registry.

Type: multifile
Multifile: etc/hosts.all ow

Type: subfile
Multifile: etc/hosts.all ow
Subfile: etc/hosts. al |l ow. d/ O0Oheader

_) 31
www.univention.de

Feedback Q

https://www.univention.com/feedback/?manual=ucr:example:multifile
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/ucr/hosts/
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/ucr/hosts/

Services

2.5.3. Services

32

@ univention

be open.

Type: subfile

Multifile: etc/hosts.allow

Subfile: etc/hosts. all ow d/50dynani c
Vari abl es: “hosts/all ow .*

Type: multifile
Multifile: etc/hosts.deny

Type: subfile
Multifile: etc/hosts.deny
Subfile: etc/hosts. deny. d/ 00header

Type: subfile

Multifile: etc/hosts.deny

Subfile: etc/hosts. deny. d/50dynam c
Vari abl es: “hosts/deny/.*

debi an/ host s. uni venti on-confi g-regi stry-vari abl es
The file describes the newly defined Univention Configuration Registry variables.

[hosts/all ow . *]

Descri ption[en] =An perni ssive access control entry for system
services, e.g. "ALL: LOCAL"

Descri ption[de] =Ei ne erl aubende Zugriffsregel fir Systendienste, z.B.
"ALL: LOCAL".

Type=str

Cat egor i es=ser vi ce- net

[host s/ deny/ . *]

Descri ption[en] =An denyi ng access control entry for system services,
e.g. "ALL: ALL".

Descri ption[de] =Ei ne verbi et ende Zugriffsregel fir Systendienste,
z.B. "ALL: ALL".

Type=str

Cat egor i es=ser vi ce- net

This example provides atemplate to control the at d service through an Univention Configuration Registry
variableat d/ aut ost art .

Source code: http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/devel oper-reference/ucr/
service/

conffiles/etc/init.d/atd
Thetemplatereplacestheoriginal filewith aversion, which checksthe Univention Configuration Registry
variable at d/ aut ost art before starting the at daemon. Please note that the “UCRWARNING” is
put after the hash-bash line.

#! [bin/sh

@@ICRWARNI NG=# @@
BEG N INI T | NFO

Provi des: atd
Required-Start: $syslog $tine $renvte fs
Requi r ed- St op: $syslog $tine $renvte fs

www.univention.de

Feedback Q

https://www.univention.com/feedback/?manual=ucr:example:service
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/ucr/service/
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/ucr/service/

@ univention

be open.
Services

Default-Start: 2345
Defaul t - St op: 016
Short-Description: Deferred execution schedul er
Description: Debian init script for the atd deferred
executions
schedul er
END | NI T | NFO
#
Author: Ryan Murray <rnurray@lebi an. or g>
#

PATH=/ bi n: /usr/ bi n: / sbi n:/usr/sbin
DAEMON=/ usr/ sbi n/ at d
Pl DFI LE=/ var/run/ atd. pi d

test -x $DAEMON || exit O
/1ib/lsblinit-functions

case "$1" in

start)

check ucr autostart setting

| AL="/usr/share/ uni vention-config-registry/init-autostart.|ib"
if [-f "$SIAL"]; then

"$l AL"

check _autostart atd atd/autostart

fi

| og_daenon_nsg "Starting deferred execution scheduler" "atd"
start _daenon -p $PI DFI LE $DAEMON

| og_end_nsg $?

st op)

| og_daenon_nsg " Stoppi ng deferred execution schedul er" "atd"
killproc -p $PI DFl LE $DAEMON

| og_end_nsg $?

force-rel oad|restart)
$0 stop
$0 start
st at us)
status_of _proc -p $PIDFlI LE $DAEMON atd && exit O || exit $?
*)ll
echo "Usage: $0 {start|stop|restart|force-rel oad|status}"
exit 1

esac
exit O
Notetheinclusionof i nit-autostart.|i b anduseof check_autostart.

debi an/ servi ce. uni venti on-config-registry
The file defines the templates.

_) 33
www.univention.de

@ univention

be open.
Services

Type: file

File: etc/init.d/atd
Mode: 755

Vari abl es: atd/autostart

Note the additional Mode statement to mark the file as executable.

debi an/ servi ce. uni venti on-confi g-regi stry-vari abl es
The file adds a description for the Univention Configuration Registry variable at d/ aut ost art .

[atd/autostart]

Description[en] =Automatically start the AT daenon on system startup
[yes]

Descri ption[de] =Aut omati scher Start des AT-Di enstes bei m Systenstart
[yes]

Type=bool

Cat egor i es=servi ce- at

debi an/ servi ce. posti nst
Set the Univention Configuration Registry variable to automatically start the at d on new installations.

#!/ bi n/ sh
#DEBHEL PER#
ucr set atd/autostart?yes

exit O

debi an/ contr ol
univention-base-files must be added manually as an additional dependency, sinceit is used from within
the shell code.

Sour ce: service
Section: univention
Priority: optional
Mai nt ai ner: Univenti on GrbH <packages@ni venti on. de>
Bui | d- Depends: debhel per (>= 7),
uni vent i on- confi g- dev,
St andar ds- Version: 3.7.2

Package: service

Architecture: all

Depends: ${m sc: Depends},
uni vent i on- base-fil es,

Descri ption: An exanpl e package to configure services
Thi s purpose of this package is to show how Univention Config
Regi stry is used.

For nore i nformati on about UCS, refer to:
http://ww. uni venti on. de/

www.univention.de

@ univention

be open.
Join scripts

Chapter 3. Domain Join

B0 00 N o = o o £ 35
320 JON SEALUS ... ettt ettt et ettt e et e e ean e anes 35
GG T (0 0 1 o o 1 e 1 o1 36
10 VY 1 1 o I o1 = £ 36
3.4.1. BaSIC JOIN SCHPL @XAMPIE ...eeiiiiiei e e e e e e e e et e e e e e e eeans 36
0 N o o] o1 = o0 - 38
0 C TN o = o] oL o] = = 38
3431 UNIVENTTION-JOIN ettt et e et e et e e b 38

3.4.3.2. shell-univention-lib ... 40

3.5, WItING UNJOIN SCIIPES . evvueeietts ettt ettt ettt ettt ettt e e et e e e e e e ennes 43

An UCS system isnormally joined into adomain. This establishes atrust relation between the different hosts,
which enables users to access services provided by any host of the domain.

Joining a system into a domain requires write permission to create and modify entries in the Univention
directory service (LDAP). Local r oot permission onthejoining host isnot sufficient to get write accessto the
domainwide LDAP service. Instead valid LDAP credential s must be entered interactively by the administrator
doing the join.

3.1. Join scripts Feedback ()

Packages requiring write access to the Univention directory service can provide so called join scripts. They
areinstalledinto/ usr /1 i b/ uni venti on-i nstal | /. Thename of each join script isnormally derived
from the name of the binary package containing it. It is prefixed with a two-digit number, which is used
to order the scripts lexicographically. The filename either endsin . i nst or . ui nst, which distinguishes
between join script and unjoin script (see Section 3.5). The file must have the executable permission bits set.

3.2. Join status Feedback{)

For each join script aversion number is tracked. Thisis used to skip re-executing join scripts, which already
have been executed. This is mostly a performance optimization, but is also used to find join scripts which
need to be run.

Thetext file/ var/ uni venti on-j oi n/ st at us is used to keep track of the state of all join scripts. For
each successful run of ajoin script aline is appended to that file. That record consists of three space separated
entries:

$scri pt _name v$versi on successf ul

1. Thefirst entry contains the name of the join script without the two-digit prefix and without the . i nst
suffix, usually corresponding to the package name.

2. The second entry contains a version number prefixed by av. It is used to keep track of the latest version
of the join script, which has been run successfully. Thisis used to identify, which join scripts need to be
executed and which can be skipped, because they were already executed in the past.

3. The third column contains the word successful.

If anew version of the join script is invoked, it just appends a new record with a higher version number at
the end of thefile.

_) 35
www.univention.de

https://www.univention.com/feedback/?manual=chap:scripts
https://www.univention.com/feedback/?manual=join:status

@ univention

be open.
Running join scripts

3.3. Running join scripts Fecaback{)

There exist three commands related to running join scripts:

uni vention-join
When uni vent i on-j oi n isinvoked, a machine account is created. The distinguished name (dn) of
that entry is stored locally in the Univention Configuration Registry variable!l dap/ host dn. A random
password is generated, which is stored in thefile/ et ¢/ machi ne. secret .

Afterthat thefile/ var / uni venti on-j oi n/ st at us isclearedand all join scriptslocatedin/ usr /
i b/univention-install/ areexecutedinlexicographical order.

uni vention-run-join-scripts
Thiscommandissimilar touni vent i on-j oi n, but skipsthefirst step of creating amachine account.
Only those join scripts are executed, whose current version is not yet registered in / var / uni ven-
tion-join/status.

uni venti on- check-j oi n-st at us
This command only checks for join scriptsin/ usr/1i b/ uni venti on-instal |/, whoseversion
isnot yet registered in/ var / uni vent i on-j oi n/ st at us.

When packages are installed, it depends on the server role, if join scripts are invoked automatically from
thepost i nst Debian maintainer script or not. This only happens on master and backup domain controller
system roles, where the local r oot user has access to the file containing the LDAP credentials. On all other
system roles the join scripts need to be run manually by invoking uni venti on-run-j oi n-scripts
or doing so through UMC.

3.4. Writing join scripts Feedback{)

Similar to the Debian maintai ner scripts (see Section B.3.5) they should beidem-potent: They should transform
the system from any state into the state required by the package, that is:

* They should create newly introduced objectsin the Univention directory service
» They should not fail if the object already exists

» They should be careful about modifying objects, which might have been modified by the administrator in
the past

Join scripts may be called from multiple system roles and different versions. Therefore it is important that
these scripts do not destroy or remove data still used by other systems!

3.4.1. Basic join script example Feedback £}

Thisexampleprovidesatemplatefor writing join scripts. The packageis called join-template and just contains
ajoin and an unjoin script. They demonstrate some commonly used functions.

Source code: http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/devel oper-referenceljoin/
join-template/

50j oi n-tenpl ate. i nst
The join script in UCS packages is typically located in the package root directory. It has the following
base structure:

#! [/ bi n/ sh
VERSI ON=1

36 _)
www.univention.de

https://www.univention.com/feedback/?manual=join:run
https://www.univention.com/feedback/?manual=join:write
https://www.univention.com/feedback/?manual=join:minimal
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/join/join-template/
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/join/join-template/

@ univention

be open.
Basic join script example

[usr/ shar e/ uni vention-join/joinscripthelper.lib
joinscript _init

SERVI CE=" My Ser vi ce"
eval "$(ucr shell)"

[usr/ share/ univention-Ilib/ldap.sh
ucs_addServi ceToLocal host "$SERVICE' "$@

udm "conput ers/ $server_rol e" nodify "$@ \
--dn "$l dap_host dn" \
--set reinstall=0 || die

create contai ner for extended attributes to be placed in
udm contai ner/cn create "$@ \
--ignore_exists \
--position "cn=custom attributes, cn=uni vention, $l dap_base" \
--set nanme="nyservice" || die

sonme extended attri butes woul d be added here

j oi nscript_save_current_version
exit O

Please note the essential argument " $@ when udmis invoked, which passes on the required LDAP
credentials described in Section 4.4.

debi an/join-tenplate.install
The scripts need to be installed into / usr /1 i b/ uni venti on-i nstal |/, whichisachieved by the
following lines:

50j oi n-tenpl ate.inst usr/lib/univention-install/
50j oi n-t enpl at e-uni nstal | . ui nst usr/Ilib/univention-uninstall/

Note that this package also installs an unjoin script.

debi an/ j oi n-tenpl at e. posti nst
The join script should be invoked automatically on master and backup domain controller systems. On
al other system roles an administrator must run the join script manually through uni vent i on-r un-
j Oi n-scripts.

#!/ bi n/ sh

#DEBHEL PER#

if ["$1" = "configure"]

t hen
ui nst=/usr/lib/univention-install/50join-tenplate-uninstall.uinst
[-e "$uinst"] && rm "$ui nst"

fi

[usr/share/uni vention-1i b/ base. sh
call _joinscript 50join-tenplate.inst

exit O

_) 37
www.univention.de

@ univention

be open.
Join script exit codes

debi an/ contr ol
The package uses two shell libraries, which are described in more detail in Section 3.4.3. Both packages
providing them must be added as additional runtime dependencies.

The unjoin functions were added to UCS 3.1-0 only as erratum update 81 [https.//errata.software-
univention.de/ucs/3.1/80.html]. Because of this the minimum versions must be specified explicitly.

Source: join-tenplate

Secti on: univention

Priority: optional

Mai nt ai ner: Univention GrbH <packages@ni venti on. de>
Bui | d- Depends: debhel per (>= 7)

St andar ds- Version: 3.7.2

Package: join-tenplate
Architecture: all
Depends: univention-join (>= 5.0.20-1),
shel | -univention-lib (>= 2.0.17-1),
${ m sc: Depends}
Description: An exanpl e package for join scripts
This purpose of this package is to show how
Uni vention Join scripts are used.

For nore informati on about UCS, refer to:
htt p: //ww. uni venti on. de/

3.4.2. Join script exit codes Feedback {{J)
Join scripts must return the following exit codes:
0
The join script was successful and completed al tasks to join the software package on the system into
the domain. All required entries in the Univention directory service were created or do already exist as
expected.
The script will be marked as successfully run. As a consegquence the join script will not be called again
inthisversion.
1
The script did not complete and some task to fully join the system into the domain are still pending.
Some entries could not be created in LDAP or exist in a state, which is incompatible with this version
of the package.
The script needs to be run again after fixing the problem, either manually or automatically.
2
Some internal functions were called incorrectly. For example the credentials were wrong.
The script needs to be run again.
3.4.3. Join script libraries Feedback {2}
There exist two shell libraries, which provide functions which help in writing join scripts:
3.4.3.1. univention-join Feedback)
The package contains the shell library /usr/ share/ univention-join/

j oi nscri pt hel per. i b. It provides functions related to updating the join status file.

38 _)
www.univention.de

https://errata.software-univention.de/ucs/3.1/80.html
https://errata.software-univention.de/ucs/3.1/80.html
https://errata.software-univention.de/ucs/3.1/80.html
https://www.univention.com/feedback/?manual=join:exitcode
https://www.univention.com/feedback/?manual=join:libraries
https://www.univention.com/feedback/?manual=join:libraries:join

@ univention

be open.
Join script libraries

joinscript_init
This function parses the status file and exits the shell script, if arecord isfound with aversion greater or
equal to value of the environment variable VERSI ON. The name of thejoin script is derived from $0.

joinscript_save_current_version
This function appends a new record to the end of the status file using the version number stored in the
environment variable VERSI ON.

j oi nscript_check_any_versi on_execut ed
This function returns success (0), if any previous version of the join scripts was successfully executed.
Otherwiseit returns afailure (1).

joinscript_check _specific_version_execut ed version
This function returns success (0), if the specified version ver si on of the join scripts was successfully
executed. Otherwiseit returns afailure (1).

j oinscript_check_version_i n_range_execut ed min max
This function returns success (0), if any successfully run version of the join script falls within the range
m n..max, inclusively. Otherwise it returns afailure (1).

joinscript_extern_init join-script
The check commands mentioned above can also be used in other shell programs, which are not join
scripts. There the name of the join script to be checked must be explicitly given. Instead of calling
j oi nscript_init,thisfunction requires an additional argument specifying the name of thej oi n-
script.

joinscript_renmove _script fromstatus fil ename
Removes the given join script from the join script status file / var / uni vent i on-j oi n/ st at us.
Thenane should bethe basename of thejoinscript without the prefixed digitsand the suffix . i nst . Soif
thejoinscript/ var /I'i b/ uni venti on-i nstal | /50j oi n-tenpl at e. i nst shal beremoved,
one has to execute j oi nscri pt_renove_script _fromstatus file join-tenplate.
Primarily used in unjoin scripts.

die
A convenience function to exit the join script with an error code. Used to guarantee that LDAP modifi-
cations were successful: some_udm create_call || die

These functions use the following environment variables:

VERSI ON
Thisvariable must be set beforej oi nscri pt _i ni t isinvoked. It specifiesthe version number of the
join script and is used twice:

1. It defines the current version of the join script.

2. If that version isaready recorded in the statusfile, thejoin script qualifies as having been run success-
fully and the re-execution is prevented. Otherwise the join status is incomplete and the script needs
to be invoked again.

The version number should be incremented for a new version of the package, when the join script needs
to perform additional modificationsin LDAP compared to any previous packaged version.

The version number must be a positive integer. The variable assignment in the join script must be on its
own line. It may optionally quote the version number with single quotes (') or double quotes ("). The
following assignment are valid:

VERSI ON=1
VERSI ON=' 2'

_) 39
www.univention.de

@ univention

be open.
Join script libraries

VERSI| ON=" 3"

JS_LAST_EXECUTED_VERSI ON
Thisvariableisinitialized by j oi nscri pt _i ni t with the latest version found in the join status file.
If no version of the join script was ever executed and thus no record exists, the variable is set to 0. The
join script can use this information to decide what to do on an upgrade.

3.4.3.2. shell-univention-lib Feedback {-)

The package contains the shell library / usr / shar e/ uni venti on-1i b/ base. sh. Since package ver-
son>= 2. 0. 17- 1 it provides the following functions:

call _joinscript [--binddn bind-dn --bindpwd bi nd-password] [XX oi n-
script.inst]
This calls the join script called XXj oi n-scri pt.inst from the directory / usr/ | i b/ uni ven-
tion-install/.Theoptional LDAPcredentialsbi nd- dn andbi nd- passwor d are passed on as-
is.

call _joinscript_on_dcrmaster [--binddn bi nd- dn --bindpwd bi nd- passwor d]
[XXj oi n-script.inst]
Similar to cal | _j oi nscri pt, but also checks the system role and only executes the script on the
master domain controller.

renove_j oi nscri pt_stat us [nane]
Removes the given join script nane from the join script status file [/
var/univention-join/status. Note that this command does the same as
joinscript_renmove _script _fromstatus file provided by univention-join (see Sec-
tion 3.4.3.1).

call _unjoinscript [--binddn bind-dn --bindpwd bi nd-password] [XXun-
join-script.uinst]
Calls the given unjoin script unj oi n-scri pt on master and backup domain controller systems. The
filenamemust berelativetothedirectory / usr/ 'i b/ uni venti on-i nstal | /. Theoptiona LDAP
credentials bi nd- dn and bi nd- passwor d are passed on as-is. Afterwards the unjoin script is auto-
matically deleted.

del et e_unj oi nscri pt [XXunj oi n-scri pt. ui nst]
Deletes the given unjoin script XXunj oi n-scri pt. ui nst if it does not belong to any package. The
file name must be relative to the directory / usr/ 1 i b/ uni vention-install/.

stop_udmcli _server
When uni vent i on-di rect ory- manager is used the first time a server is started automatically
that caches someinformation about the available modules. When changing some of thisinformation (e.g.
when adding or removing extended attributes) the server should be stopped manually.

The package also containsthe shell library / usr / shar e/ uni venti on-1i b/ | dap. sh. It providescon-
venience functions to query the Univention directory service and modify objects. For (un)join scripts the fol-
lowing functions might be important:

ucs_addServi ceToLocal host servi cenane [--binddn bi nd- dn --bindpwd bi nd-
passwor d]
Registers the additional service ser vi cenamne in the LDAP object representing the local host. The
optional LDAP credentialsbi nd- dn and bi nd- passwor d are passed on as-is.

Example 3.1. Serviceregistration in join script

ucs_addServi ceToLocal host "M/Servi ce" "$@

40 _)
www.univention.de

https://www.univention.com/feedback/?manual=join:libraries:shell

@ univention

be open.
Join script libraries

ucs_renoveServi ceFronLocal host servi cenanme [--binddn bi nd- dn --bindpwd
bi nd- passwor d]
Removes the service ser vi cenane from the LDAP object representing the local host, effectively
reverting an ucs_addSer vi ceToLocal host cal. The optional LDAP credentials bi nd- dn and
bi nd- passwor d are passed on as-is.

Example 3.2. Service unregistration in unjoin script
ucs_renmoveServi ceFronlLocal host "M/Service" "$@

ucs_i sServiceUnused servi cenanme [--binddn bi nd- dn --bindpwd bi nd- pass-
wor d]
Returns 0 if no LDAP host object exists where the service ser vi cenane isregistered with.

Example 3.3. Check for unused servicein unjoin script

if ucs_isServiceUnused "M/Service" "$@
t hen

uni nstall _ny_service
fi

ucs_regi st er LDAPExt ensi on [--binddn bi nd- dn { --bindpwd bi nd- password | --
bindpwdfilef i | enamne }]
{{ --schemafil ename | --acl fil enamne | --udm_syntax f i | ename | --udm_hook fi | e-
nane ..}
| --udm_module f i | enane [--messagecatalog f i | enane...] [--umcregistration f i | enane]
[--iconfil enane...] }
[--packagename packagenane] [--packageversion packagever si on] [--ucsversionstart
ucsver si on] [--ucsversionend ucsver si on]
The shell functionucs_r egi st er LDAPExt ensi on from the Univention shell function library (see
Section 13.3) can be used to register several extension in LDAP. Thisshell function offers several modes:

--schemafil enanme. schena
Register one or more LDAP schema extension (see Section 4.2)

--acl fil enane. acl
Register one or more LDAP access control list (see Section 4.3)

--udmsyntax fil enane. py
Register one or more UDM syntax extension (see Section 6.4)

--udm_hook fi | enane. py
Register one or more UDM hook (see Section 6.2.4)

--udm nodul e fi |l enane. py
Register asingle UDM module (see Section 6.3)

The modes can be combined. If more than one mode is used in one call of the function, the modes are
always processed in the order as listed above. Each of these options expects a filename as an required
argument.

The following options can be given multiple times, but only after the option - - udm nodul e:

- -messagecat al og prefi x/ | anguage. no
The option can be used to supply message translation files in GNU message catalog format. The
language must be a valid language tag, i.e. must correspond to a subdirectory of / usr/ shar e/
| ocal e/ .

_) 41
www.univention.de

@ univention

be open.
Join script libraries

--uncregistrationfil enane. xm
The option can be used to supply an UMC registration file (see Section 7.1.2) to make the UDM
modul e accessible via Univention Management Console (UMC).

--iconfilenane
The option can be used to supply icon files (png or j peg, in 16x16 or 50x50, or svgz).

Called from a joinscript, the function automatically determines some required parameters, like the app
identifier plus Debian package name and version, required for the creation of the corresponding object.
After creation of the object the function waits up to 3 minutes for the master domain controller to signal
availability of the new extension and reports successor failure. For UDM extensionsit additionally checks
that the corresponding file has been made available in the local filesystem. Failure conditions may occur
e.g. in casethe new LDAP schemaextension collideswith the schemacurrently active. Themaster domain
controller only activates anew LDAP schema or ACL extension if the configuration check succeeded.

Note

The corresponding UDM modules are documented in Chapter 4 and Chapter 6.

Before calling the shell function the shell variable UNI VENTI ON_APP_| DENTI FI ER should be set to
the versioned app identifier (and exported to the environment of subprocesses). The shell function will
then register the specified app identifier with the extension object to indicate that the extension object is
required as long as this app isinstalled anywhere in the UCS domain.

The options - - packagenane and --packageversion should usually not be used, as
these parameters are determined automatically. To prevent accidental downgrades the function
ucs_regi st er LDAPExt ensi on (aswell asthe corresponding UDM module) only execute modifi-
cations of an existing object if the Debian package version is not older than the previous one.

ucs_regi st er LDAPEXt ensi on supports two additional options to specify a valid range of UCS
versions, where an extension should be activated. The options are - - ucsver si onstart and - -

ucsver si onend. The version check isonly performed whenever the extension object is modified. By
calling this function from a joinscript, it will automatically update the Debian package version number
stored in the object, triggering a re-evaluation of the specified UCS version range. The extension is ac-
tivated up to and excluding the UCS version specified by - - ucsver si onend. Thisvalidity range is
not applied to LDAP schema extensions, since they must not be undefined as long as there are objects
in the LDAP directory which make use of it.

Example 3.4. Extension registration in join script

export UN VENTI ON_APP_I| DENTI FI ER="appl D- appVer si on" ## exanpl e
/usr/share/ uni vention-1ib/ldap.sh

ucs_regi st er LDAPExt ension "$@ \
--schema / pat h/t o/ appschenaext ensi on. schena \
--acl /path/to/appacl extension.acl \
--udm synt ax /path/to/ appudnsynt ax. py

ucs_regi st er LDAPExt ension "$@ \
--udm nodul e / pat h/ t o/ appudmmodul e. py \
--messagecatal og /path/to/de.m \
--messagecatal og /path/to/eo.m \
--uncregi stration /path/to/ modul e-object. xm \
--icon /path/to/ nodul ei con16x16. png \
--icon /path/to/ modul ei con50x50. png

42 _)
www.univention.de

@ univention

be open.
Writing unjoin scripts

ucs_unr egi st er LDAPEXt ensi on [--binddn bi nd- dn { --bindpwd bi nd- passwor d |
--bindpwdfilef i | enane }]
{ --schema obj ect nane | --acl obj ect nane | --udm_syntax obj ect name | --udm_hook
obj ect nane | --udm_module obj ect nane ...}
Thereisacorresponding ucs_unr egi st er LDAPExt ensi on function, which can be used to unreg-
ister extension objects. This only works if no App is registered any longer for the object. It must not be
called unless it has been verified that no object in LDAP still requires this schema extension. For this
reason it should generally not be called in unjoin scripts.

Example 3.5. Schema unregistration in unjoin script

/usr/share/ uni vention-1ib/ldap.sh
ucs_unr egi st er LDAPEXt ensi on "$@ --schena appschenaext ensi on

3.5. Writing unjoin scripts Feedback ()

On package removal packages should clean up the datain Univention directory service. Removing datafrom
LDAP aso requires appropriate credentials, while removing a package only requires local r oot privileges.
Therefore UCS provides support for so-called unjoin scripts. In most cases it reverts the changes of a corre-
sponding join script.

Warning

A domain isadistributed system. Just because one local system no longer wants to store some infor-
mation in Univention directory service does not mean that the data should be deleted. There might
still be other systems in the domain which still require the data.

Therefore “the first system to come” should setup the data, while only “the last system to go” may
clean up the data.

Just like join scripts an unjoin script is prefixed with a two-digit number for lexicographical ordering. To
reverse the order of the unjoin scriptsin comparison to the corresponding join scripts, the number of the unjoin
script should be 100 minus the number of the corresponding join script. The suffix of an unjoin script is -
uni nstal I . ui nst andit should beinstalledin/ usr/1i b/ uni venti on-uni nstall/.

On package removal the unjoin script would be deleted as well, while the Univention directory service might
still contain data managed by the package. Therefore the script must be copied from thereto / usr/ 1i b/
uni vention-install/ inthepr er mmaintainer script.

Example: The package univention-fetchmail provides both a join script /usr/1i b/ uni ven-
tion-install/9lunivention-fetchmail.inst and the corresponding unjoin script as/ usr/
['i b/ univention-uninstall/09univention-fetchnail-uninstall. uinst.

Asof UCS3.1.inst and. ui nst arenot distinguishable in the UMC Join module by the user. Therefore
it is important to use the - uni nst al | suffix to give users avisua hint. Internally join scripts are always
executed before unjoin scripts and then ordered lexicographically by their prefix.

To decide if an unjoin script is the last instance and should remove the data from LDAP, a service can be
registered for each host where the package isinstalled.

For example the package univention-fetchmail uses ucs_addSer vi ceFr onLocal host " Fet ch-

mai | " "$@ inthejoinscripttoregisteranducs_r enmoveSer vi ceFronmLocal host "Fet chmai | "
"$@ in the unjoin script to unregister a service for the host. The data is removed from LDAP when in the
unjoin script ucs_i sServi ceUnused "Fetchmai |l " "$@ returns0. Asaside effect adding the ser-

vice aso alowsusing thisinformation to find and list those servers currently providing the Fetchmail service.

_) 43
www.univention.de

https://www.univention.com/feedback/?manual=join:unjoin

@ univention

be open.
Writing unjoin scripts

50j oi n-t enpl at e-uni nstal | . ui nst
This unjoin script reverts the changes of the join script from Section 3.4.1.

#! / bi n/ sh

VERSION i s needed for sone tools to recognize that as a join script
VERSI ON=1

/usr/ share/ uni vention-join/joinscripthelper.lib
joinscript_init

SERVI CE=" My Ser vi ce"
eval "$(ucr shell)"

/usr/ share/univention-I|ib/ldap.sh
ucs_renoveServi ceFronlLocal host "$SERVICE" "$@ || die
if ucs_isServiceUnused "$SERVI CE" "$@
t hen
was | ast server to inplenent service. now the data
may be renoved
uni venti on-di rect ory- manager contai ner/cn renove "$@ --dn \
"cn=nyservi ce, cn=cust om attri but es, cn=uni venti on, $l dap_base" || die

Term nate UDM server to force nodul e rel oad
[usr/ shar e/ uni vention-1|i b/ base. sh
stop_udm cli _server
fi

do NOT call "joinscript_save current_version"

otherwise an entry will be appended to /var/univeni on-j oi n/status
instead the join script needs to be renmoved fromthe status file
joinscript_renove script fromstatus file join-tenplate

exit O

debi an/join-tenpl ate. prerm
The unjoin script has to be copied to the join script directory before it gets removed:

#! [/ bi n/ sh
#DEBHEL PER#

if ["$1" = "renove"]

t hen

cp /usr/lib/univention-uninstall/50join-tenplate-uninstall.uinst \
fusr/lib/univention-install/

fi

exit O

debi an/join-tenpl ate. postrm
The unjoin script should be invoked automatically on master and backup domain controller systems after
the package is removed. On all other system roles an administrator must run the join script manually
through uni venti on-run-j oi n-scripts.

#!/ bi n/ sh

www.univention.de

@ univention

be open.

Writing unjoin scripts

#DEBHEL PER#

if ["$1" = "renove"]
t hen
/usr/share/univention-lib/all.sh
call _unjoi nscript 50j0i n-tenpl ate-uninstall. uinst
fi

exit O

debi an/ j oi n-t enpl at e. posti nst

In case the package isinstalled again and the unjoin script still exists, because it was never executed, the

unjoin script must be removed:

#!/ bi n/ sh

#DEBHEL PER#

if ["$1" = "configure"]

t hen

ui nst=/usr/lib/univention-install/50join-tenplate-uninstall.uinst
[-e "$uinst"] & rm "$ui nst"

fi

/usr/ shar e/ uni venti on-1i b/ base. sh
call _joinscript 50join-tenplate.inst

exit O

www.univention.de

45

46

@ univention

be open.
General

Chapter 4. Lightweight Directory Access
Protocol (LDAP) in UCS

B0 GENEEL ...ttt e e e aee 47
4.2. Packaging LDAP SChema EXIENSIONScouuniiiiieii et e e e ean s 47
4.3. Packaging LDAP ACL EXIENSIONS .. .c.uuiiiiiiitieiii et ettt ettt e e e e e e e eanaaees 48
A4, LDAP SECIELS ...ttt ettt ettt ettt e e et e b e e aeeenaraa 50

4.4.1. PaSSNOIA CRANGEeei ittt ettt ettt e et et e e et e e e b e e et e e e e eaa e eees 50

41 General FeedbackQ

An LDAP server provides authenticated and controlled access to directory objects over the network. LDAP
objects consist of a collection of attributes which conform to so called LDAP schemata. An in depth docu-
mentation of LDAP is beyond the scope of this document, other sources cover this topic exhaustively, e.g.
http://www.zytrax.com/books/Idap/ or the man pages (sl apd. conf, sl apd. access).

At least it should be noted that OpenL DAP offers two fundamentally different tool sets for direct access or
modification of LDAP data: The slap* commands (sl apcat , etc.) are very low level, operating directly on
the LDAP backend data and should only be used in rare cases, usually with the LDAP server not running. The
Idap* commands (I dapsear ch, etc.) ontheother hand arethe proper way to perform LDAP operationsfrom
the command line and their functionality can equivalently be used from all major programming languages.

On top of the raw LDAP layer, the Univention Directory Manager offers an object model on a higher level,
featuring advanced object semantics (see Chapter 6). That is the level that usually appropriate for app devel-
opers, which should be considered before venturing down to the level of direct LDAP operations. On the
other hand, for the development of new UDM extensions it is important to understand some of the essential
concepts of LDAP asused in UCS.

One essential trait of LDAP as used in UCS, is the strict enforcement of LDAP schemata. An LDAP server
refusesto start if an unknown LDAP attribute is referenced either in the configuration or in the backend data.
This makes it critically important to install schemata on all systems. To simplify this task UCS features a
builtin mechanism for automatic schemareplication to all UCS hosted LDAP serversin the UCS domain (see
Chapter 5). The schemareplication mechanismistriggered by installation of anew schema extension package
on the UCS master. For redundancy it is strongly recommended to install schema extension packages also on
the UCS backup systems. This way, a UCS backup can replace a UCS master in case the master needs to be
replaced for some reason. To simplify these tasks even further, UCS offers methods to register new LDAP
schemata and associated LDAP ACLs from any UCS system.

4.2. Packaging LDAP Schema Extensions Fecdback{)

For some purposes, e.g. for app installation, it is convenient to be able to register anew LDAP schema exten-
sion from any system in the UCS domain. For this purpose, the schema extension can be stored as a special
type of UDM object. The module responsible for this type of objectsis called set ti ngs/ | dapschena.
Asthese objects are replicated throughout the UCS domain, the master domain controller and backup domain
controller systems listen for modifications of these objects and integrate them into the local LDAP schema
directory. As noted above, this simplifies the task of keeping the schema on the backup domain controller
systems up to date with that on the master domain controller.

The commands to create the LDAP schema extension objects in UDM may be put into any join script (see
Chapter 3). A LDAP schema extension object is created by using the UDM command lineinterfaceuni ven-

_) 47
www.univention.de

https://www.univention.com/feedback/?manual=ldap:general
http://www.zytrax.com/books/ldap/
https://www.univention.com/feedback/?manual=settings:ldapschema

@ univention

be open.
Packaging LDAP ACL Extensions

tion-directory-manager oritsaiasudm LDAP schema extension objects can be stored anywhere
in the LDAP directory, but the recommended location would be cn=l dapschena, cn=uni venti on,
below the LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good
ideato add the- - i gnor e_exi st s option, which suppresses the error exit code in case the object already
existsin LDAP.

The UDM moduleset t i ngs/ | dapschenma requires several parameters:

nane (required)
Name of the schema extension.

dat a (required)
The actual schema datain bzip2 and base64 encoded format.

fil enane (required)
Thefile namethe schema should be written to on master domain controller and backup domain controller.
The file name must not contain any path elements.

package (required)
Name of the Debian package which creates the object.

packagever si on (required)
Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appi dentifi er (optional)
The identifier of the app which creates the object. Thisisimportant to indicate that the object is required
aslong asthe app isinstalled anywhere in the UCS domain. Defaultsto st r i ng.

active (interna)
A boolean flag used internally by the master domain controller to signal availability of the schema ex-
tension (default: FALSE).

Since many of these parameters are determined automatically by the ucs_r egi st er LDAPEXt ensi on
shell library function, it is recommended to use the shell library function to create these objects (see Sec-
tion 9.10.1).

Example 4.1. Schemaregistration in join script

export UNI VENTI ON_APP_I| DENTI FI ER="appl D- appVer si on" ## exanpl e
/usr/share/ uni vention-1ib/ldap.sh

ucs_regi st er LDAPExt ensi on "$@ \
--schema / pat h/t o/ appschemaext ensi on. schema

4.3. Packaging LDAP ACL Extensions Feedback{)

For some purposes, e.g. for app installation, it is convenient to be able to register anew LDAP ACL extension
from any system in the UCS domain. For this purpose, the UCR template for an ACL extension can be stored
asaspecia type of UDM object. The module responsible for thistype of objectsiscaledset t i ngs/ | da-
pacl . As these objects are replicated throughout the UCS domain, the master domain controller, backup
domain controller and slave domain controller systems listen for modifications on these objects and integrate
theminto thelocal LDAP ACL UCR template directory. This simplifies the task of keeping the LDAP ACLs
on the backup domain controller systems up to date with those on the master domain controller.

48 _)
www.univention.de

https://www.univention.com/feedback/?manual=settings:ldapacl

@ univention

be open.
Packaging LDAP ACL Extensions

The commands to create the LDAP ACL extension objects in UDM may be put into any join script (see
Chapter 3). A LDAP ACL extension object is created by using the UDM command line interface uni ven-

tion-directory-nmanager oritsaliasudm LDAP ACL extension objects can be stored anywhere in
the LDAP directory, but the recommended location would becn=Il dapacl , cn=uni vent i on, below the
LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good idea to
add the - - i gnor e_exi st s option, which suppresses the error exit code in case the object already exists
in LDAP.

The UDM moduleset t i ngs/ | dapacl requires severa parameters:

narme (required)
Name of the ACL extension.

dat a (required)
The actual ACL UCR template data in bzip2 and base64 encoded format.

fil enane (required)
The file name the ACL UCR template data should be written to on master domain controller, backup
domain controller and slave domain controller. The file name must not contain any path elements.

package (required)
Name of the Debian package which creates the object.

packagever si on (required)
Version of the Debian package which creates the object. For object modifications the version humber
needs to increase unless the package name is modified as well.

appi denti fi er (optiona)
Theidentifier of the app which creates the object. Thisisimportant to indicate that the object is required
aslong asthe app isinstalled anywhere in the UCS domain. Defaultsto st ri ng.

ucsver si onst art (optional)
Minimal required UCS version. The UCR template for the ACL is only activated by systems with a
version higher than or equal to this.

ucsver si onend (optional)
Maximal required UCS version. The UCR template for the ACL is only activated by systems with a
version lower or equal than this. To specify validity for the whole 4.0-x release range avalue like 4.0.99
may be used.

active (interna)
A boolean flag used internally by the master domain controller to signal availability of the ACL extension
on the master domain controller (default: FALSE).

Since many of these parameters are determined automatically by the ucs_r egi st er LDAPExt ensi on

shell library function, it is recommended to use the shell library function to create these objects (see Sec-
tion 9.10.1).

Example 4.2. LDAP ACL registration in join script

export UNI VENTI ON_APP_I DENTI FI ER="appl| D- appVer si on" ## exanpl e
[usr/share/ univention-1ib/ldap.sh

ucs_regi st er LDAPExt ensi on "$@ \
--acl /path/to/appacl ext ensi on. acl

_) 49
www.univention.de

@ univention

be open.

LDAP secrets

4.4. LDAP secrets

The credentials for different UCS domain accounts are stored in plain-text files on some UCS systems. The
filesare named / et c/ *. secr et . They are owned by the user r oot and allow read-access for different
groups.

/etc/ | dap. secret forcn=adm n, $l dap_base
This account has full write accessto all LDAP entries. The file is only available on master and backup
domain controller systems and is owned by the group DC Backup Host s.

/ et c/ machi ne. secret for $l dap_host dn
Each host uses its account to get at least read-access to LDAP. Domain controllers in the container
cn=dc, cn=conput er s, $| dap_base get additional rights to access LDAP attributes. The file is
available on all joined system roles and is readable only by thelocal r oot user and group.

During package installation, only the maintainer scripts (see Section B.3.5) on master and backup domain
controller can use their r oot permission to directly read / et ¢/ | dap. secr et . Thus only on those roles
the join scripts get automatically executed when the package is installed. On all other system roles, the join
scripts need to be executed manually. This can either be done through the UMC Join module or through the
command linetool uni vent i on-run-j oi n-scri pts. Both methods require appropriate credentials.

4.4.1. Password change

50

To reconfirm the trust relation between UCS systems, computers need to regularly change the password as-
sociated with the machine account. This is controlled through the Univention Configuration Registry vari-
ableser ver/ passwor d/ change. For UCS serversthisisevauated by thescript/ usr/ | i b/ uni ven-
tion-server/server_password_change, whichisinvoked nightly at 01:00 by cron(8). The inter-
val is controlled through a second Univention Configuration Registry variable ser ver / passwor d/ i n-
t er val , which defaultsto 21 days.

The password is stored in the plain text file/ et ¢/ machi ne. secr et . Many long running services read
these credentials only on startup, which breaks when the password is changed while they are still running.
Therefore UCS provides amechanism to invoke arbitrary commands, when the machine password is changed.
This can be used for example to restart specific services.

Hook scripts should be placed in the directory /usr/lib/univention-serv-
er/ server_password_change. d/ . Thenamemust consist of only digits, upper and lower ASCII char-
acters, hyphens and underscores. They file must be executable and is called via run-parts(8). It receives one
argument, which is used to distinguish three phases:

Procedure4.1. Server password change procedure

1. Each script will be called with the argument pr echange before the password is changed. If any script
terminates with an exit status unequal zero, the change is aborted.

2. A new password is generated locally using makepasswd(1). It is changed in the Univention directo-
ry service viaUDM and stored in/ et ¢/ machi ne. secr et . The old password islogged in/ et ¢/
machi ne. secret . ol d.

If anything goes wrong in this step, the change is aborted and the changes need to be rolled back.

3. All hook scripts are called again.

e If the password change was successful, post change gets passed to the hook scripts. This should
complete any change prepared in the pr echange phase.

www.univention.de

Feedback Q

Feedback Q

https://www.univention.com/feedback/?manual=join:secret
https://www.univention.com/feedback/?manual=join:secret:change

@ univention

be open.
Password change

e If the password change failed for any reason, all hook scripts are called with the argument
nochange. This should undo any action already donein the pr echange phase.

Example 4.3. Server password change example
Install thisfileto/ usr/1i b/ uni venti on-server/server_passwor d_change. d/ .

#!/ bi n/ sh

case "$1" in

pr echange)

nothing to do before the password is changed
exit 0

nochange)

nothing to do after a failed password change
exit 0

post change)
restart daenon after password was changed
i nvoke-rc.d ny-daenon restart

esac

init-scripts should only be invoked indirectly through invoke-rc.d(8). Thisis required for chr oot environ-
ments and allows the policy layer to control starting and stopping in certain special situations like during an
system upgrade.

_) 51
www.univention.de

52

@ univention

be open.
Structure of Listener Modules

Chapter 5. Univention Directory Listener

5.1. Structure of LiStener MOGUIESuuniiiiiiii et e e eens 53
5.2. Listener Tasks and EXMPIESoeuiiiiiiiee e e e an s 56
5.2.1. BASIC EXBMPIE ..ttt ean 56
5.2.2. RENAME AN IMOVE ..ottt 57
5.2.3. Full Example With PaCKagingccuueiuuiiiiiiiie e 58
5.2.4. A Little Bit more Object Orentedoieuiiiiiei e 62

5.3. TEChNICAl DELAIIScevvvie ettt e et et e e e e e e eenaes 65
5.3.1. USer-ID and CredentialSoveuuuiiiiiieeeei ettt 65
5.3.2. INEMNEL CBCNE ...t 65
5321 univention-directory-listener-ctrl ... 65

5322 . univention-directory-listener-dunpccooooiiiiiiiiiiiiiniiies 65

5323. univention-directory-listener-verify ... 66
5.324.get _Notifier i d. PY «oiii e 66

5.3.3. INterNal WOIKINGceeneie e e 66

Replication of the directory datawithin a UCS domain is provided by the Univention Directory Listener/No-
tifier mechanism:

» The Univention Directory Listener service runson all UCS systems.

» On the master domain controller (and possibly existing backup domain controller systems) the Univention
Directory Notifier service monitors changes in the LDAP directory and makes the selected changes avail-
able to the Univention Directory Listener services on al UCS systemsjoined into the domain.

The active Univention Directory Listener instances in the domain connect to a Univention Directory Notifier
service. If an LDAP change is performed on the master domain controller (all other LDAP servers in the
domain are read-only), this is registered by the Univention Directory Notifier and reported to the listener
instances.

Each Univention Directory Listener instance hosts a range of Univention Directory Listener modules. These
modules are shipped by the installed applications; the print server package includes, for example, listener
modules which generate the CUPS configuration.

Univention Directory Listener modules can be used to communicate domain changes to services which are
not LDAP-aware. The print server CUPS is an example of this: The printer definitions are not read from the
LDAP, but instead from the file/ et ¢/ cups/ pri nt ers. conf . Now, if aprinter is saved in the printer
management of the Univention Management Console, it is stored in the LDAP directory. This change is
detected by the Univention Directory Listener module cups-printers and an entry gets added to, modified in
or deleted from/ et ¢/ cups/ pri nt er s. conf based on the modification in the LDAP directory.

5.1. Structure of Listener Modules Feedback ()

Each listener module must declare several string constants. They are required by the Univention Directory
Listener to handle each module. They should be defined at the beginning of the module.

nane = "nodul e _nane"
description = "Mdul e description"
filter = "(objectC ass=*)"

_) 53
www.univention.de

https://www.univention.com/feedback/?manual=listener:handler

@ univention

be open.
Structure of Listener Modules

attribute = ["objectd ass"]
nodrdn = "1"

nane (required)
This nameis used to uniquely identify the module. This should match with the filename containing this
listener module without the . py suffix. The name is used to keep track of the module state in/ var /
i b/univention-directory-listener/handlers/.

descri pti on (required)
A short description. It is currently unused and displayed nowhere.

filter (required)
Definesa LDAP filter which is used to match the objects the listener isinterested in. Thisfilter issimilar
tothe LDAP search filter as defined in RFC 2254 [http://tools.ietf.org/html/rfc2254], but more restricted:

* itiscase sensitive
« it only supports equal matches

Note

Thenamefi | t er hasthe drawback that it shadows the Python built-in functionfil ter (),
but its use has historical reasons. If that function is required for implementing the listener mod-
ule, an alias-reference may be defined before overwriting the name or it may be explicitly ac-
cessed viathe Python __ bui | tin__ module.

attri but es (optional)
A Pythonlist of LDAP attribute nameswhich further narrows down the condition under which thelistener
module gets called. By default the moduleis called on al attribute changes of objects matching thefilter.
If thelist is specified, the module is only invoked when at |east one of the listed attributes is changed.

nodr dn (optional)
Setting this variable to the string 1 changes the signature of the function handl er () . It receives an
additional 4th argument, which specifies the LDAP operation triggering the change.

In addition to the static strings a module must implement several functions. They are called in different situ-
ations of the live-cycle of the module.

def initialize(): pass

def handl er(dn, new, old[, command='']): pass
def clean(): pass

def prerun(): pass

def postrun(): pass

def setdata(key, value): pass

handl er (dn, old, new, conmand="") (required)
This function is called for each change matching thefilter and attri but es as declared in the
header of the module. The distinguished name (dn) of the object is supplied as the first argument dn.

Depending on the type of modification, ol d and new may each independently either be None or refer-
ence a Python dictionary of lists. Each list represents one of the multi-valued attributes of the object. The
Univention Directory Listener uses alocal cache to store the values of each object as it has seen most
recently. Thiscacheisused to supply thevaluesfor ol d, whilethevaluesin newarethoseretrieved from
that LDAP directory service which is running on the same server as the Univention Directory Notifier
(master domain controller or backup domain controller serversin the domain).

www.univention.de

http://tools.ietf.org/html/rfc2254
http://tools.ietf.org/html/rfc2254

@ univention

be open.
Structure of Listener Modules

If and only if theglobal nodr dn settingisenabled, command is passed asafourth argument. It containsa
singleletter, which indicatesthe type of modification. Thiscan be used to distinguish an modrdn operation
from a delete operation followed by a create operation.

m(modify)
Signals amodify operation, where an existing object is changed. ol d contains a copy of the previ-
oudly cached values and new contains the new values as retrieved from the LDAP directory service.

a (add)
Signals the addition of anew object. ol d isNone and new contains the values of the added object.

d (delete)
Signals the removal of a previously existing object. ol d contains a copy of the previously cached
values, while newis None.

r (rename: modification of distinguished name vianodr dn)

Signals a change in the distinguished name, which may be caused by renaming a object or moving
the object from one container into another. The module is called with this command instead of the
delete command, so that modules can recognize this special case and avoid deletion of local data
associated with the object. The module will be called again with the add command just after the
modrdn command, whereit should processthe rename or move operation. Each moduleisresponsible
for keeping track of the rename-case by internally storing the previous distinguished name during
the modrdn phase of this two phased operation.

n (new or schema change)
This command can signal two changes:

e If dniscn=Subschenms, it signals that a schema change occurred.

« All other cases signal theinitialization of anew object, which should be handled just like anormal
add operation.

initialize() (optional),

cl ean() (optional)
The functioni ni tialize() iscaled once when the Univention Directory Listener loads the mod-
ule for the first time. This is recorded persistently in the file/ var /| i b/ uni vent i on-di r ect o-
ry-1istener/ name, where nane equals the value from the header.

If for whatever reason the listener module should be reset and re-run for all matching objects, the state can
be reset by running the command uni venti on-di rectory-1listener-ctrl resync nane.
Inthat casethefunctioni ni ti al i ze() will becaled again.

The function cl ean() isonly called when the Univention Directory Listener isinitialized for the first
time or isforced to “re-initialize from scratch” using the - g or - i option. The function should purge all
previously generated files and return the module into a clean state.

prerun() (optiona),

postrun() (optional)
For optimization the Univention Directory Listener does not keep open an LDAP connection all time.
Instead the connection is opened once at the beginning of a change and closed only if no new change
arrives within 15 seconds. The opening is signaled by the invocation of the function pr er un() andthe
closing by post run() .

The function post run() ismost often used to restart services, as restarting a service takes some time
and makes the service unavailable during that time. It's best practice to use the handl er () only to
process the stream of changes, set UCR variables or generate new configuration files. Restarting associ-
ated services should be delayed to the post r un() function.

_) 55
www.univention.de

@ univention

be open.
Listener Tasks and Examples

Warning

The function post run() isonly called, when no change happens for 15 seconds. Thisis not
on a per-module basis, but globally. In an ever changing system, where the stream of changes
never pauses for 15 seconds, the functions may never be called!

set dat a(key, val ue) (optional)

Thisfunction is called several times by the Univention Directory Listener main process to pass configu-
ration data into the modules. The following key s are supplied:

| dapserver
The hostname of the LDAP server the Univention Directory Listener is currently reading from.

bi nddn

The distinguished namethe Univention Directory Listener isusing to authenticateto the LDAP server
(viasi npl e bi nd).

bi ndpw
The password the Univention Directory Listener is using to authenticate to the LDAP server.

basedn
The base distinguished name the Univention Directory Listener is using.

Note

It's strongly recommended to avoid initiating LDAP modifications from alistener module. This
potentially creates acomplex modification dynamic, considering that amodule may run on sev-
era systemsin paralel at their own timing.

5.2. Listener Tasks and Examples Fecdback{)

All changestrigger acall tothefunction handl e() . For simplicity and readability it is advisable to delegate
the different change types to different sub-functions.

5.2.1. Basic Example Feedback {2}

The following boilerplate code del egates each change type to a separate function. It does not handle renames

and moves explicitly, but only as the removal of the object at the old dn and the following addition at the
new dn.

Source code: http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/devel oper-reference/listen-
er/simple.py

def handl er(dn, new, old):
if new and not ol d:
handl er _add(dn, new)
elif new and ol d:
handl er _nodi fy(dn, ol d, new)
elif not new and ol d:
handl er _renove(dn, ol d)
el se:
pass # ignore

def handl er _add(dn, new):
"""Handl e addition of object."""
pass # replace this

56 _)
www.univention.de

https://www.univention.com/feedback/?manual=listener:example
https://www.univention.com/feedback/?manual=listener:example:simple
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/listener/simple.py
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/listener/simple.py

@ univention

be open.
Rename and Move

def handl er _nodi fy(dn, old, new:
"""Handl e nodification of object."""
pass # replace this

def handl er _renove(dn, ol d):
"""Handl e renoval of object."""
pass # replace this

5.2.2. Rename and Move Feedback {)

In case rename and move actions should be handled separately, the following code may be used:

Source code: http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/devel oper-reference/listen-
er/modrdn.py

]
=

nodr dn

_delay = None

def handl er(dn, new, old, command):
gl obal _del ay

if _del ay:

old dn, old = _delay

_delay = None

if "a" == conmand and old['entryUU D] == new'entryUU D]:
handl er _nmove(ol d_dn, old, dn, new)
return

handl er _renove(ol d_dn, ol d)

if "n" == command and "cn=Subschema" == dn:
handl er _schema(ol d, new)

elif new and not ol d:
handl er _add(dn, new)

elif new and ol d:
handl er _nodi fy(dn, ol d, new)

elif not new and ol d:

if "r" == comand:
_delay = (dn, old)
el se:
handl er _renove(dn, ol d)
el se:

pass # ignore, reserved for future use

def handl er _nove(ol d_dn, old, new dn, dn):
"""Handl e renane or nove of object."""
pass # replace this

def handl ee_schema(ol d, new):
"""Handl e change in LDAP schema. """

_) 57
www.univention.de

https://www.univention.com/feedback/?manual=listener:example:modrdn
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/listener/modrdn.py
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/listener/modrdn.py

@ univention

be open.
Full Example with Packaging

pass # replace this

Warning

Please be aware that tracking the two subsequent calls for nodr dn in memory might cause dupli-
cates, in case the Univention Directory Listener isterminated while such an operation is performed.
If thisiscritical, the state should be stored persistently into atemporary file.

5.2.3. Full Example with Packaging Feedback {2}

The following example shows a listener module, which logs all changes to users into the file / r oot /
UserList.txt.

Source code: http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/devel oper-reference/listen-
er/printusers/

Exanple for a |listener nodul e, which | ogs changes to users.

__package = "" # workaround for PEP 366
i mport |istener

i mport os

i mport errno

i mport univention.debug as ud

fromcoll ections inmport namedtupl e

nane = 'printusers'
description = '"print all nanes/users/uidNunbers into a file'
filter = """\
(&
(1
(&

(obj ect d ass=posi xAccount)
(obj ect d ass=shadowAccount)
)
(obj ect d ass=uni venti onMai |)
(obj ect d ass=sanbaSamAccount)
(obj ect d ass=si npl eSecurityCbj ect)
(obj ect d ass=i net Or gPer son)

)

(! (obj ectd ass=uni venti onHost))
(! (ui dNunber =0))
(! (

ui d=*$))
)""".transl ate(None, '"\t\n\r')
attributes = ['uid', 'uidNunber', 'cn']
_Rec = nanedtuple('Rec', ' '.join(attributes))

USER LI ST = '/root/ UserlList.txt'

def handl er(dn, new, ol d):

Wite all changes into a text file.
This function is called on each change.

58 _)
www.univention.de

https://www.univention.com/feedback/?manual=listener:example:user
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/listener/printusers/
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/listener/printusers/

@ univention

be open.

Full Example with Packaging

if new and ol d:
_handl e_change(dn, new, ol d)
elif new and not ol d:
_handl e_add(dn, new)
elif old and not new
_handl e_renove(dn, ol d)
def _handl e_change(dn, new, ol d):
Cal | ed when an object is nodified.
o rec = rec(old)
n_rec = _rec(new
ud. debug(ud. LI STENER, ud.|INFO, 'Edited user "%"' % (0 _rec.uid,))
_witeit(o rec, u' edited. Is now ')
_witeit(n_rec, None)
def _handl e_add(dn, new):
Cal | ed when an object is newy created.
n_rec = _rec(new
ud. debug(ud. LI STENER, ud.|NFQO, 'Added user "9%"' % (n_rec.uid,))
witeit(n_rec, u'added')
def _handl e_renove(dn, ol d):
Cal | ed when an previously existing object is renpved.
o rec = rec(old)
ud. debug(ud. LI STENER, ud.|NFQO, 'Renoved user "9%"' % (o _rec.uid,))
_witeit(o_rec, u'renoved')
def _rec(data):

Retrieve synbolic, nuneric ID and nane from user data.

return Rec(*(data.get(attr, (None,))[O0] for attr in attributes))

cl ass AsRoot (obj ect):
Tenporarily change effective UDto '"root'.

def __enter_ (self):
| i stener. setui d(0)

def __exit_ (self, exc_type, exc_val ue, traceback):
| i stener. unset ui d()

www.univention.de

59

@ univention

be open.
Full Example with Packaging

def witeit(rec, conment):

Append ConmonNane, synbolic and nuneric User-I1Dentifier, and conment to

file.

nuid = u" *****' if rec.uid in ('root', 'spam) else rec. ui dNunber
indent = '\t' if comment is None else "'

try:

wi th AsRoot ():
with open(USER LI ST, 'a') as out:
print >> out, u' %Nane: "%"' % (indent, rec.cn)
print >> out, u' %User: "%"' % (indent, rec.uid)
print >> out, u %UD "%"' % (indent, nuid)
i f comrent:
print >> out, u' %%' % (indent, coment,)
except I OError as ex:
ud. debug(
ud. LI STENER, ud. ERROR,
'"Failed to wite "9%": %' % (USER LI ST, ex))

def initialize():
Remove the log file.
This function is called when the nodule is forcefully reset.
try:
wi th AsRoot ():
os. renove(USER LI ST)
ud. debug(
ud. LI STENER, ud. | NFQ,
'Successfully deleted "9%"' % (USER LI ST,))
except OSError as ex:
i f errno. ENOENT == ex. errno
ud. debug(
ud. LI STENER, ud. | NFQ,
"File "%" does not exist, will be created" % (USER LI ST,))
el se:
ud. debug(
ud. LI STENER, ud. WARN,
'"Failed to delete file "%": %' % (USER LI ST, ex))

Some comments on the code:
e Overwriting __package__ iscurrently necessary, as the Univention Directory Listener imports the lis-
tener module by its own mechanism, which isincompatible with the mechanism normally used by Python

itself. Be aware, that this might cause problems when using pickle.

» The LDAP filter is specifically chosen to only match user objects, but not computer objects, which have
auid characteristically terminated by a $-sign.

e Theat tri but e filter further restricts the moduleto only trigger on changesto the numeric and symbolic
user identifier and the last name of the user.

60 _)
www.univention.de

@ univention

be open.
Full Example with Packaging

» Totestthisrunacommandliket ai | -f /root/ UserList.txt & Thencreateanew user or modify
the lastname of an existing oneto trigger the module.

For packaging the following files are required:

debi an/ printusers.instal
Themodule should beinstalled into thedirectory / usr/ | i b/ uni venti on-di rectory-1Ilisten-
er/systent .

printusers. py usr/lib/univention-directory-I|istener/systenl

debi an/ pri nt users. posti nst
The Univention Directory Listener must be restarted after package installation and removal:

#! /[bin/sh
set -e

case "$1" in
confi gure)
i nvoke-rc.d univention-directory-|istener restart

abort - upgr ade| abort - r enove| abort - deconf i gure)

*
Lcho "postinst called with unknown argunent \ $1'" >&2
exit 1

esac

#DEBHEL PER#

exit O

debi an/ pri ntusers. postrm

#! /[bin/sh
set -e

case "$1" in
renove)
i nvoke-rc.d univention-directory-|istener restart

pur ge| upgr ade| f ai | ed- upgr ade| abort-i nstal | | abort-upgrade| di sappear)
*)

echo "postrmcalled with unknown argunment \ $1'" >&2

exit 1

esac
#DEBHEL PER#

exit O

_) 61
www.univention.de

@ univention

be open.
A Little Bit more Object Oriented

5.2.4. A Little Bit more Object Oriented Feedback £}

For larger modules it might be preferable to use a more object oriented design like the following example,
which logs referential integrity violationsinto afile.

Source code: http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/devel oper-reference/listen-

er/obj.py

__package = "" # workaround for PEP 366

nane = "refcheck"

description = "Check referential integrity of uniqueMenber rel ations"

filter = "(uni queMenber=*)"
attribute = ["uni queMenber"]

nodrdn = "1"
i mport os
i mport | dap

i mport |istener
i mport univention.debug as ud
frompwd i nport getpwnam

cl ass Local Ldap(object):
PORT = 7389

def __init_ (self):
self.data = {}
sel f.con = None

def setdata(sel f, key, value):
sel f. dat a[key] = val ue

def prerun(self):
try:
sel f.con = | dap. open(sel f.data["| dapserver"], port=self.PORT)
sel f.con. sinpl e_bi nd _s(sel f.data["binddn"], self.data["bindpw'])
except | dap. LDAPError as ex:
ud. debug(ud. LI STENER, ud. ERROR, str(ex))

def postrun(self):
try:
sel f. con. unbi nd()
sel f.con = None
except | dap. LDAPError as ex:
ud. debug(ud. LI STENER, ud. ERROR, str(ex))

cl ass Local Fil e(object):
USER = "l i stener"
LOG = "/var/ |l og/ uni venti on/ refcheck. | og"

def initialize(self):

try:
ent = get pwnan(sel f. USER)
with AsRoot ():

62 _)
www.univention.de

https://www.univention.com/feedback/?manual=listener:example:setdata
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/listener/obj.py
http://forge.univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0/doc/developer-reference/listener/obj.py

@ univention

be open.
A Little Bit more Object Oriented

open(sel f.LOG "wb")

os. chown(sel f. LOG ent.pw uid, -1)
except OSError as ex:

ud. debug(ud. LI STENER, ud. ERROR, str(ex))

def |og(self, nsgQ):
with open(self.LOG 'ab') as |og
print >> |og, nsg

def clean(self):
try:
wi th AsRoot ():
os. renove(sel f.LOG
except OSError as ex:
ud. debug(ud. LI STENER, ud. ERROR, str(ex))

cl ass AsRoot (obj ect):
Tenporarily change effective UDto 'root'

def __enter_ (self):
| i stener. setuid(0)

def __exit_ (self, exc_type, exc_val ue, traceback):
| i stener. unset ui d()

class ReferentiallntegrityCheck(Local Ldap, Local File):
MESSAGES = {
(Fal se, False): "Still invalid: ",
(Fal se, True): "Now valid: ",
(True, False): "Now invalid: ",
(True, True): "Still valid: ",

}

def __init_ (self):
super (Referential I ntegrityCheck, self). init_ ()
sel f. _del ay = None

def handl er(self, dn, new, old, command='"):
if self. delay:
old dn, old = self. _del ay
sel f. _del ay = None

if "a" == command and old['entryUU D] == newW ' 'entryUUl D]:
sel f. handl er _nove(ol d_dn, old, dn, new
return

sel f. handl er _renove(ol d_dn, ol d)

if "n" == command and "cn=Subschema" == dn
sel f. handl er _schena()

elif new and not ol d:

sel f. handl er _add(dn, new)

elif new and ol d:

_) 63
www.univention.de

@ univention

be open.

A Little Bit more Object Oriented

sel f. handl er _nodi fy(dn, old, new)
elif not new and ol d:

if "r" == comand:

sel f. _delay = (dn, old)

el se:

sel f. handl er _renove(dn, ol d)
el se:

pass # ignore, reserved for future use

def handl er _add(sel f, dn, new):
if not self. validate(new):
self.log("New invalid object: " + dn)

def handl er _nodify(self, dn, old, new):

valid = (self. validate(old), self. validate(new))
nsg = sel f. MESSAGES[val i d]

self.log(nsg + dn)

def handl er _renove(self, dn, old):
if not self. validate(old):
sel f.log("Renmoved invalid: " + dn)

def handl er _nove(sel f, old dn, old, new dn, new):
valid = (self. validate(old), self. validate(new))
nsg = sel f. MESSAGES[val i d]

self.log("% % -> %" % (nmsg, old _dn, new dn))

def handl er _schena(sel f):
sel f.l og(" Schena change")

def _validate(self, data):
try:
for dn in data["uni queMenber"]:
sel f.con. search_ext _s(dn, |dap. SCOPE BASE, attrlist=[], attrsonly=1)
return True
except | dap. NO SUCH OBJECT:
return Fal se
except | dap. LDAPError as ex:
ud. debug(ud. LI STENER, ud. ERROR, str(ex))
return Fal se

_instance = ReferentiallntegrityCheck()

initialize = _instance.initialize
handl er = _instance. handl er

cl ean = _instance. cl ean

prerun = _instance. prerun

postrun = _instance. postrun

setdata = _instance.setdata

www.univention.de

@ univention

be open.
Technical Details

5.3. Technical Details reedback{)
5.3.1. User-ID and Credentials Feedback {)

The listener runs with the effective permissions of the user | i st ener . If r oot -privileges are required,
i stener. setuid() canbeused to switch the effective UID. When done, | i st ener . unset ui d()
should be called to drop back tothel i st ener UID. It'sbest practiceto codethisast r y/f i nal | y clauses
in Python.

5.3.2. Internal Cache Feedback £}

Thedirectory / var/ | i b/ uni venti on-di rectory-1istener/ containsseverd files:

cache. db, cache. db. | ock
The cachefile containsacopy of all objectsand their attributes. It isused to supply the old values supplied
through the ol d parameter, when the function handl e() iscalled.

The cache is aso used to keep track, for which object which module was called. Thisis required when
anew module is added, which isinvoked for all already existing objects when the Univention Directory
Listener isrestarted.

On domain controllers the cache could be replaced by doing aquery to thelocal LDAP server, before the
new values are written into it. But member server do not have alocal LDAP server, so there the cache
is needed. Also note that the cache keeps track of the associated listener modules, which is not available
from the LDAP.

notifier_id
Thisfile contains the last notifier 1D read from the Univention Directory Notifier.

handl er s/
For each module the directory contains atext file consisting of a single number. The name of thefileis
derived from the values of the variable name as defined in each listener module. The number is to be
interpreted as a bit-field of HANDLER | NI TI ALl ZED=0x1 and HANDLER READY=0x2. If both bits
are set, itindicatesthat the modul e was successfully initialized by running thefunctioni ni ti al i ze() .
Otherwise both bits are unset.

The package univention-directory-listener contains several commands useful for controlling and debugging
problems with the Univention Directory Listener. This can be useful for debugging listener cache inconsis-
tencies.

5.3.2.1.uni vention-directory-listener-ctrl Feedback {-)

The command uni venti on-di rectory-1listener-ctrl resync nane canbe usedto reset and
re-initialize amodule. It stops any currently running listener process, removes the state file for the specified
module and starts the listener process again. This forces the functionscl ean() andinitialize() to
be called one after the other.

5.3.2.2. uni vention-directory-1istener-dunp Feedback {)

Thecommand uni vent i on-di rectory-1|i st ener-dunp canbeused to dump the cachefile/ var /
i b/univention-directory-1istener/cache. db. The Univention Directory Listener must be
stopped first by invoking ser vi ce uni venti on-di rectory-1istener stop.Itoutputsthecache
in format compatible to the LDAP Data Interchange Format (LDIF).

_) 65
www.univention.de

https://www.univention.com/feedback/?manual=listener:details
https://www.univention.com/feedback/?manual=listener:details:credentials
https://www.univention.com/feedback/?manual=listener:details:cache
https://www.univention.com/feedback/?manual=listener:commands:ctrl
https://www.univention.com/feedback/?manual=listener:commands:dump

@ univention

be open.
Internal working

5.3.2.3.univention-directory-listener-verify Feedback {_)

The command uni venti on-directory-Ilistener-verify can be used to compare the content
of the cachefile/var /| i b/ uni vention-directory-1istener/cache. db to the content of an
LDAP server. The Univention Directory Listener must be stopped first by invoking ser vi ce uni ven-
tion-directory-1listener stop.LDAP credentials must be supplied at the command line. For ex-
ample, the following command would use the machine password:

uni vention-directory-listener-verify \
-b "$(ucr get |dap/base)"” \
-D "$(ucr get |dap/hostdn)" \
-w "$(cat /etc/machine.secret)"

5.3.2.4.get _notifier_id. py Feedback)

The command / usr/ shar e/ uni vention-directory-listener/get _notifier_id.py can
be used to get the latest ID from the notifier. Thisis done by querying the Univention Directory Notifier run-
ning onthe LDAP server configured through the Univention Configuration Registry variable| dap/ mast er .
The returned value should be equal to the value currently stored inthefile/ var /1 i b/ uni venti on-di -
rectory-listener/notifier_id. Otherwise the Univention Directory Listener might still be pro-
cessing atransaction or it might indicate a problem with the Univention Directory Listener

5.3.3. Internal working Feedback {2}

TheListener/Notifier mechanismisused totrigger arbitrary actionswhen changesoccur inthe LDAP directory
service. In addition to the LDAP server sl apd it consists of two other services: The Univention Directory
Notifier service runs next to the LDAP server and broadcasts change information to interested parties. The
Univention Directory Listener service listens for those notifications, downloads the changes and runs listener
modules performing arbitrary local actions like storing the data in a local LDAP server for replication or
generating configuration files for non-LDAP-aware local services.

Figure5.1. Listener/Notifier mechanism

Listener

i listener/listener
Socket (Backup)

Listener modulg

listener/listener
socket

Notifier

notify/transaction
change list

UCS Master L UCS Slave

prmtfers smb.conf
con

On startup the listener connects to the notifier and opens a persistent TCP connection. The host can be con-
figured through several Univention Configuration Registry variables:

« Ifnotifier/server isexplicitly set, only that named host is used. In addition the Univention Config-
uration Registry variablenot i fi er/ server/ port canbeusedto explicitly configure adifferent TCP
port other then 6669.

66))
www.univention.de

https://www.univention.com/feedback/?manual=listener:commands:verify
https://www.univention.com/feedback/?manual=listener:commands:getnid
https://www.univention.com/feedback/?manual=listener:details:internal

@ univention

be open.
Internal working

* Otherwise on the master domain controller and on all backup domain controllers, only the host named in

| dap/ mast er isused.

» Otherwise on all other system roles a host is chosen randomly from the combined list of namesin| dap/

mast er and| dap/ backupl.

The following steps occur on changes:

Procedureb5.1. Listener/Notifier procedure

1.

10.

11.

12.

13.

An LDAP object is modified on the master domain controller. Changesinitiated on all other system roles
arere-directed to the master.

The UCS-specific overlay-module t r ansl og appends the DN to the file / var/ I i b/ uni ven-
tion-ldap/listener/list ener 2,

The Univention Directory Notifier watches that file, picks up and removes each line it processed. It
assigns the next transaction number and writesit into thefile/ var /| i b/ uni venti on- | dap/ no-
tify/transacti on®, including the DN and change type. For efficient access by transaction ID the
indextransacti on. i ndex isupdated.

All listeners get notified of the new transaction.

Each listener triggered in this way queries the Notifier for the latest transaction ID, DN and change
type. The ID is written into the local file /var/lib/univention-directory-Ilisten-
er/notifier_id.

Each listener opens a connection to the LDAP server running on the UCS system which was used to
query the Notifier. It retrievesthe latest state of the object identified through the DN. If accessisblocked,
for example, by selective replication, the change is handled as a del ete operation instead.

On a backup domain controller the Univention Directory Listener writes the transaction data to the file
/var/1ib/univention-Ildap/listener/listener*toalow the Univention Directory No-
tifier to be cascaded. This is configured internally with the option - o of uni venti on-di rect o-

ry-1listener andisdonefor load balancing and failover reasons.

The old state of the object is fetched from the local listener cache.

For each module it is checked, if either the old or new state of the object matchesthe fi |l t er and
at tri but es specified in the corresponding Python variables. If not, the module is skipped.

If the function pr er un() of module was not called yet, thisis done to signal the start of changes.
Thefunctionhandl er () specifiedinthemoduleiscalled, passinginthe DN and the old and new state.

The main listener process updates its cache with the new values, including the names of the modules
which successfully handled that object. This guarantees that the module is still called, even when the
filter criteriawould no longer match the object after modification.

After 15 seconds of inactivity thefunctionpost r un() isinvokedfor all prepared modules. Thissignals
a break in the stream of changes and requests the module to release its resources and/or start pending
operations.

MThislist of backup domain controllersstored in the Univention Configuration Registry variablel dap/ backup isautomatically updated by thelistener
module| dap_server. py.

°Referred to as F LE _NAME_L| STENER, TRANSACTI ON_FI LE in the source code

SReferred to as FI LE_NAME_TF in the source code

“Referred to as Fl LE _NAME_L| STENER, TRANSACTI ON_FI LE in the source code

67

www.univention.de

68

@ univention

be open.
Introduction
Chapter 6. Univention Directory
Manager (UDM)
L0 W [1o [§ o [o o RSP PP TPPTT 69
6.2. Packaging EXtended ATHHDULESoooiiuii e 70
B.2. 1. SEECHION TGS ..ttt e e e eee 74
6.2.1.1. SHALC SEIECHIONSeevei et 74
6.2.1.2. DYNAMIC SEIECHIONSvtieiiiii ettt e e et e e eeae e eees 74
B.2.2. KNOWN ISSUES ...ttt ettt ettt ettt e e ettt e ettt e e et ebt e e e e ebt e e eeebaaeeenn 76
6.2.3. EXIENAEH OPIONS ... ceeeiteeieit ettt ettt ettt e ettt e et et e e e et e e e era e aeee 76
6.2.4. Extended Attribute HOOKSuuiiiii e 77
B.3. UDM MOUUIES ...ttt e ettt e e e e e e e e e ettt e e e e e e aeeeenbnn e aaeas 79
(U Y Yo - ST 79
6.4.1. UDM SYNtaX OVEITIOEceeteieeiiii ettt ettt et e e e e e e 80
6.4.2. UDM LDAP SEAICHeviiiiie e 81
6.5. Packaging UDM HOOKSuuiiiiiiiiiiiii et e et e et e e s 84
6.6. Packaging UDM EXtension MOGUIESuuiiiiiiiiiiii et 85
6.7. Packaging UDM Syntax EXIENSIONociiiiiieiiii et 86

The Univention Directory Manager (UDM) isawrapper for LDAP objects. Traditionally LDAP stores objects
asacollection of attributes, which are definesby so called schemata. Modifying entriesis slightly complicated,
as there are no high-level operations to add or remove values from multi-valued attributes, or to keep the
password used by different authentication schemes such as Windows NTLM-hashes, UNIX MD5 hashes, or
Kerberos ticketsin sync.

6.1. Introduction Feedback {)

The command line client udmprovides different modes of operation.
udm[--binddn bi nd- dn --bindpwd bi nd- passwor d] [nbdul e] [nbde] [opt i ons]
Creating object:

udmnodul e create--set pr oper t y=val ue...

eval "$(ucr shell)"
udm cont ai ner/ou create --position "$l dap_base" --set nanme="xxx"

Multiple - - set smay be used to set the values of a multivalued property.
The equivalent LDAP command would look like this:

eval "$(ucr shell)"

| dapadd -D "cn=admi n, $l dap_base" -y /etc/ldap.secret <<_ LD F__
dn: ui d=xxx, $| dap_base

obj ect Cl ass: organi zati onal Rol e

cn: XXX

_LDF__

List object:
udmnodul e list[--dndn | --filter pr opert y=val ue]

udm contai ner/ou list --filter name="xxx"

_) 69
www.univention.de

https://www.univention.com/feedback/?manual=udm:intro

@ univention

be open.
Packaging Extended Attributes

uni venti on-| dapsearch cn=xxx
Modify object:

udmnodul e modify [--dn dn | --filter pr opert y=val ue] [--set pr opert y=val ue | --
append pr oper t y=val ue | --remove pr opert y=val ue ..]

udm cont ai ner/ou nodi fy --dn "cn=xxx, $l dap_base" --set nane="xxx"

For multivalued attributes - - append and - - r enpve can be used to add additional values or remove
existing values. - - set overwrites any previous value, but can also be used multiple times to specify
further values. - - set and - - append should not be mixed for any property in one invocation.

Delete object:
udmnodul e remove[--dndn | --filter pr opert y=val ue]
udm cont ai ner/ ou del ete --dn "cn=xxx, $l dap_base"

If --filter isused, it must match exactly one object. Otherwise udmrefuses to delete any object.

6.2. Packaging Extended Attributes Fecavack {)

Each UDM maodule provides a set of mappings from LDAP attributes to properties. This set is not complete,
because LDAP abjects can be extended with additional auxiliary objectClasses Extended Attributes can be
used to extend modulesto show additional properties. These properties can be mapped to any already defined
LDAP attribute, but objects can also be extended by adding additional auxiliary object classes, which can
provide new attributes.

For packing purpose any additional LDAP schema needs to be registered on the master domain controller,
which isreplicated from there to al other Domaincontrollers viathe Listener/Notifier mechanism (see Chap-
ter 5). Thisis best done trough a separate schema package, which should be installed on the master domain
controller and backup domain controller. Since Extended Attributes are declared in LDAP, the commands
to create them can be put into any join script (see Chapter 3). To be convenient, the declaration should be
also included with the schema package, since installing it there does not require the Administrator to provide
additional LDAP credentials.

An Extended Attribute is created by using the UDM command line interface uni venti on-di rec-

t ory- manager or itsaiasudm The module is caled setti ngs/ ext ended_at tri but e. Extend-
ed Attributes can be stored anywhere in the LDAP, but the default location would be cn=cust om
attri butes, cn=uni venti on, below the LDAP base. Since the join script creating the attribute may
be called on multiple hosts, it is a good ideato add the - - i gnor e_exi st s option, which suppresses the
error exit code in case the object already existsin LDAP.

Themoduleset ti ngs/ ext ended_att ri but e requires many parameters. They are described in 7?7?22

nane (required)
Name of the attribute.

CLI Nane (required)
An alternative name for the command line version of UDM.

short Descri pti on (required)
Default short description.

transl ati onShort Descri pti on (optional, multiple)
Trandlation of short description.

70 _)
www.univention.de

https://www.univention.com/feedback/?manual=udm:ea

@ univention

be open.
Packaging Extended Attributes

| ongDescri pti on (required)
Default long description.

transl ati onLongDescri pti on (optional, multiple)
Trandation of long description.

obj ect d ass (required)
The name of an LDAP object class which is added to store this property.

del et eObj ect Cl ass (optional)
Remove the object class when the property is unset.

| dapMappi ng (required)
The name of the LDAP attribute the property matches to.

synt ax (optional)
A syntax class, which also controls the visual representation in UDM. Defaultsto st ri ng.

def aul t (optional)
The default value is used when a new UDM object is created. It is also used when for an object if the
option is enabled, which only then activates the property.

val ueRequi r ed (optional)
A value must be entered for the property.

nmul ti val ue (optional)
Controls if only a singe value or multiple values can be entered. This must be in sync with the SI N-
GLE- VALUE setting of the attribute in the LDAP schema.

may Change (optional)
The property may be modified later.

not Edi t abl e (optional)
Disable al modification of the property, even when the object isfirst created. The property is only mod-
ified through hooks.

hook (optional)
The name of a Python class implementing hook functions. See Section 6.2.4 for more information.

doNot Sear ch (optional)
If thisis enabled, the property is not show in the drop-down list of properties when searching for UDM
objects.

t abNarme (optional)
The name of thetab in the UMC where the property should be displayed. The name of existing tabs can be
copied from UMC session withthe Engl i sh locale. A new tab is automatically created for new names.
If no nameisgiven, ??7?

transl ati onTabNane (optional, multiple)
Tranglation of tab name.

t abPosi ti on (optional)
This setting is only relevant, when a new tab is created by using at abNane, for which no tab exists.
The integer value defines the position where the newly tab isinserted. By default the newly created tab
is appended at the end, but before the Extended settings tab.

_) 71
www.univention.de

@ univention

be open.
Packaging Extended Attributes

overwr it eTab (optional)
If enabled, the tab declared by the UDM module with the name from the t abNane settingsis replaces
by a new clean tab with only the properties defined by Extended Attributes.

t abAdvanced (optional)
If thissetting isenabled, thetabis created inside the Extended settingstab instead of being atab by itsown.

gr oupNane (optional)
The name of the group inside atab where the property should be displayed. The name of existing groups
can be copied from UMC session with the Engl i sh locale. A new tab is automatically created for new
names. If no name is given, the property is placed before the first tab.

transl ati onG oupNane (optional, multiple)
Trandation of group name.

gr oupPosi ti on (optional)
This setting is only relevant, when a new group is created by using agr oupNane, for which no group
exists. The integer value defines the position where the newly group is inserted. By default the newly
created group is appended at the end.

overwritePosition (optional)
The name of an existing property this property wants to overwrite.

di sabl eUDMAeb (optional)
Disables showing this property in the UMC.

ful | Wdt h (optional)
The widget for the property should span both columns.,

nmodul e (required, multiple)
A list of module names where this Extended Attribute should be added to.

opt i ons (required, multiple)
A list of options, which enable this Extended Attribute.

ver si on (required)
The version of the Extended Attribute format. The current versionis 2.
Tip

Create the Extended Attribute first through UMC-UDM. Modify it until you're satisfied. Only then
dump it using udm settings/ extended_attri bute |ist and convert the output to an
equivalent shell script creating it.

72 _)
www.univention.de

N e & ne——
(@ LN \yobj ect dentifier univention 1.3.6.1.4.1.10176

#obj ectl dentifi er univentionCustomers univention: 99999
#obj ectl denti fi er univenti onExanpl es uni venti onCustoners: 0 ;
obj ectldentifier univentionExanples 1.3.6.1.4.1.10176:99999: 0
obj ectldentifier univentionExmapl esUdm uni venti onExanpl es: 1
obj ectldentifier univentionExmapl esUdmAttri buteType
uni vent i onExmapl esUdm 1
obj ectldentifier univentionExmapl esUdmObj ect Cl ass
uni vent i onExmapl esUdm 2

attributetype (univenti onExmapl esUdmAttri but eType: 1
NAME ' uni venti onExanpl esUdmAt t ri but e’
DESC ' An exanple attribute for UDM
EQUALI TY casel gnor eMat ch
SUBSTR casel gnor eSubst ri ngsiat ch
SYNTAX 1.3.6.1.4.1.1466. 115. 121. 1. 15{ 42}
S| NGLE- VALUE

)
#! [bi n/ sh
#DEBHEL PER#

. lusr/share/univention-|ib/base.sh
#! [/ bi n/ bash

VERSI ON=1
[usr/ share/ uni vention-join/joinscripthelper.lib
joinscript _init

Regi ster new service entry for this host
eval "$(ucr shell)"
udm set ti ngs/extended attribute create "$@ --ignore_exists \
--position "cn=custom attributes, cn=uni vention, $l dap_base" \
--set name="My Attribute" \
--set CLI Name="nyAttribute" \
--set shortDescription="Exanple attribute" \
--set transl ati onShortDescription=""de DE" "Beispielattribut"' \
--set | ongDescription="An exanple attribute" \
--set transl ati onLongDescription=""de DE' "Ein Beispielattribut"' \
--set tabAdvanced=1 \
--set tabNane="Exanpl es" \
--set transl ati onTabNane='"de DE" "Beispiele"' \
--set tabPosition=1\
--set nodul e="gr oups/ group” \
--set nodul e="conput er s/ nenber server" \
--set syntax=string \
--set default="Lorem i psuni \
--set nultival ue=0 \
--set val ueRequi red=0 \
--set mayChange=1 \
--set doNot Search=1 \
--set obj ect d ass=uni vent i onExanpl esUdnOC \
--set | dapMappi ng=uni vent i onExanpl esUdnmAttri bute \
--set del et eObj ect C ass=0
--set overwitePosition=
--set overwiteTab=
--set hook=
--set options=

Termi nate UDM server to force nodul e rel oad
Thisgsampleas e¢l Uheraielyinii sshing arbuinjeisesce pt (see Section 3.5) to keep this example simple. It should
shesks ifutimExtandedAttgbute is no longer used in the domain and then removeit.

j oi nscript_save_current_version
exit 0

73

@ univention

be open.
Sdection lists

6.2.1. Selection lists Feedback £}

Sometimes an Extended Attribute should show alist of options to choose from. This list can either be static
or dynamic. After defining such anew syntax it can be used by referencing itsnamein the synt ax property
of an Extended Attribute.

6.2.1.1. Static selections Feedback {)

The staticlist of available selectionsis defined once and can not be modified interactively through UMC. Such
alist isbest implemented though a custom syntax class. Asthe implementation must be availableon all system
roles, the new syntax is best registered in LDAP. Thiscan bedoneby usingucs_r egi st er LDAPSchena
which is described in Section 3.4.3.2.

As an dternative the file can be put into the directory / usr/ shar e/ pyshar ed/ uni venti on/ ad-
m n/ syntax. d/ and linked into the directory /usr/1i b/ pynodul es/ pyt hon2. 6/ uni ven-
tion/ adm n/ synt ax. d/. When included into a Debian package, the linking is normaly done by
dh_pyt hon.

The following example is comparable to the default examplein file/ usr/ shar e/ pyshar ed/ uni ven-
tion/adm n/ synt ax. d/ exanpl e. py:

class StaticSel ection(sel ect):
choices = |

('valuel', 'Description for selection 1'),
('value2', 'Description for selection 2'),
('value3d', 'Description for selection 3'),
]
6.2.1.2. Dynamic selections Feedback {)

A dynamic list is implemented as an LDAP search, which is described in Section 6.4.2. For performance
reason it is recommended to implement a class derived from UDM At t ri but e or UDM Obj ect s instead
of using LDAP_Sear ch. Thefile/ usr/ shar e/ pyshar ed/ uni vent i on/ adm n/ synt ax. py con-
tains several examples.

74 _)
www.univention.de

https://www.univention.com/feedback/?manual=udm:ea:select
https://www.univention.com/feedback/?manual=udm:ea:select:static
https://www.univention.com/feedback/?manual=udm:ea:select:dynamic

@ univention

be open.
Selection lists

Example 6.2. Dynamic selection list for Extended Attributes

The idea is to create a container with sub-entries for each selection. This following listing declares a new
syntax class for selecting a profession level.

cl ass Dynami cSel ecti on(UDM Cbj ect s) :

udm nmodul es = (' container/cn',)

udmfilter ="' (& objectC ass=organi zati onal Rol e)

(ou: dn: =Dynam cSel ection))"

sinmple = True # only one value is sel ected

enpty value = True # allow selecting nothing

key = "% nane)s' # this is stored

| abel = '%description)s' # this is displayed
regex = None # no validation in frontend
error_nessage = 'Invalid val ue'

The Python code should be put into a file named Dynami cSel ecti on. py. The following code registers
this new syntax in LDAP and adds some values. It also creates an Extended Attribute for user objects using
this syntax.

synt ax=' Dynani cSel ecti on'

base="cn=uni venti on, $(ucr get | dap/base)"

udm cont ai ner/ou create --position "$base" \
--set name="$synt ax" --set description="UCS profession |evel
dn="ou=$synt ax, $hase"

udm cont ai ner/cn create --position "$dn" \

--set nanme="val uel" --set description="UCS Guru (> 5)'

udm cont ai ner/cn create --position "$dn" \

--set name="val ue2" --set description="UCS Regul ar (1..5)
udm cont ai ner/cn create --position "$dn" \

--set name="val ue3" --set description="UCS Begi nner (< 1)
udm cont ai ner/cn create --ignore_exists --position "$base" \

--set nanme='udm synt ax'
dn="cn=udm synt ax, $hase"
udm set ti ngs/udm syntax create --position "$dn" \

--set name="$syntax" --set filenanme="Dynani cSel ecti on. py" \
--set data="$(bzi p2 <Dynani cSel ecti on. py | base64)" \
--set package="$synt ax" --set packageversi on="1"

udm settings/ extended attribute create --position "cn=custom attri butes,
$base" \

--set name='Profession' \

--set nodul e=' users/user' \

--set tabName='General' \

--set transl ati onTabNane='"de_DE" "Al | genein"' \

--set groupNane='Personal information' \

--set translati onG oupNanme='"de_DE" "Personliche Infornmationen"' \
--set shortDescription="UCS profession level' \

--set transl ationShortDescription='"de_DE" "UCS Erfahrung"' \

--set |ongDescription="Sel ect a |evel of UCS experience' \

--set translati onLongDescription='"de DE" "Wihlen Sie den Level der
Erfahrung mt UCS'' \

--set objectd ass='univentionFreeAttributes' \

--set | dapMappi ng=' uni venti onFreeAttributel' \

--set syntax="$syntax" --set mayChange=1 --set val ueRequired=0

_) . 75
www.univention.de

@ univention

be open.

Known issues

6.2.2. Known issues

» Thet abNane and gr oupNane values must exactly match the values aready used in the modules. If
they do not match, a new tab or group is added. This also applies to the tranglation: They must match the
already translated strings and must be repeated for every Extended Attribute again and again. The untrans-
lated strings are best extracted directly from the Python source code of the modulesin / usr/ shar e/
pyshar ed/ uni venti on/ adni n/ handl er s/ */ *. py. For thetranslated stringsrunnsgunf nt /
usr/share/ | ocal e/ | anguage- code/ LC_MESSAGES/ uni vent i on- admi n*. no.

e Theoverwr it ePositi on vaues must exactly match the name of an aready defined property. Other-
wise UDM will crash.

» Extended Attributes may be removed, when matching datais still stored in LDAP. The schemaon the other
hand must only be removed when al matching data is removed. Otherwise the server sl apd will fail to
Start.

* Removingobj ect C assesfromLDAP objectsmust bedonemanually. Currently UDM doesnot provide
any functionality to remove unneeded object classes or methods to force-remove an object classincluding
all attributes, for which the object classisrequired.

6.2.3. Extended Options

UDM properties can be enabled and disabled viaoptions. For example all properties of auser related to Samba
can be switched on or off to reduce the settings shown to an administrator. If many Extended Attributes are
added to aUDM module, it might proof necessary to also create new options. Options are per UDM module.

Similar to Extended Attributes an Extended Option is created by using the UDM command line
interface uni venti on-directory-manager or its aias udm The module is caled set -
ti ngs/ ext ended_opti ons. Extended Options can be stored anywhere in the LDAP, but the default
location would becn=cust om at t ri but es, cn=uni venti on, below the LDAP base. Sincethejoin
script creating the option may be called on multiple hosts, it isagood ideato add the - - i gnor e_exi st's
option, which suppresses the error exit code in case the object already existsin LDAP.

Themoduleset ti ngs/ ext ended_opt i ons hasthe following properties:

nane (required)
Name of the option.

short Descri pti on (required)
Default short description.

transl ati onShort Descri pti on (optional, multiple)
Tranglation of short description.

| ongDescri pti on (required)
Default long description.

transl ati onLongDescri pti on (optional, multiple)
Tranglation of long description.

def aul t (optional)
Enable the option by default.

edi t abl e (optional)
Option may be repeatedly turned on and off.

nmodul e (required, multiple)
A list of module names where this Extended Option should be added to.

76 _)
www.univention.de

Feedback Q

Feedback Q

https://www.univention.com/feedback/?manual=udm:ea:issues
https://www.univention.com/feedback/?manual=udm:ea:option

@ univention

be open.
Extended Attribute Hooks

obj ect d ass (optional, multiple)
A list of LDAP object classes, which when found, enable this option.

Example 6.3. Extended Option

eval "$(ucr shell)"

udm set ti ngs/ ext ended options create "$@ --ignore_exists \
--position "cn=custom attributes, cn=uni vention, $l dap_base" \
--set nanme="My Option" \
--set shortDescription="Exanpl e option" \
--set transl ationShortDescription=""de DE" "Beispieloption"' \
--set | ongDescri pti on="An exanpl e option" \
--set transl ati onLongDescription='"de DE"' "Ei ne Bei spieloption"' \
--set default=0 \
--set editable=0 \
--set nodul e="users/user" \
--set obj ect d ass=uni vent i onExanpl esUdnOC

6.2.4. Extended Attribute Hooks Feedback {2}

Hooks provide a mechanism to pre- and post-process the values of Extended Attributes. Normally UDM
properties are stored as-is in LDAP attributes. Hooks can modify the LDAP operations when an object is
created, modified, deleted or retrieved. They are implemented in Python and the file must be placed in the
directory / usr/ shar e/ pyshar ed/ uni vent i on/ admi n/ hooks. d/ ! The file name must end with

The module univention.admin.hook providesthe class si npl eHook, which implements al required hook
functions. By default they don't modify any request but do log all calls. This class should be used as a base
class for inheritance.

hook_open(sel f,

nodul e) ;
This method is called by the default open handler just before the current state of all propertiesis saved.

hook | dap_pre_create(self,

nmodul e) ;
Thismethod is called before a UDM object iscreated. It is called after the module validated all properties
but before the add-list is created.

list hook | dap addli st (self,

nodul e,

al=1[]);
This method is called before a UDM object is created. It gets passed a list of two-tuples (| dap- at -
tribute-nanme, |ist-of-values) whichwill beused to create the LDAP object. The method
must return the (modified) list. Notice that hook_| dap_nodl i st will also be called next.

hook | dap_post create(self,

nodul e) ;
This method is called after the object was created in LDAP.

1 This assumes that the hook file is packaged and linked by dh_pysupport to/usr/1i b/ pynodul es/ pyt hon2. 6/ uni venti on/ ad-
m n/ hooks. d/ for Python 2.6 or whatever Python version is used. If thefileisinstalled manually, it must be placed on apath listed in sys. pat h.

_) 77
www.univention.de

https://www.univention.com/feedback/?manual=udm:hook

@ univention

be open.
Extended Attribute Hooks

hook | dap_pre_nodi fy(self,

nmodul e) ;
Thismethod iscalled beforeaUDM objectismodified. Itiscalled after themodulevalidated all properties
but before the modification-list is created.

list hook | dap nodlist(self,

nodul e,

m=11);
Thismethod iscalled beforeaUDM object is created or modified. It gets passed alist of tuples, which are
either two-tuples (| dap-attri but e-nane, |i st-of - new val ues) or three-tuples (| dap-
attribute-nane, list-of-old-values, |ist-of-new val ues).Itwill beusedtocre-
ate or modify the LDAP object. The method must return the (modified) list.

hook | dap_post _nodi fy(sel f,

nmodul e) ;
This method is called after the object was modified in LDAP.

hook | dap_pre_renove(self,

nodul e) ;
This method is called before a UDM object is removed.

hook | dap_post renove(self,

nodul e) ;
This method is called after the object was removed from LDAP.

The following example implements a hook, which removes the object-class uni vent i onFreeAttri b-
ut es if the property i sSanpl eUser isno longer set.

from uni venti on. adm n. hook i nport si npl eHook

cl ass RenpbveObj Cl assUnused(si npl eHook) :
type = ' RenmoveObj Cl assUnused'

def hook | dap_post nodify(sel f, nodul e):
"""Renpve unused objectC ass."""
ext_attr_nanme = 'isSanpl eUser'
cl ass_nanme = 'univentionFreeAttri butes'

i f nodul e. ol di nfo.get(ext_attr_nane) in ('1',) and \
nodul e. i nfo. get(ext_attr_nanme) in ('0', None):
if class _nanme in nodul e.ol dattr.get('objectCass', []):
nodul e. | o. nodi f y(nodul e. dn,
[('objectd ass', class _nane, '')])

After installing the file the hook can be activated by setting the hook property of an Extended Attribute to
Removebj C assUnused:

udm settings/ extended attribute nodify \
--dn ... \
--set hook=RenpbveObj Cl assUnused

78 _)
www.univention.de

@ univention

be open.
UDM Modules

6.3. UDM Modules Feedback ()

The development of Univention Directory Manager modules is currently only document-
ed in Univention Wiki (currently only available in German): http://wiki.univention.de/index.php?
title=Entwicklung_und_Integration_eigener_Module_in_Univention_Directory_Manager

64 UDM SyntaX Feedback {)}

Every UDM property has a syntax, which is used to check the value for correctness. Univention Corpo-
rate Server already provides several syntax types, which are defined in the Python file / usr/ shar e/
pyshar ed/ uni vent i on/ adm n/ synt ax. py. The following list of syntaxes is not complete, for a
complete overview the file should be consulted directly.

string,

string64,

OneThi rdStri ng,

Hal f Stri ng,

TwoThi rdsStri ng,

Four Thi rdsStri ng,

OneAndAHal f Stri ng,

Fi veThi rdsStri ng,

Text Ar ea
Different string classes, which are mapped in Univention Management Console to text input widgetswith
different widths and heights.

string_nunbers letters_dots,
string_nunbers letters_dots_spaces,
| A5stri ng,

Different string classes with restrictions on the allowed character set.

Upl oad,

Base64Upl oad,

j pegPhot o
Binary data.

i nt eger
Positive integers.

bool ean,
bool eanNone,
TrueFal se,
Tr ueFal seUpper,
TrueFal seUp
Different boolean typeswhichmaptoyes andno ort rue andf al se.

_) 79
www.univention.de

https://www.univention.com/feedback/?manual=udm:modules
http://wiki.univention.de/index.php?title=Entwicklung_und_Integration_eigener_Module_in_Univention_Directory_Manager
http://wiki.univention.de/index.php?title=Entwicklung_und_Integration_eigener_Module_in_Univention_Directory_Manager
https://www.univention.com/feedback/?manual=udm:syntax

@ univention

be open.
UDM Syntax Override

host Nane,

DNS_Nane,

wi ndowsHost Nane,

i pv4Addr ess,

i pAddr ess,

host Or | P,

v4net mask,

net mask,

| Pv4_Addr essRange,
| P_Addr essRange,

Different classes for host names or addresses.

uni xTi ne,

Ti meString,

i so8601Dat e,

date
Date and time.

G oupDN,

User DN,

User | D,

Host DN,

Domai nControl | er,
W ndows_Server,
UCS_Server,

Dynamic classes, which do an LDAP search to provide alist of selectable values like users, groups and
hosts

LDAP_Sear ch,

UDM (bj ect s,

UDM Attribute
These syntaxes do an LDAP search and display the result as a list. They are further described in Sec-
tion 6.4.2.

Additional syntax classes can be added by placing a Python filein / usr/ shar e/ pyshar ed/ uni ven-
tion/adm n/ synt ax. d/ . They're automatically imported by UDM.

641 UDM SyntaX Ovel‘ride FeedbackQ

Sometimes the pre-defined syntax is inappropriate in some scenarios. This can be because of performance
problemswith LDAP searches or the need for more restrictive or lenient value checking. Thelatter case might
require a change to the LDAP schema, since sl apd a so checks the provided values for correctness.

The syntax of UDM properties can be overwritten by using Univention Configuration Registry variables.
For each module and each property the variable di r ect or y/ manager / web/ nodul es/ nodul e/
properties/property/syntax can be set to the name of a syntax class. For example di r ect o-
ry/ manager/ web/ nodul es/ user s/ user/ properties/ usernanme/ syntax=uid would re
strict the name of users to not contain umlauts.

Since UCR variables only affect the local system, the variables must be set on all systems were UDM is
used. This can be either done through a Univention Configuration Registry policy (see ????) or by setting the
variableinthe. posti nst script of some package, which isinstalled on al hosts.

80 _)
www.univention.de

https://www.univention.com/feedback/?manual=udm:syntax:overwrite

@ univention

be open.
UDM LDAP search

6.4.2. UDM LDAP search Feedback {2}

It is often required to present a list of entries to the user, from which she can select one or — in case of a
multi-valued property — more entries. Several syntax classes derived from sel ect provide afixed list of
choices. If the set of valuesisknown and fixed, it's best to derive an own classfrom sel ect and providethe
Pythonfilein/ usr/ shar e/ pyshar ed/ uni venti on/ adm n/ synt ax. d/ .

If on the other hand the list is dynamic and is stored in LDAP, UDM provides three methods to retrieve the
values.

UDM Attribute
This class does a UDM search. For each object found all values of a multi-valued property are returned.

For aderived class the following class variables can be used to customize the search:

udm_module
The name of the UDM module, which does the LDAP search and retrieves the properties.

udm_filter
An LDAP search filter which is used by the UDM module to filter the search. The special valuedn
sKkips the search and directly returns the property of the UDM object specified by depends.

attribute
The name of a multi-valued UDM property which stores the values to be returned.

is_complex,

key index,

label _index
Some UDM properties consist of multiple parts, so called complex properties. These variables are
used to define, which part is displayed as the label and which part is used to reference the entry.

label _format
A Python format string, which is used to format the UDM properties to a label string presented to
theuser. %4 pr oper t y- nane) s should be used to reference properties. The special property name
$at tri but e$ isreplaced by the value of variableat t r i but e declared above.

regex
This defines an optional regular expression, which is used in the frontend to check the value for
validity.

static_values
A list of two-tuples (val ue, di spl ay-string), which are added as additional selection op-
tions.

empty_value
If setto Tr ue, the empty value isinserted before all other static and dynamic entries.

depends
Thisvariable may contain the name of another property, which this property depends on. Thiscan be
used to link two properties. For example, one property can be used to select aserver, while the second
dependent property then only lists the services provided by that selected host. For the dependent
syntax at t ri but e must be set to dn.

error_message
This error message is shown when the user enters a value which is not in the set of allowed values.

The following example syntax would provide alist of all users with their telephone numbers:

_) 81
www.univention.de

https://www.univention.com/feedback/?manual=udm:syntax:ldap

@ univention

be open.
UDM LDAP search

cl ass Del egat eTel ephonedNunber (UDM Attri bute):
udm nodul e = ' users/user'
attribute = ' phone'
| abel format = '9%displayNane)s: % $attribute$)s'

UDM bj ect s
This class performs a UDM search returning each object found.

For aderived class the following class variables can be used to customize the search:

udm_modules
A List of one or more UDM modules, which do the LDAP search and retrieve the properties.

key
A Python format string generating the key value used to identify the selected object. The default is
dn, which uses the distinguished name of the object.

label
A Python format string generating the display label to represent the selected object. The default is
None, which usesthe UDM specificdescr i pt i on.dn can be used to use the distinguished name.

regex
This defines an optional regular expression, which is used in the frontend to check the value for
validity. By default only valid distinguished names are accepted.

simple
By default awidget for selecting multiple entriesis used. Setting this variableto Tr ue changesthe
widget to a combo-box widget, which only allows to select a single value. This should be in-sync
withthemul ti val ue property of UDM properties.

use objects
By default UDM opens each LDAP object through aUDM module implemented in Python. Thiscan
be a performance problem if many entries are returned. Setting thisto Fal se disables the Python
code and directly uses the attributes returned by the LDAP search. Several properties can then no
longer be used as key or label, as those are not explicitly stored in LDAP but are only calculated
by the UDM module. For example, to get the fully qualified domain name of a host % nane) s.
% donmai n) s must be used instead of the calculated property %¢ f qdn) s.

udm_filter,
static_values,
empty_value,
depends,
error_message
Same asabove with UDM At t ri but e.

The following example syntax would provide alist of all servers providing arequired service:

cl ass MyServer s(UDM Obj ect s) :
udm nodul es = (
' conmput er s/ donmi ncontrol | er_master',
' conmput er s/ donmi ncont rol | er _backup',
' conmput er s/ donmi ncontrol | er_sl ave',
' conmput er s/ menber server',

)
| abel = "'%fqdn)s'
udmfilter = 'service=M/Service'

82 _)
www.univention.de

@ univention

be open.
UDM LDAP search

LDAP_Sear ch
This is the old implementation, which should only be used, if UDM At t ri but e and UDM hj ect s
are not sufficient. In addition to ease of use it has the drawback that Univention Management Console
can not do as much caching, which can lead to severe performance problems.

LDAP search syntaxes can be declared in two equivaent ways:

Python API
By implementing a Python class derived from LDAP_Sear ch and providing that implementation
in/ usr/ shar e/ pyshar ed/ uni venti on/ adm n/ synt ax. d/ .

UDM API
By creating a UDM object in LDAP using themoduleset t i ngs/ synt ax.

The Python API uses the following variables:

synt ax_name
This variable stores the common name of the LDAP object, which is used to define the syntax. It is
only used internally and should never be needed when creating syntaxes programmatically.

filter
An LDAPfilter to find the LDAP abjects providing the list of choices.

attribute
A list of UDM module property definitions like "shar es/ share: dn". They are used as the
human readable label for each element of the choices.

val ue
The UDM modul e attribute that will be stored to identify the selected element. Thevalueis specified
likeshar es/ share: dn

vi ewonl y
If set to Tr ue the values can not be changed.

addEnpt yVal ue
If setto Tr ue the empty valueis add to thelist of choices.

appendEnpt yVal ue
Same as addEnpt yVal ue but added at the end. Used to automatically choose an existing entry
in the frontend.

cl ass MyServer s(LDAP_Search):
def __init_ (self):
LDAP_Search. init_ (self,
filter=(" (& univentionServi ce=M/Service)'
' (uni venti onSer ver Rol e=nenber))"'),

attri but e=(
' conmput er s/ menber server: fqdn',
) il
val ue=' conput er s/ menber server: dn'
)
sel f.nanme = ' LDAP_Search' # required workaround

The UDM API uses the following properties:

narme (required)
The name for the syntax.

_) 83
www.univention.de

@ univention

be open.
Packaging UDM Hooks

descri pti on (optional)
Some descriptive text.

filter (required)
An LDAP filter, which is used to find the objects.

base (optional)
The LDAP base, where the search starts.

attri but e (optional, multivalued),

| dapat tri but e (optional, multivalued)
The name of UDM properties, which are display as alabel to the user. Alternatively L DAP attribute
names may be used directly.

val ue (optiona),

| dapval ue (optional)
The name of the UDM property, which is used to reference the object. Alternatively an LDAP at-
tribute name may be used directly.

vi ewonl y (optional)
If set to 1 the values can not be changed.

addEnpt yVal ue (optional)
If set to 1 the empty valueis add to the list of choices.

eval "$(ucr shell)"

udm settings/syntax create "$@ --ignore_exists \

--position "cn=custom attributes, cn=uni vention, $l dap_base" \
--set name=MyServers \

--set filter="(& univentionServi ce=MyServi ce)

(uni venti onSer ver Rol e=nenber))"' \
--set attribute="conputers/nenberserver: fqdn' \
--set val ue=' conput er s/ menber server: dn'

6.5. Packaging UDM Hooks Feedback()

For some purposes, e.g. for app installation, it is convenient to be able to deploy a new UDM hook in the
UCS domain from any system in the domain. For this purpose, a UDM hook can be stored as a special type
of UDM object. The module responsible for thistype of objectsiscaled set t i ngs/ udm hook. Asthese
objects are replicated throughout the UCS domain, the UCS servers listen for modifications on these objects
and integrate them into the local UDM.

The commands to create the UDM hook objectsin UDM may be put into any join script (see Chapter 3). Like
every UDM object aUDM hook object can be created by using the UDM command line interface uni ven-

tion-directory-mnager oritsaliasudm UDM hook objects can be stored anywhere in the LDAP
directory, but the recommended location would be cn=udm_hook, cn=uni venti on, below the LDAP
base. Since the join script creating the attribute may be called on multiple hosts, it is a good idea to add the
--i gnor e_exi st s option, which suppressesthe error exit code in case the object already existsin LDAP.

Themoduleset ti ngs/ udm hook requires several parameters. Since many of these are determined auto-
matically by the ucs registerLDAPExtension shell library function, it isrecommended to use the shell library
function to create these objects (see Section 9.10.1).

narme (required)
Name of the UDM hook.

www.univention.de

https://www.univention.com/feedback/?manual=settings:udm_hook

@ univention

be open.
Packaging UDM Extension Modules

dat a (required)
The actual UDM hook datain bzip2 and base64 encoded format.

fil enane (required)
The file name the UDM hook data should be written to by the listening servers. The file name must not
contain any path elements.

package (required)
Name of the Debian package which creates the object.

packagever si on (required)
Version of the Debian package which creates the object. For object modifications the version humber
needs to increase unless the package name is modified as well.

appi dentifi er (optional)
Theidentifier of the app which creates the object. Thisisimportant to indicate that the object is required
aslong asthe app isinstalled anywhere in the UCS domain. Defaultsto st r i ng.

ucsver si onst art (optional)
Minimal required UCS version. The UDM hook is only activated by systems with a version higher than
or equal to this.

ucsver si onend (optional)
Maximal required UCS version. The UDM hook is only activated by systems with a version lower than
or equal to this. To specify validity for the whole 4.0-x release range avalue like 4.0.99 may be used.

acti ve (internal)
A boolean flag used internally by the master domain controller to signal availability of the new UDM
hook on the master domain controller (default: FALSE).

6.6. Packaging UDM Extension Modules Feeavack {)

For some purposes, e.g. for app installation, it is convenient to be able to deploy anew UDM module in the
UCS domain from any system in the domain. For this purpose, a UDM module can be stored as a special
type of UDM object. The module responsible for this type of objectsiscalled set ti ngs/ udm nodul e.
Asthese objects are replicated throughout the UCS domain, the UCS servers listen for modifications on these
objects and integrate them into the local UDM.

The commands to create the UDM module objects in UDM may be put into any join script (see Chapter 3).
Like every UDM object a UDM module object can be created by using the UDM command line interface
uni venti on-di rect ory- manager or its alias udm UDM module objects can be stored anywhere
in the LDAP directory, but the recommended location would be cn=udm nodul e, cn=uni venti on,
below the LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good
ideato add the- - i gnor e_exi st s option, which suppresses the error exit code in case the object already
existsin LDAP.

The module set ti ngs/ udm nodul e requires several parameters. Since many of these are determined
automatically by the ucs registerLDAPExtension shell library function, it is recommended to use the shell
library function to create these objects (see Section 9.10.1).

narme (required)
Name of the UDM module, e.g. newapp/ sonmeobj ect .

dat a (required)
The actual UDM module datain bzip2 and base64 encoded format.

_) 85
www.univention.de

https://www.univention.com/feedback/?manual=settings:udm_module

@ univention

be open.
Packaging UDM Syntax Extension

fil enane (required)
The file name the UDM module data should be written to by the listening servers. The file name
may contain path elements and should conform to the name of the UDM module (e.g. newapp/
soneobj ect . py).

messagecat al og (optional)
Multivalued property to supply message translation files (syntax: <language tag> <base64 encoded GNU

message catalog>).

uncr egi strati on (optional)
XML definition required to make the UDM module available though the Univention Management Con-
sole (base64 encoded XML)

i con (optional)
Multivalued property to supply icons for the Univention Management Console (base64 encoded png,
j peg orsvgz).

package (required)
Name of the Debian package which creates the object.

packagever si on (required)
Version of the Debian package which creates the object. For object modifications the version humber
needs to increase unless the package name is modified as well.

appi dentifi er (optional)
Theidentifier of the app which creates the object. Thisisimportant to indicate that the object is required
aslong asthe app isinstalled anywhere in the UCS domain. Defaultsto st r i ng.

ucsver si onst art (optional)
Minimal required UCS version. The UDM module is only activated by systems with a version higher
than or equd to this.

ucsver si onend (optional)
Maximal required UCSversion. The UDM moduleisonly activated by systemswith aversion lower than
or equal to this. To specify validity for the whole 4.0-x release range avalue like 4.0.99 may be used.

active (interna)
A boolean flag used internally by the master domain controller to signal availability of the new UDM
module on the master domain controller (default: FALSE).

6.7. Packaging UDM Syntax Extension Fecdback{)

For some purposes, e.g. for app installation, it is convenient to be able to deploy a new UDM syntax in the
UCS domain from any system in the domain. For this purpose, a UDM syntax can be stored as a special type
of UDM abject. The module responsible for this type of objectsis called setti ngs/ udm synt ax. As
these objects are replicated throughout the UCS domain, the UCS servers listen for modifications on these
objects and integrate them into the local UDM.

The commands to create the UDM syntax objects in UDM may be put into any join script (see Chapter 3).
Like every UDM object a UDM syntax object can be created by using the UDM command line interface
uni venti on-di rect ory- manager oritsaiasudm UDM syntax objects can be stored anywherein the
LDAP directory, but the recommended location would be ch=udm synt ax, cn=uni venti on, below
the LDAP base. Since the join script creating the attribute may be called on multiple hosts, itisagood ideato
add the - - i gnor e_exi st s option, which suppresses the error exit code in case the object already exists
in LDAP.

86 _)
www.univention.de

https://www.univention.com/feedback/?manual=settings:udm_syntax

@ univention

be open.
Packaging UDM Syntax Extension

The module set ti ngs/ udm synt ax requires several parameters. Since many of these are determined
automatically by the ucs registerLDAPExtension shell library function, it is recommended to use the shell
library function to create these objects (see Section 9.10.1).

name (required)
Name of the UDM syntax.

dat a (required)
The actual UDM syntax data in bzip2 and base64 encoded format.

fil enane (required)
The file name the UDM syntax data should be written to by the listening servers. The file name must
not contain any path elements.

package (required)
Name of the Debian package which creates the object.

packagever si on (required)
Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appi denti fi er (optional)
Theidentifier of the app which creates the object. Thisisimportant to indicate that the object is required
aslong asthe app isinstalled anywhere in the UCS domain. Defaultsto st ri ng.

ucsver si onstart (optional)
Minimal required UCSversion. The UDM syntax isonly activated by systemswith aversion higher than
or equd tothis.

ucsver si onend (optional)
Maximal required UCS version. The UDM syntax isonly activated by systems with aversion lower than
or equal to this. To specify validity for the whole 4.0-x release range avalue like 4.0.99 may be used.

active (interna)
A boolean flag used internally by the master domain controller to signal availability of the new UDM
syntax on the master domain controller (default: FALSE).

_) 87
www.univention.de

88

@ univention

be open.
UMC files
Chapter 7. Univention Management
Console (UMC)
5 Y O 1= USRS 89
7.1.1. debi an/ package. UnT- MDAUI Scoouuiiiiiii e 89
7.1.2. UMC Module Declaration Fileoviiiiiiiiiii e 89
7.2. LOCaAl SYSEmM MOUUIE ...ttt e e 20
7.3. DOMEAIN LDAP MOGUIE ..ottt 90
7.4. Disabling @ MOUUIEottt et e e e e 20

The Univention Management Console (UMC) is the web-based management application provided by UCS.

http://wiki.univention.de/index.php?title=UCS 3.0 UMC_Architecture_and_Protocol

71 UMC fl|eS FeedbackQ

Filesfor building a UMC module.

7.1.1. debi an/ package. unt- nodul es Feedback £}

dh- unt- nodul e- bui | d buildstrandationfiles. dh- unc- modul e-i nst al | installsfiles. Configured
through debi an/ package. unt- nodul es.

Modul e: nodul e- nane

Pyt hon: unt

Definition: unt/nodul e-nane. xn
Javascript: unt

I cons: unt/icons

Modul e
Internal (?) name of the module.

Pyt hon
Directory containing the Python code relative to top-level directory.

Definition
Path to an XML file, which describes the module. See Section 7.1.2 for more information.

Javascri pt
Directory containing the Java-Script code relative to top-level directory.

| cons (deprecated)
Directory containing the Icons relative to top-level directory. Must provide iconsin sizes 16x16 (unc/
i cons/ 16x16/ udm nodul e. png) and 50x50 (unt/ i cons/ 50x50/ udm nodul e. png) pix-
els.

7.1.2. UMC Module Declaration File Feedback {2}

unt/ nodul e. xmi

<?xm versi on="1. 0" encodi ng="UTF- 8" ?>
<!l --DOCTYPE unt SYSTEM "branches/ ucs-4. 0/ ucs- 4. 0- 0/ managenent /
uni vent i on- managenent - consol e/ doc/ nodul e. dt d" - - >

_) 89
www.univention.de

http://wiki.univention.de/index.php?title=UCS_3.0_UMC_Architecture_and_Protocol
https://www.univention.com/feedback/?manual=umc:files
https://www.univention.com/feedback/?manual=umc:umc-modules
https://www.univention.com/feedback/?manual=umc:xml

@ univention

be open.
Local System Module

<unt version="2.0">

<nmodul e i d="udn icon="udm MODULE" version="1.0"
transl ati onl d=" MODULE" >

<nane>. .. </ name>

<descri ption>...</description>

<flavor>...</flavor>

<cat egori es>

<cat egory nane="donai n"/ >

</ cat egori es>

<conmand>. . . </ command>

</ nodul e>
</ unc>
unc/ cat egori es/ cat egory. xm
<?xm version="1. 0" encodi ng="UTF- 8" ?>
<unt version="2.0">

<cat egori es>

<category id="category" priority="..." icon="....svg" col or="#xxxxxx"/
>

</ cat egori es>
</ unt>

7.2. Local System Module Feedback{)

Use unt-create-nodul e to template for custom module. http://wiki.univention.de/index.php?
titte=UCS 3.0 UMC_API for_Modules

7.3. Domain LDAP Module Feedback {)

Done through flavour.

<?xm version="1. 0" encodi ng="UTF- 8" ?>
<unt version="2.0">
<nodul e i d="udn' icon="udm MODULE" version="1.0"
transl ati onl d=" MODULE" >
<flavor priority="25" icon="udm MODULE- SUBMODULE" i d=" MODULE/
SUBMODULE" >
<name>MODULE nane</ name>
<descri pti on>MODULE descri pti on</descri pti on>
</flavor>
<cat egori es>
<cat egory nane="domai n"/ >
</ cat egori es>
</ nodul e>
</ unc>

Must use / unt/ nodul e/ cat egory/ @ane="donmai n"! Must use / unt/ nodul e/ @r ansl a-
tionld to specify aternative translation file, which must be installed as / usr/ shar e/ uni ven-
ti on- managenent - consol e/ i 18n/ | anguage/ nodul e. no.

7.4. Disabling a Module Feedback £}

To disabling a module use the following XML file as atemplate:

90 _)
www.univention.de

https://www.univention.com/feedback/?manual=umc:module
http://wiki.univention.de/index.php?title=UCS_3.0_UMC_API_for_Modules
http://wiki.univention.de/index.php?title=UCS_3.0_UMC_API_for_Modules
https://www.univention.com/feedback/?manual=umc:udm
https://www.univention.com/feedback/?manual=umc:module:disable

@ univention

be open.

<?xm versi on="1. 0" encodi ng="UTF- 8" ?>
<unt version="2.0">

<nodul e i d="udnm' i con="udm nodul e" versi on="1.0"
transl ati onl d=" MODULE" >

<nane/ >

<descri pti on/ >

<fl avor id="MODULE/ SUBMODULE" deacti vat ed="yes" />
</ nodul e>
</ unt>

www.univention.de

Disabling a Module

91

92

@ univention

be open.
Extending the overview page

Chapter 8. Web services

8.1. EXtending the OVEIVIEW PAOE .. .uvvveiei et ee et e et e e e e e e e et e e e e et s e e neeaneee 93

8.1. Extending the overview page

When auser openshtt p: / /1 ocal host/ orhttp://host nane/ inabrowser, sheisredirected to the
UCSoverview page.

Depending on the preferred language negotiated by the web browser the user iseither redirected to the German
or English version. The overview pageis split between I nstalled web services and Administration entries.

The start page can be extended using Univention Configuration Registry variables. PACKAGE refers to a
unique identifier, typically the name of the package shipping the extensions to the overview page. The con-
figurable options are explained below:

ucs/ web/ overvi ew ent ri es/ adm n/ PACKAGE/ OPTI ON variables extend the administrative
section.

ucs/ web/ overvi ew entri es/ servi ce/ PACKAGE/ OPTI ON variables extend the web services
section.

To configure an extension of the overview page the following options must/can be set using the pattern ucs/
web/ over vi ew entri es/ adm n/ PACKAGE/ OPTI ON=VALUE (and likewise for services).

I i nk definesalink to a URL representing the service (usually aweb interface).

| abel specifiesatitlefor an overview entry. Thetitle can also betranslated; e.g. | abel / de can be used
for atitlein German.

descri pti on configures alonger description of an overview entry. The description can also be trans-
lated; e.g. descri pt i on/ de can be used for adescription in German. Should not exceed 60 characters,
because of space limitations of the rendered box.

Optionally an icon can be displayed. Using i con either afilename or aURI can be provided. When spec-
ifying afilename, the name must be relative to the directory / var / www, i.e. with aleading /. All file for-
matstypically displayed by browsers can be used (e.g. PNG/JPG). All icons must be scal ed to 50x50 pixels.

The display order can be specified using pri ori t y. Depending on the values the entries are displayed
in lexicographical order (i.e. 100 < 50).

The following example configures the link to the Nagios web interface:

ucs/ web/ overvi ew entri es/adm n/ nagi os/ descri pti on/ de: Netzwerk-, Host -

und Servi cellber wachung

ucs/ web/ overvi ew entri es/adm n/ nagi os/ descri pti on: Network, host and

service nonitoring system

ucs/ web/ overvi ew entri es/adm n/ nagi os/icon: /icon/50x50/ nagi 0s. png
ucs/ web/ overvi ew entri es/adm n/ nagi os/ | abel / de: Uni venti on Nagi os
ucs/ web/ overvi ew entri es/adm n/ nagi os/ | abel : Uni venti on Nagi os
ucs/ web/ overvi ew entri es/adm n/ nagi os/ | i nk: /nagi os/

ucs/ web/ overvi ew entri es/adm n/ nagi os/priority: 50

93

www.univention.de

Feedback Q

https://www.univention.com/feedback/?manual=www:overview

94

@ univention

be open.

Requirements
Chapter 9. App Center

9.1, REQUITEITIENES ...ttt eeti ettt ettt ettt e et e et et et e et b e e et e b n e et et e e et e b e e et st e e e eraa s 95
9.2. Packaging fOr the AP CaNLEYiiiii ettt e e et e e e et e e e eri e eeees 96
0.3 NBXE SIS ettt 96
9.4. APPlICAION MELA FIE i e 97
9.5. Optional apPliCAioN TIIEScoiiii e e 103
9.6. Uploading the appliCaLIONeiieiteieii et e et e e et e e eena e eees 104
9.7, INOUTICAIIONS ...ttt e et e e et e e e e e e e ne s 104
9.8. Updates for the @ppliCaIiONiiiiiiei e 105
9.9. Integrating the Application INUCSooiiiii e 105
9.9.1. Automatic integration done by the ApP Centercoeuuiiiiiiiiieiee e 105
9.9.2. SCOPE Of the VENTONoevieiiii e 106
O.10. BESE PIBCHICES ... eeeeet ettt ettt ettt ettt era s 106
9.10.1. Registration of LDAP and UDM EXIENSIONSuiiiiiiiieiiiiiieeeeiin e 106

The Univention App Center provides a platform for software vendors and an easy-to-use entry point for
Univention Corporate Server users to extend their environment with business software.

Univention App Center is the simplest form to install applications on Univention Corporate Server. In the
Univention Management Console it is the first entry point for their installation. Univention App Center is
no app store in a classical point of view as known from iOS or Android and no license management for
applications. The sale of licenses, maintenance or support for applications follows the default procedure of
the respective vendor.

This chapter mainly aims at software vendors that want to provide their software in Univention App Center
and describes the necessary steps.

A catalogue with the available applications can be viewed on the Univention website [https://
www.univention.com/products/univention-app-center/].

9.1. Requirements Feedback{)

The requirements for providing a software solution in Univention App Center are:
* Formally:

* The certification of the software solution for UCS and sign the Univention Lo-
goprogram Certified for Univention Corporate Server [http://wiki.univention.de/index.php?
title=Certification_Certified for_Univention_Corporate_Server]

* Sign the contract to use "Univention App Center" as platform to provide applications to users

» Technically: The packaging of the software solution in the Debian package format (see Section 9.2), pro-
vided for the architectures 1386 and/or amd64

» Out-of-the-Box functionality: The app hasto work already after installation
The following items are no disqualifying criteria:

* Missing documentation

* No or little integration of the app with Univention Corporate Server

The following items are important for packaging:

_) 95
www.univention.de

https://www.univention.com/products/univention-app-center/
https://www.univention.com/products/univention-app-center/
https://www.univention.com/products/univention-app-center/
https://www.univention.com/feedback/?manual=app:requirements
http://wiki.univention.de/index.php?title=Certification_Certified_for_Univention_Corporate_Server
http://wiki.univention.de/index.php?title=Certification_Certified_for_Univention_Corporate_Server
http://wiki.univention.de/index.php?title=Certification_Certified_for_Univention_Corporate_Server

@ univention

be open.

Packaging for the App Center

» The application has to be installed without any user interaction (unattended). The installation process is
not allowed to be interrupted or cancelled which would result in an inconsistent state of the package man-
agement.

» The application has to be installed and uninstalled cleanly. "Uninstalled cleanly" especialy aims for re-
moving Extended Attributes the application created during installation. See Section 3.5.

» The application does not (neither after installation nor after uninstallation) break Univention Corporate
Server functionality.

» Recommended: The application isintegrated in UCS and the UCS management system (see Section 9.9).

Note

The software vendor is responsible for the maintenance of his application(s). Package updates are
provided for Univention App Center in a contemporary way (see also Section 9.8).

9.2. Packaging for the App Center

The App Center is based on the Debian package system. From atechnical point of view, the installation of an
application viathe App Center consists roughly of two steps: (1) adding a new repository to the system which
resides on the App Center server and (2) apt - get which installs the required package. This means that 3rd
party vendors need to package their application asa. deb file and send that to Univention.

For deeper integration in Univention Corporate Server it is necessary to add at least one more file, a Join
Script (see Section 9.9.2). This file can be included in the core package of the application or in a dedicated
package for Univention Corporate Server integration, say, univention-appnarne and have a dependency on
the core application (on dpkg level).

See Appendix B for further details on how to build Debian packages.

In most cases the core application depends on severa other packages, e.g. apache, python, etc. Those pack-
ages are automatically installed by the App Center (viaapt). All packages (except games) from Debian were
rebuilt for Univention Corporate Server, but not all packages are maintained by Univention. The maintained
repository for Univention Corporate Server contains the most common packages, but it may be that the ap-
plication needs some specific packages not found there. If this packages exists for Debian, it can be found
in the unmaintained repository. But as the unmaintained repository is not activated by default the App Cen-
ter cannot install the application without user configuration if some packages are only available through the
unmaintained repository. But thisis arequirement for any application! To workaround this issue, the vendor
has to do the following: In afirst step he has to grab the packages from the unmaintained repository (see
for example https://updates.software-univention.de/4.0/unmaintained/) and bundle it with his own packages
so that they are put into the app's own repository. In a second step he should inform Univention about these
packages. We will probably move them into maintained so that this procedure will become obsoletein future
versions of the application.

9.3. Next steps

96

As soon as the software complies to the requirements the following steps are to be taken:
 Collect the meta data for the software for the App Center (see Section 9.4 and Section 9.5).

» Upload the packages along with the ini file, some README files, an icon and (maybe) a screenshot in a
file archive (everything should go in one "directory"). See Section 9.6.

* Test the software solution with Univention Test App Center (more information is given by Univention after
the upload).

www.univention.de

Feedback Q

https://www.univention.com/feedback/?manual=app:package
https://updates.software-univention.de/4.0/unmaintained/
https://www.univention.com/feedback/?manual=app:nextsteps

@ univention

be open.
Application meta file

I mportant

Univention will not test if the application works as expected. We have atest suite that isrun before
we publish the application but it only covers base functionality of Univention Corporate Server
itself (e.g. LDAP, Join, etc.)

» Give approval for provisioning in the productive Univention App Center towards Univention.

 Show withthebadge"Availablein Univention App Center" that the App isready to use. The HTML snippet
will be provided by Univention.

See also Section 9.8 for how to proceed if an updateis to be released.

9.4. Application meta file Fecaback{)

The App Center needs some meta information about the application to handle the installation and to present
information to the user. The application needsa so-called . i ni filefor that. The particulars in the meta data
have to be in English at least.

An example along with some comments on the variables is attached:

[Appl i cati on]
internal id

| D=appl i cati on

di spl ay nanme of the application
Name=The Application

application version
Ver si on=7. 1

whether the user's ennil address will be transmtted to the vendor
Not i f yVendor =Fal se

a short description of the application (nmax. 90 characters)
Descri pti on=Lorem i psum dol or sit amet, consetetur sadipscing elitr, se.

a nore conplete description of the application (max. 1400 characters)
#in order to use nultiple lines, preceed |ines with one or nore
white spaces
LongDescri pti on=Lorem i psum dol or sit anet, consetetur sadi pscing
elitr, sed diam nonuny eirnod tenpor invidunt ut |abore et dol ore
magna al i quyam erat, sed di am vol uptua. At vero eos et accusam et
justo duo dolores et ea rebum Stet clita kasd gubergren, no sea
t aki mat a sanctus est Loremipsumdolor sit amet. Lorem i psum dol or
sit amet, consetetur sadipscing elitr, sed di am nonuny eirnod tenpor
i nvidunt ut |abore et dolore magna aliquyamerat, sed di am vol upt ua.
At vero eos et accusamet justo duo dolores et.

reference to screenshot file (.png or .jpg file) (optional)
Screenshot =appl i cati on_screenshot . j pg

appl i cabl e category
Cat egor i es=Syst em servi ces

_) 97
www.univention.de

https://www.univention.com/feedback/?manual=app:iniFile

@ univention

be open.
Application meta file

website for nore informati on about the product (e.g. |anding page)
Websi t e=htt p: // ww. sof t war e. coml pr oduct s/ appl i cati on/ wel conme

website for getting support (or information about how to buy a
|i cense)
Support URL=ht t p: / / ww. sof t war e. coni pr oduct s/ appl i cati on/ buy

di spl ay nane of the vendor
Vendor =Sof t war e GrbH

contact emmi| address for the custoner
#Cont act =

emai | address that should be used to send notifications.

|If none is provided the address from"Contact" will be used

Note: An enpty enmmil (NotificationEmail=) is not valid! Renobve the
line (or

put in conments) in this case

#Noti fi cati onEmai |l =

optional: website of the vendor for nore information
Websi t eVendor =ht t p: / / www. sof t war e. com

optional: display nane of the maintainer

| f the vendor does not nmintain the application, this is the place,
where the nmintai ner can be nanmed. This value is optional

Mai nt ai ner =Mai nt ai n GrbH

optional: website of the nmmintainer for nore infornmation
Websi t eMai nt ai ner=htt p: //ww\. nai nt ai n. com

optional: |If the Application provides its own web interface
it can be specified. The App Center then points to it if installed.
Webl nt er f ace=/ appl i cati on- webi nt erf ace

optional: A dedicated nane for the web interface nmay be given
If not, Nane is taken
Webl nt er f aceNanme=Web i nterface of The Application

Weblnterface will be added to UCS startsite.

Possi bl e val ues: service, adnin, False. If not given "service" is
used.

Only useful when a Wbl nterface is defined

UCSOver vi ewCat egor y=admi n

The m ni mal amobunt of nmenory in MB. This value is conpared with the
currently available nenory (w thout Swap) when trying to install the
application. A value of 0O disables the check

M nPhysi cal RAM=1024

ot her applications which cannot be installed at the sane tine (coma
separated list) (optional)
Confl i ct edApps=f ooapp, bar app

98
www.univention.de

@ univention

be open.
Application meta file

ot her applications which need to be installed first (coma separated
l'ist)

(optional)

Requi r edApps=bazapp, quxapp

syst em packages which conflict with the application (coma separated
list) ... these are essential simlar to those conflicts specified in
t he debi an packages t hensel ves, however, in order to show conflicts
directly in the app center and w t hout querying the debi an package

i nformati on, these can be specified in the .ini file, as well
(optional)

Confl i ct edSyst enPackages=nysql 5, pyt hon2. 5

HHHHHH

application packages to be installed (conma separated |ist)
Def aul t Packages=uni venti on-application

optional: |If the application adds its own UMC Module, it can be added
here. The App Center can then directly point to that nodule if it is
installed. Nane as specified in the UMC XM. File of that nodule.
UMCModul eNane=uni vent i on- appl i cati on- nodul e

optional: A nodule nay have a multiple Flavors. UDM uses this

functionality. |If the application does not add a dedi cated UMC Modul e
but extends UDM the UMCModul eNanme shoul d be "udnml and the flavor

shoul d be specified:

#UMCMbdul eFl avor =user s/ user

optional: |f domamin users have to be sonehow nodified ("activated") to
use the application, the following Iine should be included so that the
App Center can give a hint and point to the Users nodul e of UDM

User Acti vat i onRequi r ed=Tr ue

allow installation on these server roles
Ser ver Rol e=donmi ncont rol | er _mast er, domai ncontrol | er _backup, domai ncontrol | er _sl ave,

allow installation on these architectures

possi bl e val ues are (conma separated): and64, i386
if not set, both architectures are supported
#Support edAr chi t ect ures=and64, i 386

whet her a "Shop" button is displayed in the App details, leading to
t he ShopURL
UseShop=Tr ue

URL that the user is directed to. Only makes sense in conbination wth
UseShop=Tr ue.

Default is https://shop.univention.com

ShopURL=ht t ps: // shop. nmai nt ai n. com appl i cati on

When UCS is not nanagi ng the domain but instead is only part of a

W ndows
controlled Active Directory domain, the environnment in which the app
runs is

_) . 99
www.univention.de

@ univention

be open.
Application meta file

different and certain services that this app relies may not not be
runni ng.

Thus, there are issues and inconpatibilities that should be stated:

* App should not be installed in an AD (results in not being shown in
t he App

Center in such environnents):

#ADMenber | ssueH de=Tr ue

* App needs a password service running on the Wndows donain
controller, e.g.

because it needs the sanba hashes to authenticate users (results in
a

warning and a link to the docunentati on how to set up that service
in such

envi ronnent s)

#ADMenber | ssuePasswor d=Tr ue

German translations

[de]

Descri pti on=Lorem i psum dol or sit anet, consetetur sadipscing elitr, se.
LongDescri pti on=Lorem i psum dol or sit anet, consetetur sadi pscing
elitr, sed diam nonuny eirnod tenpor invidunt ut | abore et dol ore
magna al i quyam erat, sed di am vol uptua. At vero eos et accusam et
justo duo dolores et ea rebum Stet clita kasd gubergren, no sea

t aki mat a sanctus est Loremipsumdolor sit amet. Lorem i psum dol or
sit anmet, consetetur sadipscing elitr, sed di am nonuny eirnod tenpor
i nvidunt ut |abore et dolore nmagna aliquyamerat, sed di am vol upt ua.
At vero eos et accusamet justo duo dol ores et.

Sizing informati on about a single server running the app that nmanages
X users (conputers...)

Opti onal

#[Si zi ng: 10]

#CPU=1

#RAME1 GB

#Di sk=20 GB

#

#[Si zi ng: 100]

#CPU=2

#RAME2 GB

#Di sk=30 GB

#

#[Si zi ng: 5000]

#CPU=8

#RAME32 GB

#Di sk=500 GB

Thisfile needs to be shipped with the application and should be updated with each new version of the appli-
cation at least changing Ver si on.

Besidesthetext file and the above mentioned statements, a product logo and ascreenshot, if given, are needed:
» Product logo in PNG format, size: 50x50 pixels, with transparent background. Required.
* Screenshot of the application. Format can be JPG or (preferably) PNG. Optional.

A few variables of theini file need further explanation:

100 _)
www.univention.de

@ univention

be open.
Application meta file

ID
Needs to stay the same all thetime. It is used to connect different versions.

Categories
Commaseparated list of categories. In order to keep the overal list clean and simple an application should
use categories from thislist:

* Administration

* Business

+ Collaboration

+ Education

e System services
¢ UCS components
* Virtuaization

Version
Hastoriseevery time. Needsto be comparable, i.e. versions consisting only of acodename are not useful.
Inthe App Center, only the newest version (or the currently installed one) is shown. It ispossibleto install
one specific version but this needs knowledge of internal 1Ds (beyond control even for the application
vendor).

LongDescription
A (more exhaustive) description that will be displayed when viewing the details of the application. Since
UCS 3.2 thisdescription needsto bein HTML (thisalso meansthat characterslike"&" need to be escaped
to "&"). Other variables are escaped automatically if not stated otherwise (meaning that "&" may
be used).

MinPhysica RAM
The minimal amount of free memory in MB when trying to install the application. The application should
work fluently above that limit at least for smaller environments.

In UCS 3.1 an installation was prevented when this test failed. If thislimit is set very high many testers
will be unable to install this application for UCS 3.1 as there is no easy way to skip this test. Since UCS
3.2 thistest only shows awarning that can be overridden by the user.

RequiredApps
Application 1Ds for apps that need to be installed in order to run this one correctly. These applications
will not be installed automatically. New in UCS 3.2.

ConflictedSystemPackages
Package names that may not be installed along with the application. It is highly recommended that this
list isreflected on dpkg level in some other package of the application. Thislist isjust to show the user
conflicts before the application is to be installed. Conflicts on package level are resolved automatically
and the user has to confirm if some packages will be uninstalled. Same for Conf | i ct edApps.

DefaultPackages
A list of packages that will be installed. It is recommended to keep this list as small as possible and
install other packages as dependencies as thisis less error prone. Preferably only one package like uni-
vention-appnane isgiven here.

' ’ 101
www.univention.de

@ univention

be open.
Application meta file

DefaultPackagesM aster

Warning

This attribute is deprecated and should not be used anymore. Old apps will have to be migrated
eventually. Please see below for some easy replacements. Otherwise get in touch with Univen-
tion if you feel that you need DefaultPackagesMaster functionality.

Installing an application may require an extension of the LDAP schema. This can be done by providing a
separate package for thisschemafileand install it on the master domain controller (and all backup domain
controller servers). The App Center will install these packages automatically throughout the domain —
in opposite to the Def aul t Packages which are only installed locally. Another differenceisthat these
packages will not be uninstalled even when the whole application is removed because a schemathat was
used beforeit is removed again will break the whole LDAP server.

Since UCS 3.2 it is possible (and preferable) to register schema extensions via the Join Script (see Sec-
tion 9.10.1). In most cases this makes Def aul t PackagesMast er unnecessary.

Screenshot
In contrast to the product |ogo, the screenshot hasto be given explicitly in theini file. That isthe filename
(with file extension, without any webserver or directory).

NotifyVendor
See Section 9.7 for further explanation. Has to be set to Tr ue to be activated.

UseShop
New in UCS 3.2: Boolean value whether alink shall be displayed leading directly to some kind of shop.
If ShopURL isnot givenht t ps: // shop. uni vent i on. comisused by default.

SupportURL
New in UCS 3.2: Pointsto awebsite where the user can get/buy support for the app. If not set, the user will
instead be encouraged to contact the app vendor (Cont act). If set to None, the user will see something
like "No support option provided".

ShopURL
New in UCS 3.2: Only makes sense in combination with UseShop=Tr ue. The following parameters
are sent to this URL via GET:

» key_id (Key ID of the License)

 ucs version (major and minor version of UCS, e.g. 4.0)
 app_id (internal 1D of the Application)

* app_version (current version of the Application)

* locale (locale used in the frontend, e.g. de)

Weblnterface
If aweb frontend isinstalled by the application, one may state this here. Should probably start witha"/".

UCSOverviewCategory
New in UCS 3.2: If there is a Wbl nt er f ace the App Center automatically registers a link in the
overview page of the UCS server. By default these are added in the ser vi ce section of the overview
page. If UCSQver vi ewCat egory is set to admi n the link will be generated there. Can be disabled
completely if setto Fal se. See aso Section 9.9.1.

102 . .
www.univention.de

@ univention

be open.
Optional application files
ServerRole
Roles that may use this application, separate by comma. Pos-
sible roles are domai ncontrol | er _naster, domai ncontrol | er _backup,

donmai ncontrol | er _sl ave, and menber ser ver . In UCS 3.1 these applications were visible but
not installable (an error message was shown). Since UCS 3.2 they are completely hidden. This meansthat
Ser ver Rol e must not change throughout the lifetime of an application (at least not more restrictive).

[Sizing: xx]
(Optional) Sections starting with Si zi ng are not evaluated by the App Center itself but give Cloud
Service Providersahint how to tailor aserver for acustomer. The number inside the section name means
users (or something el se depending on the app's functionality) working with the app (not simultaneously,
of course). The following variables can be defined inside this section:

CPU: The number of cores, eg., 2
RAM The amount of memory and the unit, e.g., 2 GB
Di sk: The amount of disk space and the unit, e.g., 20 GB

The numbers should be minimal, enabling a reasonable performance. The following sections are com-
mon: [Si zi ng: 10],[Si zi ng: 50],[Si zi ng: 100],[Si zi ng: 500],[Si zi ng: 1000],
[Si zi ng: 5000].

9.5. Optional application files Fecdback{)

Along with the . i ni file, there are more files that can be shipped along with the Application, each of them
optionally (at least in English if given):

LICENSE_AGREEMENT
A filethe user hasto accept before the installation starts. Asof UCS 3.2 HTML inthisfileisallowed and
it may be localised by using the files LI CENSE_AGREEMENT _ENresp. LI CENSE AGREEMENT _DE.

| mportant

As stated above HTML in this file is now alowed (and enforced). It was not in UCS
3.1 but received some simple auto formatting. You may have to convert an existing
LI CENSE_AGREENMENT.

README_INSTALL
A file that is presented to the user before installation (but after LI CENSE_AGREEMENT). HTML is
allowed. It may belocalised by using the files READVE | NSTALL_ENresp. READVE | NSTALL_DE.

README_POST_INSTALL
A file that is presented to the user after installation. HTML is allowed. It may be localised by using the
files READVE_POST_| NSTALL_ENresp. README_POST_| NSTALL_DE.

README_UPDATE
A filethat is presented to the user before upgrading, listing changes. Note that a user may only upgrade
to the newest version and does so in one step. Only the latest README _UPDATE is shown. As of UCS
3.2 it may belocalised by using the files README_UPDATE_EN resp. READVE _UPDATE_DE.

| mportant

As stated above HTML in this file is now allowed (and enforced). It was not in UCS 3.1 but
received some simple auto formatting. Y ou may haveto convert an existing README_UPDATE.

: ; 103
www.univention.de

https://www.univention.com/feedback/?manual=app:optionalFiles

@ univention

be open.
Uploading the application

README_POST_UPDATE
A filethat is presented to the user after upgrading. Note that auser may only upgradeto the newest version
and does so in one step. Only the latest READVE_POST_UPDATE is shown. HTML is alowed. It may
be localised by using the files README_POST _UPDATE_EN resp. READVE_POST_UPDATE_DE.

README
A README file that the user may see in a dedicated Univention Management Console module for the
installed application. Should contain something like first steps with the installed application and explain
what can be done with it and how. HTML isallowed. It may be localised by using the files READVE_EN
resp READVE_DE.

README_UNINSTALL
A filethat is presented to the user before uninstallation. HTML is allowed. It may be localised by using
the files READVE_UNI NSTALL_ENresp. READVE_UNI NSTALL_DE.

README_POST_UNINSTALL
A filethat is presented to the user after uninstallation. HTML isallowed. It may belocalised by using the
files READVE_PCOST_UNI NSTALL_ENresp. READVE_POST_UNI NSTALL_DE.

9.6. Uploading the application Feedback £}

If the meta data (text file, logo and screenshot) and the packages are ready for upload, they can be put into a
file archive (. zi p or (preferably) . t ar. gz) and uploaded to http://upload.univention.de. If the archiveis
larger than 150 MB it has to be split into single parts not larger than 150 MB.

A unique upload ID will be displayed after the download that has to be forwarded to Uni-
vention. Please send the following information via e-mail to <appcenter @ni venti on. de>
[mailto:appcenter @univention.de]:

« Upload ID for thefile archive. Please provide all upload IDs if the archive had to be splitted.
» Grant permission to Univention to distribute the software through Univention App Center.

All further communication will be done through the ticket system after the upload.

9.7. Notifications Feedback {)

Univention always receives an estranged notification for statistical purposes upon installation and uninstalla-
tion of an application in Univention App Center that is only saved at Univention for data processing and will
not be forwarded to any third party.

Depending on the guideline of the respective application vendor an updated UCS license key with so-called
key identification (Key ID) is required for the installation of an application. In this case, the Key ID will
be sent to Univention together with the notification. As a result the application vendor regularly receives a
message from Univention with the following information:

* Name of theinstalled application
* Registered email address

The description of every application includes a respective indication for such cases and is shown before in-
stallation.

If aUCS environment does not have such akey at itsdisposal (e.g. UCS Core Edition) and the vendor requires
aKey ID, the user will be asked to request an updated license key directly from Univention. Afterwards the
new key can be applied and the application installed.

104 _)
www.univention.de

https://www.univention.com/feedback/?manual=app:upload
http://upload.univention.de
mailto:appcenter@univention.de
mailto:appcenter@univention.de
https://www.univention.com/feedback/?manual=app:notification

@ univention

be open.
Updates for the application

9.8. Updates for the application Feedback{)

If an update for an application is available, the software vendor has to provide the recent packagesto Univen-
tion. The updated packages go in genera through the same procedure as with the initial process described
in Section 9.3.

This holds for minor updates (i.e. just small bug fixes) as well as major updates (added functionality, over-
hauled interface, etc.). The vendor is responsible for a smooth transition from one version to another.

| mportant

The App Center always installs the newest version, i.e. we do not incrementally upgrade an applica-
tion. So each newer version needs to make sure that the update from any older version works.

For the App Center, there is no difference between aminor and amajor update. The old version is compl etely
replaced by the newer one. We do not natively support two (more or less independent) "versions lines* of
the same application (e.g. one for those who want the newest features and one for those who wish to have a
stable platform with nothing but conservative bug fixes). If thisis desired, two separate applications need to
be uploaded to the App Center that will show up next to each other. In this case the | Din the ini file needs
to be changed and the application somehow needs to make sure that they cannot both be installed in parallel
(e.g. aversion dependency on dpkg level of some meta package). Univention may help you with the details.

Updates for the application description (.ini file), the product logo, the screenshot, readme files (es-
pecially README_UPDATE) and the packages are al submitted to <appcent er @ni venti on. de>
[mailto:appcenter@univention.de]. Only those files that changed need to be uploaded again, everything else
can be copied by Univention. The ini file needs to change every time, because the Ver si on has to be in-
creased. If thisisthe only changeintheini file, this may be stated in the email instead of shipping thefile and
we will take care of that during copying. Please use the upload if a higher amount of data hasto be transferred
(see Section 9.6).

As the application has already gone through the initial approval process and passed, Univention will offer
to "semi-automatically" publish the application. 1.e. we will run our test suite while giving you the chance
to test your application. If our tests go well and we do not hear anything contrary from you, we will publish
the application by then.

9.9. Integrating the Application in UCS Feedback{)
9.9.1. Automatic integration done by the App Center Feedback ()

Some tasks can be done automatically by the App Center and do not need any (or much) help from the vendor.

New in UCS 3.2: The overview of any UCS system (i.e. plain https://I P/) can link to various web frontends,
e.g. the Univention Management Console. If the application providesaWebl nt er f ace intheini file, alink
isbuilt automatically, with the ini's Name and Descri pti on astext.

Thisfeature can be disabled by stating UCSOver vi ewCat egor y=Fal se. Thismay beagood ideaif there
are multiple web frontends and they should be maintained manually and in one place. In this case thefollowing
UCR variables should be setin post i nst and removed in post r m(see also Section 8.1):

ucs/web/overview/entries/service/appi d/icon
Path to the icon for the link.

ucs/'web/overview/entries/service/appi d/label
English version of the headline. Germanversionisucs/ web/ over vi ew entri es/ servi ce/ ap-
pi d/ | abel / de

: ; 105
www.univention.de

https://www.univention.com/feedback/?manual=app:update
mailto:appcenter@univention.de
mailto:appcenter@univention.de
https://www.univention.com/feedback/?manual=app:integration
https://www.univention.com/feedback/?manual=app:integration-by-app-center

@ univention

be open.
Scope of the vendor

ucs/'web/overview/entries/service/appi d/description
English version of the short text below the headline. German version is ucs/ web/ over vi ew en-
tries/servicel/appi d/ description/de

ucs/web/overview/entries/service/appi d/link
Link to the web interface. Probably something like/ appi d.

New in UCS 3.2 Each application registers itself in the LDAP directory and sets the hosts on which it is
installed automatically. These information can be accessed by any machi ne connecti on. The path is
uni vent i onAppl D=appi d_appver si on, cn=appi d, cn=apps, cn=uni venti on, | dap_base.
See also Chapter 6 if this data shall be accessed.

9.9.2. Scope of the vendor Feedback £}

Reuse users, groups, computers aready administered in domain.

An Application may need more attributes than there are present. For example something like This user isal-
lowed to use the app. For thisit needs to add Extended Attributes (see Section 6.2) in a Join Script (see Chap-
ter 3) in apackagefrom Def aul t Packages. It will also haveto extend the LDAP schema. Thiscan also be
donein the Join Script (see Section 9.10.1) or, alternatively, in a package of Def aul t PackagesMast er .

If the application wants to sync certain attributes (for example passwords) there are listener modules. See

Chapter 5.
9.10. Best practices Feedback{)
9.10.1. Registration of LDAP and UDM Extensions Feedback {2}

LDAP schemaand ACL extensionsaswell as UDM syntax, UDM hook and UDM extension modules can be
installed viathe library function ucs_r egi st er LDAPEXt ensi on, see Section 3.4.3.2.

106 . .
www.univention.de

https://www.univention.com/feedback/?manual=app:integration-by-vendor
https://www.univention.com/feedback/?manual=app:bestpractices
https://www.univention.com/feedback/?manual=app:ucs_registerLDAPExtension

@ univention

b eo p en. Integration of repository components via Univention Management
Console
Chapter 10. Integration of external
repositories
10.1. Integration of repository components via Univention Management Console.............ccccvevvvnnneen. 107
10.2. Integration of repository components via Univention Configuration Registrycccoeevvvnenee. 108

Sometimes it might be necessary to add external repositories, e.g. when testing an application which is devel-
oped for the UCS@school. Such components can be registered via Univention Management Console or in
Univention Configuration Registry.

Components can be versioned. This ensures that only components are installed that are compatible with a
UCS version.

empty or unset
All versions of the same major number will be used. If for example UCS-4.2 isinstalled, all repositories
of the component with version numbers 4.0, 4.1 and 4.2 will be used if available.

current
current Using the keyword current will likewise include all versions of the same major version. Addi-
tionally it will block all minor and major upgrades of the installed UCS system until the respective com-
ponent isalso available for the new release. Patch level and errata updates are not affected. If for example
UCS-3.1iscurrently installed and UCS-3.2 or UCS-4.0 is already available, the release updated will be
postponed until the component is also available for version 3.2 and 4.0 respectively.

major.minor
By specifying an explicit version number only the specified version of the component will be used. Re-
lease updates of the system will not be hindered by such components. Multiple versions can be given
using commas as delimiters, for example 3.2,4.0.

10.1. Integration of repository components via Univen- rewaxf)
tion Management Console

A list of the integrated repository components is in the UMC module Repository Settings. Applications
which have been added via the Univention App Center are still listed here, but should be managed via the
App Center module.

A further component can be set up with Add. The Component name identifies the component on the repos-
itory server. A free text can be entered under Description, for example, for describing the functions of the
component in more detail.

The host name of the download server isto be entered in the input field Repository server, and, if necessary,
an additional file path in Repository prefix.

A Username and Passwor d can be configured for repository servers which require authentication.
A software component is only available once Enable this component has been activated.

A differentiation is also made for components between maintained and unmaintained components.

_) 107
www.univention.de

https://www.univention.com/feedback/?manual=computers:Integration_of_repository_components_via_the_Univention_Management_Console

@ univention

Integration of repository components via Univention Configura- b e open.
tion Registry

10.2. Integration of repository components via Univen- rewsxf
tion Configuration Registry

The following Univention Configuration Registry variables can be used to register a repository component.
Itisalso possible to activate further functions here which cannot be configured viathe UMC module. NAME
stands for the component's name:

repository/onlinel/ conponent/ NAMVE/ server
The repository server on which the components are available. If this variable is not set, the server from
the Univention Configuration Registry variabler eposi t ory/ onl i ne/ server uses.

reposi tory/online/ conponent/ NAME
This variable must be set to enabled if the components are to be mounted.

reposi tory/online/ conponent/ NAME/ | ocal mirror
Thisvariable can be used to configure whether the component ismirrored locally. In combination with the
Univention Configuration Registry variable r eposi t ory/ onl i ne/ conponent / NAME/ ser ver,
a configuration can be set up so that the component is mirrored, but not activated, or that it is activated,
but not mirrored.

repository/online/ conponent/ NAVE/ descri ption
A descriptive name for the repository.

reposi tory/ onl i ne/ conponent / NAME/ pr ef i x
Defines the URL prefix which is used on the repository server. Thisvariable is usually not set.

reposi tory/ online/ conponent/ NAME/ user nane
If the repository server requires authentication, the user name can be entered in this variable.

reposi tory/online/ conponent / NAVE/ passwor d
If the repository server requires authentication, the password can be entered in this variable.

reposi tory/ online/ conponent/ NAME/ ver si on
This variable controls the versions to include, see Chapter 10 for details.

reposi tory/online/ conponent/ NAME/ def aul t packages
A list of package names separated by blanks. The UMC module Repository Settings offerstheinstallation
of this component if at least one of the packages is not installed. Specifying the package list eases the
subseguent installation of components.

108 . .
www.univention.de

https://www.univention.com/feedback/?manual=computers::softwaremanagement::repoadducr

@ univention

be open.
Univention Management Console tranglations

Chapter 11. Translating UCS

11.1. Univention Management Console translationsc..oveeiiiiiiiiieiiie e e 109
11.1.1. Prepare anew translationcccuuiiiiiiii e 109
11.1.2. Create anew translation PaCKAGEuevvuieiiiiei e e e e e 109
11.1.3. Edit translation fillESuuiiei e 110
11.1.4. Update the trandation PaCKageccovuiiiiiiiiiiceie e e 110
11.1.5. Build the trandation PaCKAgEccevuiiiiieiiii e e 111

11.1. Univention Management Console translations

By default UCS includes English and German localisation. A package is provided to enable users to create
additional trandations for the Univention Management Console.

This section describes all steps necessary to create a working trandlation package for UCS. To create a new
translation package it is advised to have a running UCS server where the package can be setup. A current
Subversion checkout of the UCS source code is required. After installing the trandlation template package, a
new trandation for atarget language can be created.

11.1.1. Prepare a new translation

The following steps are required to setup a UCS server to create a new translation package.

Package univention-ucs-trandlation-template
The package univention-ucs-trand ation-template contains all tools required to setup and update atrans-
lation package. It requires some additional Debian tools to build the package. The following packages
must be installed on an UCS server by running the following command:

uni vention-install univention-ucs-translation-tenpl ate dpkg-dev

A current checkout of the UCS Subversion repository
The base trandation files are available in the UCS Subversion repository. A current checkout can be
obtained by running the following commands:

nkdir ~/translation
cd ~/transl ation
svn co http://forge. univention.org/svn/dev/branches/ucs-4.0/ucs-4.0-0

Changes made to the Univention Management Console should be synchronized regularly to the local
Subversion checkout. This can be done by executingsvn up ~/transl ati on/ ucs-4. 0-0.

11.1.2. Create a new translation package

To create anew transation package for e.g. French in the users home directory, the following command must
be executed:

cd ~/transl ation
uni venti on-ucs-transl ati on-bui | d- package \
-s ~/translation/ucs-4.0-0 -c fr -1 fr_FR UTF-8: UTF-8 -n French

This creates a new directory uni venti on-ucs-transl ati on-fr/, which contains a Debian source
package of the same name. It includes all source and target files for the trandlation.

: ; 109
www.univention.de

Feedback Q

Feedback Q

Feedback Q

https://www.univention.com/feedback/?manual=misc:translation
https://www.univention.com/feedback/?manual=misc:translation:preparation
https://www.univention.com/feedback/?manual=misc:translation:createpackage

@ univention

be open.
Edit trandation files

11.1.3. Edit translation files Feedback £}

The trandation source files are located below the directory f r/ . Each file should be edited to create the
trandation. There are two file formats in common use:

. po files
Thesefiles are generated by the package gettext. The gettext manual can befound at http://www.gnu.org/
software/gettext/manual/gettext.html. Translation files created by gettext consist of a header and various
entries of the form

#: unt/ app. | s: 637

#, python-for mat

nsgid "The % will expire in % days and should be renewed!"
nmsgstr ""

Thefirst line provides a hint, were the text is used. The second lineis optional and contains flags, which
indicate the type and state of the trandlation. The string f uzzy indicates an entry, which was copied by
get t ext from aprevious version and needs to be updated. The flag has to be removed afterwards.

The line starting with msgi d contains the original text. The trandation has to be placed on the line
containing nsgst r . Long texts can be split over multiple lines, were each line must start and end with
a quote. The following example from the German trandation shows a text spanning two lines, with the
placeholder present in the original and translated text.

#: unc/j s/ appcent er/ AppCent er Page. j s: 1067

#, python-for mat

msgid ""

"If everything el se went correct and this is just a tenporary network
"probl em you should execute % as root on that backup system™
msgstr ""

"Wenn keine weiteren Fehler auftraten und dies nur ein tenporéres
"Net zwer kproblemist, sollten Sie % als root auf dem Backup System
ausf ohren."

Some lines contain parameters, in this example % and %. They areindicated by aflag likec- f or mat
or pyt hon- f or mat , which must not be removed. The placeholders have to be carried over to the
trandated string unmodified and in the same order. Some other files contain placeholders of the form
% t ext } s, which are more flexible and can be reordered.

After afile has been translated completely, the line containing f uzzy at the beginning of the file should
be removed to avoid warnings. If atrandlation string consists of multiplelinesthe translated string should
roughly contain as many lines asthe original string.

.htm files
Some Univention Management Console dialogues are based on HTML files. In this case a copy of the
English HTML fileis provided with anew name for the target language. Thefull file hasto be trand ated.

11.1.4. Update the translation package Feedback{)

Thefollowing steps are needed to upgrade the translation to anew UCSrelease, or if changes have been made
in the tranglation.

Update trand ation source files
If changes occur in the UCS source packages that need a change of the trandation files, the source files
should be updated. To update the source files, change the directory of the translation package and update
the files by executing the following commands:

110 : ;
www.univention.de

https://www.univention.com/feedback/?manual=misc:translation:translate
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
https://www.univention.com/feedback/?manual=misc:translation:updatepackage

@ univention

be open.
Build the trandlation package

cd ~/transl ati on/ uni venti on-ucs-transl ati on-fr
uni venti on-ucs-transl ati on- updat e-source-files \
-s ~/translation/ucs-4.0-0 -c fr

Update trandlation target files

| mportant

Thisstep isnecessary each time before compiling the transl ation package. If thetranslation target
files are not updated, the trandation will not be shown in the Univention Management Console

After the trandation the source files have to be compiled. This step can also be done in an early stage
of the trandlation, when it is not yet complete. To update the target files, change to the directory of the
translation package and compile the source files by executing the following commands:

cd ~/transl ati on/ uni venti on-ucs-transl ati on-fr
uni vention-ucs-transl ati on-update-target-files \
-s ~/translation/ucs-4.0-0 -c fr

11.1.5. Build the translation package Feedback {2}

Before using the new tranglation, the Debian package has to be built and installed. This can be done with the
following commands:

cd ~/transl ati on/ uni venti on-ucs-transl ation-fr
dpkg- bui | dpackage
dpkg -i ../univention-ucs-translation-fr_*.deb

After logging out of the Univention Management Console the new language should now be selectable in
the Univention Management Console login window. Untrandated strings will be still shown in their origina
language, i.e. in English.

_ _ 111
www.univention.de

https://www.univention.com/feedback/?manual=misc:translation:buildpackage

112

@ univention

be open.
Separate repositories

Chapter 12. Univention Updater

12.1. SEPArALE FEPOSITOMIES ... et eeeeee ettt ettt et e e e et et et e e et e e et e e e aa e e ea e e et e eeanaaeanans 113
12,2, UPAELEN SCIPES ettt ettt ettt ettt e et e et e e et et e e et e e et et et e e et e e et e eean e eanaans 113

12.2.1. Digit@l SIONAIUIEceniit ettt e et e et e e et e e et e e e e eaneaes 114
12.3. Release update WalKthrough 114

The Univention Updater is used for updating the software. It is based on the Debian APT tools. On top of that
the updater provides some UCS specific additions.

12.1. Separate repositories Feedback{)

UCSreleases are provided either viaDV D images or viaonline repositories. For each major, minor and patch-
level release there is a separate online repository. They are automatically added to the filesin/ et ¢/ apt /
sources. | i st. d/ depending onthe Univention Configuration Registry variablesver si on/ ver si on
andver si on/ pat chl evel , which are managed by the updater.

Separate repositories are used to prevent automatic updates of software packages. Thisis done to encouraged
users to thoroughly test a new release before their systems are updated. The only exception from thisrule are
the errata updates, which are put into a single repository, which is updated incrementally.

Therefor the updater will include the repositories of a new release in a file caled /etc/ apt/
sources. list.d/00_ucs_tenporary_errata__conmponents_update. |ist andthendothe
updates. Only at the end of a successful update are the Univention Configuration Registry variables updated.

Additional components can be added as separate repositories using Univention Configuration Registry vari-
ablesr eposi tory/ online/ component/ .., which are described in ???? manual. Setting the variable
..l versi on=current can be used to mark a component as required, which blocks an upgrade until the
component is available for the new release.

12.2. Updater scripts Feedback{)

In addition to the regular Debian Maintainer Scripts (see Section B.3.5) the UCS updater supports additional
scripts, which are called before and after each release update. Each UCS release and each component can
include its own set of scripts.

preup. sh
These scriptsis called before the update is started. If any of the scripts aborts with an exit value unequal
zero, the updateis canceled and never started. The scripts receives the version number of the next release
as an command line argument.

For componentstheir pr eup. sh scriptsiscalled twice: Once beforethe main releasepr eup. sh script
iscalled and once more after the main script was called. Thisisindicated by the additional command line
argument pr e respectively post , which isinserted before the version string.

post up. sh
These scripts is called after the update successfully completed. If any of the scripts aborts with an exit
value unequal zero, the update is canceled and does not finish successfully. The scripts receives the same
arguments as described above.

The scripts are located in the al | / component of each release and component. For UCS-4.0 this would be
4.0/ mai ntai ned/ 4.0-0/all/preup.sh and 4. 0/ mai nt ai ned/ conponent s/ sone- com
ponent/al | / preup. sh forthe pr eup. sh script. The same appliestothepost up. sh script. Thefull
processis shown in Procedure 12.1.

; g 113
www.univention.de

https://www.univention.com/feedback/?manual=updater:repositories
https://www.univention.com/feedback/?manual=updater:scripts

@ univention

be open.
Digital signature

12.2.1. Digital signature Feedback {2}

From UCS 3.2 on the scripts must be digitally signed by an PGP (Pretty Good Privacy) key stored in the key-
ring of apt-key(8). The detached signature must be placed in a separate file next to each updater scripts with
the additional file name extension . gpg, that ispr eup. sh. gpg and post up. sh. gpg. These extrafiles
are downloaded aswell and any error in doing so and in the validation process aborts the updater immediately.

The signatures must be updated after each change to the underlying scripts. This can be automated or be done
manually with a command like the following: gpg -a -u key-id --passphrase-file key-
phrase-file -o script.sh.gpg -b script.sh

Signatures can be checked manually using the following command: gpgv - - keyring /etc/apt/
trusted. gpg script.sh.gpg script.sh

12.3. Release update walkthrough Feedback{)

For an release update the following steps are performed. It assumes asingle component is enabled. If multiple
components are enabled, the order in which their scripts are called is unspecified. It shows which scripts are
called in which order with which arguments.

Procedure 12.1. Update process steps
1. Createtemporary sourcelist file0O0_ucs_tenporary_errata__conponents_update.|i st

2. Download the pr eup. sh and post up. sh filesfor the next release and al componentsinto atempo-
rary directory and validate their PGP signatures

3. Executeconponent - preup. sh pre $version

4, Executer el ease- preup. sh $version

5. Executeconponent - preup. sh post $version

6. Download the new Packages and Rel ease files. Their PGP signatures validated by APT internally.
7. Preform the update

8. Executeconponent - post up. sh pre $version

9. Executer el ease- postup. sh $version

10. Executecomponent - post up. sh post $versi on

11. Set therelease related Univention Configuration Registry variables to the new version

114 . .
www.univention.de

https://www.univention.com/feedback/?manual=updater:scripts:signature
https://www.univention.com/feedback/?manual=updater:release-update

@ univention

be open.

Databases
Chapter 13. Miscellaneous

13,1, DEIADESESceeeeeteti ettt ettt e e e e et bbb e e e e eeanraaa s 115
13,10, POSEGrESQL ...eiiiieiiite e e ettt e ettt ettt e et e e e e e e e ernaaa s 115
1302 MY SO ettt e et e bbb e e e e e eanraaaas 115
L3.2. UCS TN ettt e e ettt et e e e e et ettt bb e e e e e e e e e bbb e e e e eeennaa 115
13.3. FUNCLION LIDIAIES ..oeviiieeeiii ettt ettt et e e e e e ennens 117
13.3.1. Shell-UnIVeNtioN-1iDccooviiiii e 117
13.3.2. python-univention-libD 117
13.4. LOGIN ACCESS CONIOIuuiiiiitii ettt et et e et e et e e e 118
13.5. NetWOrk Packet FIITErc.uuiiiiiii et eeeas 119
13.5.1. Filter rules by Univention Configuration REgIStIYcoovviiiiiiiiiiiiiiiec e, 119
13.5.2. Local filter rulesviai pt abl €S COMMaNdScoeeuiiiiiiiiiiieii e 120
13.5.3. Testing Univention Firewall SEttingSoveieruiiiiiiiiieieii e 120

13.1. Databases Feedback ()

UCS ships with two major database management systems, which are used for UCS internal purposes, but can
also be used for custom additions.

13.1.1. PostgreSQL Feedback {2}

UCS uses PostgreSQL by default for its package tracking database, which collects the state and versions of
packagesinstalled on all systems of the domain.

1312 MySQL FeedbackQ

By default the MySQL root password issetto . Debian provides the dbconfig package, which can be used
to create and modify additional databases from maintainer scripts.

13.2. UCS lint Feedback {)

Useucsl i nt to find packaging mistakes. Called best from debi an/ r ul es, needs build dependency on
ucslint.

override_dh_auto test:
dh_aut o_t est
ucsl i nt

For each issue, ucsl i nt prints one line, which line contains several fields separated by : :

severity: modul e-id-test-id[:filenane[:!|ine-nunber[:colum-
nunmber]]]: nessage

For someissues extra context datais printed on the following lines, which are indented with space characters.
All other lines start with aletter specifying the severity:

E
Error: Missing data, conflicting information, real bugs.

W
Warning: Possible bug, but might be okay in some situations.

; g 115
www.univention.de

https://www.univention.com/feedback/?manual=misc:database
https://www.univention.com/feedback/?manual=misc:postgresql
https://www.univention.com/feedback/?manual=misc:mysql
https://www.univention.com/feedback/?manual=misc:ucslint

@ univention

be open.
UCSlint
|
Informational: found some issue, which needs further investigation.
S
Style: There might be some better less error prone way.
The severities are ordered by importance. By default ucsl i nt only aborts on errors, but this can be over-
written using the - - exi t code- cat egor i es argument followed by a subset of the characters EW S.
After the severity anidentifier follows, which uniquely identifies the module and thetest. The moduleisgiven
asfour digits, which is followed by a dash and the number of the test in that module. Currently the following
modules exist:
0001-CheckJoinScript
Checksjoin fileissues
0002-CopyPasteErrors
Checksfor copy& paste error from example files
0004-CheckUCR
Checks UCR infofiles
0006-CheckPostinst
Checks Debian maintainer scripts
0007-Changelog
Checksdebi an/ changel og file for conformance with Univention rules
0008-Tranglations
Checks trandlation files for completeness and errors
0009-Python
Checks Python files for common errors
0010-Copyright
Checks for Univention copyright
0011-Control
Checksdebi an/ cont r ol filefor errors
0013-bashism
Checksfilesusing / bi n/ sh for BASH constructs
0014-Depends
Checks files for missing runtime dependencies on UCS packages
0015-FuzzyNames
Checks for mis-spellings of Univention
0016-Deprecated
Checksfiles for usage of deprecated functions
0017-Shell
Checks shell scripts for quoting errors
The module and test number may be optionally followed by afile name, line number in that file, and column
number in that line, where the issue was found. After that a message is printed, which describes the issue
in more detail.
116

www.univention.de

@ univention

be open.
Function Libraries

Sinceucsl i nt isvery Univention centric, many of its tests return fal se positives for software packages by
other parties. Therefore many tests need to be disables. For that afiledebi an/ ucsl i nt. overri des can
be created with list of modules and test, which should be ignored. Without specifying the optional filename,
line number and column number, the test is globally disabled for all files.

13.3. Function Libraries Feedback {)

The source package univention-lib provides two binary packages shell-univention-lib and python-univen-
tion-lib, which contain common library functions usable in shell or Python programs.

13.3.1. shell-univention-lib Feedback {2}

This package provides severa librariesin/ usr/ shar e/ uni venti on- | i b/, which can be used in shell
scripts.

[usr/share/univention-I|ib/adnenber. sh
Thisfile contains some helpers to test for and to manage hosts in AD member mode.

/usr/share/univention-lib/base. sh
This file contains some helpers to create log files, handle unjoin scripts (see Section 3.5) or query the
network configuration.

/usr/share/univention-1ib/ldap.sh
This file contains some helpersto query datafrom LDAP, register and unregister service entries, LDAP
schemaand LDAP ACL extensions.

/usr/share/univention-lib/sanba. sh
Thisfile contains a helper to check is Samba4 is used.

[usr/share/univention-I|ib/ucr.sh
This file contains some hel pers to handle bool'ean Univention Configuration Registry variables and han-
dle UCR files on package removal.

/usr/ share/univention-lib/unt.sh
This file contains some helpers to handle UMC (see Chapter 7) related tasks.

/usr/share/univention-lib/all.sh
Thisisaconvenient library, which just includes al libraries mentioned above.

13.3.2. python-univention-lib Feedback {)

This package provides several Python libraries located in the module univention.lib.

univention.lib.admember
This module contains functions to test for and to manage hostsin AD member mode.

univention.lib.atjobs
This module contains functions to handl e at-jobs.

univention.lib.error
This module provides the function f or mat Tr aceback, which returns the full stack trace for an ex-
ception.

univention.lib.fstab
This module provides some functions for handling thefile/ et ¢/ f st ab.

_) 117
www.univention.de

https://www.univention.com/feedback/?manual=misc:lib
https://www.univention.com/feedback/?manual=misc:lib:sh
https://www.univention.com/feedback/?manual=misc:lib:python

@ univention

be open.
Login Access Control

[usr/ shar e/ pyshared/ uni vention/li b/ get Mai | FromVai | Or Ui d. py { uid |
email }

This program returns the distinguished name of the user, which either matches the user identifier or email
address given to the command as an argument.

univention.lib.i18n
This module provides some classes to handle texts and their trandations.

univention.lib.Idap_extension
This module provides some helper functions internally used to register LDAP extension as described in
Section 9.10.1.

univention.lib.listener SharePath

This module provides some helper functions internally used by the Directory Listener module handling
file shares.

univention.lib.locking
Thismodule provides some functionsto implement mutual exclusion using file objects aslocking objects.

univention.lib.misc
This module provides miscellaneous functions to query the set of configured LDAP servers, localized
domain user names, and other functions.

univention.lib.package manager
This module provides some wrappers for dpkg and APT, which add functions for progress reporting.

univention.lib.s4
This module provides some well known SIDs and RIDs.

univention.lib.shell
This module provides two functions for escaping shell command line arguments and creating at jobs.

univention.lib.ucrLogrotate
This module provides some helper functions internally used for parsing the Univention Configuration
Registry variables related to logrotate(8).

univention.lib.ucs
This module provides the class UCS_Ver si on to more easily handle UCS version strings.

univention.lib.umc_connection
This module provides the class UMCConnect i on to handle connections to remote UMC servers.

univention.lib.umc_module
This module provides some functions for handling icons.

univention.lib.urllib2_ssl
Thismodule provides a pack-port of urllib2 from Python-3.3, which implements proper certificate check-
ing.

13.4. Login Access Control Fecdback ()

Access control to services can be configured for individual services by setting certain Univention Config-
uration Registry variables. Setting aut h/ SERVI CE/ restri ct totrue enables access control for that
service. This will include the file/ et ¢/ securi ty/ access- SERVI CE. conf , which contains the list
of allowed users and groups permitted to login to the service. Users and groups can be added to that file by
setting aut h/ SERVI CE/ user / USER and aut h/ SERVI CE/ gr oup/ GROUP tot r ue respectively.

118 . .
www.univention.de

https://www.univention.com/feedback/?manual=misc:acl

@ univention

be open.
Network Packet Filter

13.5. Network Packet Filter Feedback {)

Firewall rulesare setup by univention-firewall and can be configured through Univention Configuration Reg-
istry or by providing additional UCR templates.

13.5.1. Filter rules by Univention Configuration Registry Feedback {)

Besides pre-defined service definitions, Univention Firewall aso allows the implementation of pack-
age filter rules via Univention Configuration Registry. These rules are included in / et ¢/ securi -
ty/ packetfilter.d/ viaaUnivention Configuration Registry module.

Filter rules can be provided via packages or can be configured locally by the administrator. Local rules have
ahigher priority and overwrite rules provided by packages.

All Univention Configuration Registry settings for filter rules are entered in the following format:

Local filter rule
security/ packetfilter/protocol/port(s)/address=policy

Package filter rule
security/packetfilter/package/ package/ protocol/port(s)/address=policy

The following values need to be filled in:

package (only for packaged rules)
The name of the package providing the rule.

pr ot ocol
Can beeither t cp for server services using the Transmission Control Protocol or udp for servicesusing
the statel ess User Datagram Protocol.

port,

m n- port: max- port
Ports can be defined either as a single number between 1 and 65535 or as a range separated by a colon:
m n- port: max- port

addr ess
Thiscan beeither i pv4 for al IPv4 addresses, i pv6 for all IPv6 addresses, al | for both IPv4 and IPv6
addresses, or any explicitly specified IPv4 or IPv6 address.

policy
If aruleis registered as DROP, then packets to this port will be silently discarded; REJECT can be used
to send back an ICMP message port unr eachabl e instead. Using ACCEPT explicitly alows such
packets. (IPtables rules are executed until one rule applies; thus, if a package is accepted by arule which
isdiscarded by alater rule, then the rule for discarding the package does not become valid).

Filter rules can optionally be described by setting additional Univention Configuration Registry variables. For
each ruleand language, an additional variablesuffixedby “/ | anguage” can be used to add adescriptivetext.

Some examples:

Example 13.1. Local firewall rule

security/packetfilter/tcp/2000/al | =DROP
security/packetfilter/tcp/2000/all/en=Drop all packets to TCP port 2000
security/packetfilter/udp/500:600/al | =ACCEPT
security/packetfilter/udp/500:600/all/en=Accept UDP port 500 to 600

; g 119
www.univention.de

https://www.univention.com/feedback/?manual=misc:nacl
https://www.univention.com/feedback/?manual=misc:nacl:ucr

@ univention

be open.
Local filter rulesviai pt abl es commands

All package rules can be globally disabled by setting the Univention Configuration Registry variable secu-
rity/ packetfilter/use_packagestofal se..

13.5.2. Local filter rules via i pt abl es commands Feedback {2}

Besidesthe existing possibilitiesfor settings viaUnivention Configuration Registry, thereisal so the possibili-
ty of integrating user-defined enhanced configurationsin/ et ¢/ securi ty/ packetfilter. d/,eg.for
realising afirewall or Network Address Translation. The enhancements should be realised in the form of shell
scripts which execute the corresponding i pt abl es for IPv4 and i p6t abl e for IPv6 calls. For packages
thisis best done through using a Univention Configuration Registry template as described in Section 2.2.1.1.

Full documentation for |PTables can be found at http://www.netfilter.org/.

13.5.3. Testing Univention Firewall settings Feedback {2}

Package filter settings should always be thoroughly tested. The network scanner nmap, which is integrated
in Univention Corporate Server as a standard feature, can be used for testing the status of individual ports.

Since Nmap requires elevated privileges in the network stack, it should be started asr oot user. A TCP port
can be tested with the following command: nmap HOSTNAME - p PORT(S)

A UDP port can be tested with the following command: nmap HOSTNAME -sU -p PORT(s)

Example 13.2. Using nimap for firewall port testing

nmap 192.168. 1. 100 -p 400
nmap 192.168.1.110 -sU -p 400-500

120 . .
www.univention.de

https://www.univention.com/feedback/?manual=misc:nacl:ipt
http://www.netfilter.org/
https://www.univention.com/feedback/?manual=misc:nacl:test

Appendix A. Bug reporting

UCS is neither error free nor feature complete. Issues are tracked using Bugzilla at https./
forge.univention.org/bugzillal.

Create an account.

Search for existing entries before opening new reports.

Includethe versioninfo: ucr search --brief ~version/.
Provide enough information to help us reproduce the bug.

Search http://sdb.univention.de/

Search http://wiki.univention.de/

Search http://forum.univention.de/ and ask for help. In addition to our support team many of our partners
are also present there. Y our questions might also help other users while you may profit from issues already
solved for other users.

https://forge.univention.org/bugzilla/
https://forge.univention.org/bugzilla/
http://sdb.univention.de/
http://wiki.univention.de/
http://forum.univention.de/

Appendix B. Debian packaging

This chapter describes how software for Univention Corporate Server is packaged in the Debian format. It
allows proper dependency handling and guarantees proper tracking of file ownership. Customers can package
their own internal software or use the package mechanism to distribute configuration files consistently to
different machines.

Software is packaged as a source package, from which one or more binary packages can be created. Thisis
useful to create different packages from the same source package. For example the Samba source package
creates multiple binary packages: one containing the file server, one containing the client commandsto access
the server, and several other packages containing documentation, libraries, and common files shared between
those packages, The directory should be named package_nane- ver si on.

B.1. Prerequisites and preparation

B.2.

Some packages are required for creating and building packages.

build-essential
This meta package depends on several other packageslike compilers and toolsto extract and build source
packages. Packages must not declare an explicit dependency on this and its dependent packages.

devscripts
This package contains additional scripts to modify source package files like for example de-
bi an/ changel og.

dh-make
This program helps to create an initial debi an/ directory, which can be used as a starting point for
packaging new software.

These packages must be installed on the development system. If not, missing packages can be installed on the
command lineusing uni vent i on-i nstal | or through UMC, which is described in the [ucs-handbuch].

dh_nake

dh_make isatool, which helps creating the initial debi an/ directory. It isinteractive by default and asks
several questions about the package to be created.

Type of package: single binary, indep binary, nultiple binary, library,
kernel nodul e, kernel patch?
[s/i/ml/k/n]

s, single binary
A single architecture specific binary package is created from the source package. This is for software
which needs to be compiled individually for different CPU architectureslikei 386 and and64.

i, indep binary
A single architecture-independent binary packageis created from the source package. Thisisfor software
which runs unmodified on al CPU architectures.

m, multiple binary
Multiple binary package are created from the source package, which can be both architecture independent
and dependent.

Feedback Q

Feedback Q

https://www.univention.com/feedback/?manual=deb:prerequisites
https://www.univention.com/feedback/?manual=deb:dhmake

Debian control files

[, library
Two or more binary packages are created for a compiled library package. The runtime package consists
of the shared object file, which is required for running programs using that library. The development
package contains the header files and other files, which are only needed when compiling and linking
programs on a devel opment system.

k, kernel module
A single kernel-dependent binary package is created from the source package. Kernel modules need to
be compiled for each kernel flavour. dkms should probably be used instead. Thistype of packagesis not
described in this manual.

n, kernel patch
A single kernel-independent package is created from the source package, which contains a patch to be
applied against an unpacked Linux kernel source tree. dkms should probably be used instead. This type
of packagesis not described in this manual.

In Debian apackage normally consists of an upstream software archive, whichis provided by athird party like
the Sambateam. This collection is extended by a Debian specific second TAR archive or a patch file, which
addsthedebi an/ directory and might also modify upstream filesfor better integration into a Debian system.

When a source package is built, dpkg-source(1) separates the files belonging to the packaging process from
files belonging to the upstream package. For this to work, dpkg- sour ce needs the origina source either
provided asa TAR archive or a separate directory containing the unpacked source. If neither of theseisfound
and - - nat i ve isnot given, dh_make prints the following warning:

Coul d not find ny-package_1.0.o0rig.tar.gz
Ei ther specify an alternate file to use with -f,
or add --createorig to create one.

The warning from dh_nake states that no pristine upstream archive was found, which prohibits the cre-
ation of the Debian specific patch, since the Debian packaging tools have no way to separate upstream files
from files specific to Debian packaging. The option - - cr eat eor i g can be passed to dh_nake to create
a.orig.tar. gz archive before creating the debi an/ directory, if such separation is required.

B.3. Debian control files Feedback)

The control files in the debi an/ directory control the package creation process. The following sections
provide a short description of these files. A more detailed description is available in the [Debian FAQ].

Severd files will have the . ex suffix, which mark them as examples. To activate these files, they must be
renamed by stripping this suffix. Otherwise thefiles should be del eted to not clutter up the directory by unused
files. In case a file was deleted and needs to be restored, the origina templates can be found in the / usr /
shar e/ debhel per/ dh_nake/ debi an/ directory.

Thedebi an/ directory contains some global configuration files, which can be put into two categories: The
fileschangel og,control ,copyri ght,rul es arerequired and control the build process of al binary
packages. Most other files are optional and only affect a single binary package. Their filename is prefixed
with the name of the binary package, *

The following files are required:

changel og
Changes related to packaging, not the upstream package. See Section B.3.3 below for more information.

Lif only asingle binary package is build from the source package, this prefix can be skipped, but it is good practice to always use the prefix.

https://www.univention.com/feedback/?manual=deb:debian

Debian control files

conpat
The Debhelper tools support different compatibility levels. For UCS-3.x the file must contain a single
line with the value 7. See debhelper(7) for more details.

control
Contains control information about the source and all its binary packages. This mostly includes package
name and dependency informations. See Section B.3.1 below for more information.

copyri ght
This file contains the copyright and licence information for all files contained in the package. See Sec-
tion B.3.2 below for more information.

rul es
ThisisaMakefile style file, which controls the package build process. See Section B.3.4 below for more
information.

sour ce/ f or mat
Thisfile configures how dpkg-source(1) separates the files belonging to the packaging process from files
belonging to the upstream package. Historically the Debian source format 1. O shipped packages as a
TAR file containing the upstream source plus one patch file, which contained al files of the debi an/
sub-directory in addition to all changes to upstream files.

Thenew format 3. 0 (qui | t) replacesthe patch file with a second TAR archive containing the de-
bi an/ directory. Changesto upstream filesare no longer applied as one giant patch, but splitinto logical
changes and applied using a built-in quilt(1).

For simple packages, where there is no distinction between upstream and the packaging entity, the 3. 0
(native) format can be used instead, were al files including the debi an/ directory are contained
inasingle TARfile.

Thefollowing files are optional and should be deleted if unused, which helps other developers to concentrate
on only the files relevant to the packaging process:

README. Debi an
Notes regarding package specific changes and differences to default options, for example compiler op-
tions. Will beinstalled into/ usr/ shar e/ doc/ package_nane/ READVE. Debi an.

package. cron.d
Cron tab entriesto be installed. See dh_installcron(1) for more details.

package. dirs
List of extradirectoriesto be created. See dh_installdirs(1) for more details. 2

package.install
List of files and directories to be copied into the package. This is normally used to partition all files
to be installed into separate packages, but can also be used to install arbitrary files into packages. See
dh_install(1) for more details.

package. docs
List of documentation files to be installed in / usr/ shar e/ doc/ package/ . See dh_installdocs(1)
for more details.

package. emacsen-install,

package. emacsen-renove,

package. emacsen- st artup
Emacs specific files to be installed below /usr/share/ emacs- conmon/ package/. See
dh_installemacsen(1) for more details.

2 May other dh__ tools automatically create directories themselves, so in most cases thisfile is unneeded.

debian/control

package. doc- base*
Control filesto install and register extended HTML and PDF documentation. See dh_installdocs(1) for
more details.

package.init.d,
package. def aul t
Start-/stop script to manage a system daemon or service. See dh_installinit(1) for more details.

package. manpage. 1,

package. manpage. sgni
Manual page for programs, library functions or file formats, either directly in TROFF or SGML. See
dh_installman(1) for more details.

package. menu
Control file to register programs with the Debian menu system. See dh_installmenu(1) for more details.

wat ch
Control fileto specify the download location of this upstream package. This can be used to check for new
software versions. See uscan(1) for more details.

package. prei nst,

package. posti nst,

package. prerm

package. postrm
Scripts to be executed before and after package installation and removal. See Section B.3.5 below for
more information.

package. mai nt scri pt
Control file to simplify the handling of conffiles. See dpkg-maintscript-helper(1) and dh_installdeb(1)
for more information.

Other debhel per programs use additional files, which are described in the respective manual pages.

B.3.1. debian/control Feedback {2}

Thecont r ol filecontainsinformation about the packagesand their dependencies, whichisneeded by dpkg.
Theinitial cont r ol file created by dh_rake looks like this:

Source: testdeb

Secti on: unknown

Priority: optional

Mai nt ai ner: John Doe <user @xanpl e. conp
Bui | d- Depends: debhel per (>= 5.0.0)

St andar ds- Version: 3.7.2

Package: testdeb

Architecture: any

Depends: ${shli bs: Depends}, ${m sc: Depends}
Description: <insert up to 60 chars description>
<insert |long description, indented with spaces>

Thefirst block beginning with Sour ce describes the source package:

Sour ce
The name of the source package. Must be consistent with the directory name of the package and the
information in the changel og file.

https://www.univention.com/feedback/?manual=deb:control

debian/control

Sect i on [http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections]

A category name, which is used to group packages. There are many predefined categories like | i bs,
edi t or s, mai | , but any other string can be used to define a custom group.

Pri ori ty [http://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities]
Defines the priority of the package. This information is only used by some tools to create installation
DVDs. More important packages are put on earlier CDs, while less important packages are put on later
CDs.
essenti al
Packages areinstalled by default and dpkg prevents the user from easily removing it.
required
Packages which are necessary for the proper functioning of the system. The package is part of the
base installation.
i mport ant
Important programs, including those which one would expect to find on any Unix-like system. The
packageis part of the base installation.
standard
These packages provide a reasonably small but not too limited character-mode system.
opt i onal
Package is not installed by default. This level is recommended for most packages.
extra
This contains all packages that conflict with some other packages.
Mai nt ai ner

The name and email address of a person or group responsible for the packaging.

Bui | d- Depends,
Bui | d- Depends- | ndep

A list of packages which are required for building the package.

St andar ds- ver si on

Specifies the Debian Packaging Standards version, which this package is conforming to. Thisis not used
by UCS, but required by Debian.

All further blocks beginning with Package describes a binary package. For each binary package one block
isrequired.

Package

The name of the binary package. The name must only consist of lower case letters, digits and dashes. If
only asingle binary package is build from a source package, the name is usually the same as the source
package name.

Archi tecture

Basically there are two types of packages: Architecture dependent packages must be build for each archi-
tecturelikei 386 and and 64, since binaries created on one architecture do not run on other architectures.
A list of architectures can be explicitly given, or any can be used, which is then automatically replaced
by the architecture of the system where the package is built.

Architecture independent packages only need to be built once, but can be installed on &l architectures.
Examples are documentation, scripts and graphicsfiles. They are declared using al | in the architecture
field.

http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
http://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities
http://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities

debian/control

Descri ption
Thefirst line should contain a short description of up to 60 characters, which should describe the purpose
of the package sufficiently. A longer description can be given after that, where each line isindented by a
single space. An empty line can be inserted by putting a single dot after the leading space.

Most packages are not self-contained but need other packages for proper function. Debian supports different
kinds of dependencies.

Depends
A essential dependency on some other packages, which must be already installed and configured before
this package is configured.

Recomends
A strong dependency on some other packets, which should normally be co-installed with this package,
but can be removed. Thisis useful for additional software like plug-ins, which extends the functionality
of this package, but is not strictly required.

Suggest s
A soft dependency on some other packages, which are not installed by default. Thisisuseful for additional
software like large add-on packages and documentation, which extends the functionality of this package,
but is not strictly required.

Pr e- Depends
A strong dependency on some other package, which must be fully operational even before this packageis
unpacked. Thiskind of dependency should be used very sparsely. It's mostly only required for software
caled fromthe. pr ei nst script.

Conflicts
A negative dependency, which prevents the package to be installed while the other package is already
installed. This should be used for packages, which contain the same files or use the same resources, for
example TCP port numbers.

Provi des
This package declares, that it provides the functionality of some other package and can be considered as
areplacement for that package.

Repl aces
A declaration, that this package overwrites the files contained in some other package. This deactivates
the check normally done by dpkg to prevent packages from overwriting files belonging to some other
package.

Br eaks
A negative dependency, which requests the other package to be upgraded before this package can be in-
stalled. Thisisalesser form of Conf | i ct s. Br eaks isamost always used with aversion specification
intheform Br eaks: package (<< version): Thisforcespackage to be upgradedto aversion
greater than ver si on before this package isinstalled.

In addition to literal package names, debhel per supports a substitution mechanism: Several helper scripts are
capable of automatically detecting dependencies, which are stored in variables.

${shl i bs: Depends}
dh_shl i bdeps automatically determines the shared library used by the programs and libraries of the
package and stores the package names providing them in this variable.

${ pyt hon: Depends}
dh_pyt hon detects similar dependencies for Python modules.

debian/copyright

${ mi sc: Depends}
Several Debhelper commands automatically add additional dependencies, which are stored in this vari-
able.

In addition to specifying a single package as a dependency, multiple packages can be separated by using the
pipe symbol (|). At least one of those packages must be installed to satisfy the dependency. If none of them
isinstalled, the first package is chosen as the default.

A package name can be followed by a version constraint enclosed in parenthesis. The following operators
arevalid:

<<
islessthan

islessthan or equal to
isequal to

is greater than or equal to

>>
is greater than

An Example:

Depends: |ibexanplel (>= ${binary: Version}),
eximd | mail-transport-agent,
${shli bs: Depends}, ${mni sc: Depends}

Conflicts: |ibggO, libggil

Recommends: |ibncurses5 (>> 5. 3)

Suggests: libgiiO-target-x (= 1:0.8.5-2)

Repl aces: vi mpython (<< 6.0), vimtcl (<= 6.0)

Provi des: www browser, news-reader

B.3.2. debian/copyright Feedback {2}

Thecopyri ght filecontainscopyright and licenceinformation. For adownloaded source packageit should
include the download location and names of upstream authors.

Thi s package was debi ani zed by John Doe <max@xanpl e.con> on
Mon, 21 Mar 2009 13: 46: 39 +0100.

It was downl oaded from<fill in ftp site>

Copyri ght:
Upstream Aut hor (s): <put author(s) name and emmil here>

Li cense:
<Must foll ow here>

Thefile does not require any specific format. Debian now recommends to use a machine-readable format, but
thisis not required for UCS. The format is described in http://dep.debian.net/deps/dep5/ at looks like this:

Format: http://ww. debi an. or g/ doc/ packagi ng- nanual s/ copyri ght -
format/ 1.0/

https://www.univention.com/feedback/?manual=deb:copyright
http://dep.debian.net/deps/dep5/

debian/changelog

Upstream Nane: Uni vention GrbH
Upstream Cont act: <package@ni venti on. de>
Source: http://docs. univention. de/

Files: *
Copyri ght: 2013-2015 Uni venti on GrbH
Li cense: AGPL

B.3.3. debian/changelog Feedback {2}

The changel og file documents the changes applied to this Debian package. The initia file created by
dh_make only contains asingle entry and looks like this:

testdeb (0.1-1) unstabl e; urgency=l ow
* |Initial Release.

-- John Doe <user @xanpl e.con> Mbn, 21 Mar 2013 13:46: 39 +0100

For each new package release a new entry must be prepended before al previous entries. The version number
needs to be incremented and a descriptive text should be added to describe the change.

The command debchange from the devscripts package can be used for editing the changel og file. For
exampl e the following command adds a new version:

dch -i
After that thechangel og file should look like this:

testdeb (0.1-2) unstable; urgency=l ow

* Add nore details.

-- John Doe <user @xanpl e.con> Mbon, 21 Mar 2013 17:55: 47 +0100
testdeb (0.1-1) unstable; urgency=l ow

* Initial Release.

-- John Doe <user @xanpl e.conm> Mbn, 21 Mar 2013 13:46: 39 +0100

The date and time stamp must follow the format described in RFC 2822 [http://tools.ietf.org/html/rfc2822].
debchange automatically inserts and updates the current date. Alternatively dat e - R can be used on the
command line to create the correct format.

For UCS it is best practice to mention the bug ID of the UCS bug tracker (see Appendix A) to reference
additional details of the bug fixed. Other parties are encouraged to devise similar comments, e.g. URLS to
other bug tracking systems.

B.3.4. debian/rules Feedback £}

Thefiler ul es describes the commands needed to build the package. It must use the Make syntax [make].
It consists of several rules, which have the following structure:

target: dependencies
command

https://www.univention.com/feedback/?manual=deb:changelog
http://tools.ietf.org/html/rfc2822
http://tools.ietf.org/html/rfc2822
https://www.univention.com/feedback/?manual=deb:rules

debian/rules

Each rule startswith the target name, which can beafile name or symbolic name. Debian requiresthefollowing
targets:

cl ean
This rule must remove all temporary files created during package built and must return the state of all
files back to the same state as when the package is freshly extracted.

bui I d,
bui | d-arch,
bui | d-i ndep

Theserules should configure the package and build either all, all architecture dependent or all architecture
independent files. These rules are called without root permissions.

bi nary,
bi nary- ar ch,
bi nary-i ndep

These rules should install the package into a temporary staging area. By default this is the directory
debi an/ t np/ below the source package root directory. From there files are distributed to individual
packages, which are created as the result of these rules. These rules are called with root permissions.

Each command line must be indented with one tabulator character. Each command is executed in a separate
shell, but long command lines can be split over consecutive lines by terminating each linewith abackslash (\).

Each rule describes a dependency between the target and its dependencies. nake considers atarget to be out-
of-date, when a file with that namet ar get does not exists or when the file is older than one of the files it
depends on. In that case nak e invokes the given commands to re-create the target.

In addition to file names also any other word can be used for target names and in dependencies. Thisis most
often used to define “phony” targets, which can be given on the command line invocation to trigger some
tasks. The above mentioned cl ean, bui | d and bi nar y targets are examples for that kind of targets.

dh_make only creates atemplate for ther ul es file. Theinitial content looks like this:

#! [/ usr/ bi n/ make -f

-*- makefile -*-

Sanpl e debi an/rul es that uses debhel per.

This file was originally witten by Joey Hess and Craig Snall.

As a special exception, when this file is copied by dh-nmake into a

dh-make output file, you may use that output file without restriction.
This special exception was added by Craig Small in version 0.37 of dh-
make.

Uncomment this to turn on verbose node.
#export DH VERBOSE=1

%
dh $@

Since UCS-3.0 the debi an/ r ul es fileis greatly simplified by using the dh sequencer. It is a wrapper
around all the different debhelper tools, which are automatically called in the right order.

Tip

To exactly see which commands are executed when dpkg- bui | dpackage builds a package, in-
vokedh target --no-act byhand, forexampledh bi nary --no-act listsal commands
to configure, build, install and create the package.

debian/preinst, debian/prerm, debian/postinst, de-
bian/postrm

In most cases it's sufficient to just provide additional configuration files for the individual debhelper com-
mands as described in Section B.3. If thisis not sufficient, any debhelper command can be individualy over-
ridden by adding an override target to ther ul es file. For example the following snippet disables the auto-
matic detection of the build system used to build the package and passes additional options:

override_dh_auto_confi gure:
./setup --prefix=/usr --wth-option-foo

Without that explicit override dh_aut o_conf i gur e would be called, which normally automatically de-
tects several build systems like cmake, setup.py, autoconf and others. For these dh also passes the right op-
tionsto configure the default prefix / usr and use the right compiler flags.

After configuration the package is built and installed to the temporary staging areain debi an/ t np/ . From
theredh_i nst al | partitionsindividual files and directories to binary packages. Thisis controlled through
thedebi an/ package. i nstal | files.

This file can aso be used for simple packages, where no build system is used. If a path given in the de-

bi an/ package. i nstal | fileisnot found below debi an/t np/, the path is interpreted as relative to
the source package root directory. This mechanism is sufficient to install simple files, but fails when files
must be renamed or file permissions must be modified.

B.3.5. debian/preinst, debian/prerm, debian/postinst, debian/postrm reeawac{)

In addition to distributing only files packages can aso be used to run arbitrary commands on installation,
upgrades or removal. Thisis handled by the four “Maintainer scripts’, which are called before and after files
are unpacked or removed:

debi an/ package. pr ei nst
called before files are unpacked.

debi an/ package. posti nst
called after files are unpacked. Mostly used to (re-)start services after package installation or upgrades.

debi an/ package. prerm
called before files are removed. Mostly used to stop services before a package is removed or upgraded.

debi an/ package. postrm
called after files have been removed.

The scripts themsel ves must be shell scripts, which should contain a#DEBHEL PER# marker, where the shell
script fragments created by the dh_ programs are inserted. Each script is invoked with several parameters,
from which the script can determine, if the package is freshly installed, upgraded from a previous version, or
removed. The exact arguments are described in the template files generated by dh_nmake.

The maintainer scripts can be called multiple times, especially when errors occur. Because of that the scripts
should beidempotent, that isthey should be written to “ achieve a consistent state” instead of blindly doing the
same seguence of commands again and again. A bad example would be to append somelinesto afile on each
invocation. Theright approach would beto add acheck, if that linewas already added and only do it otherwise.

Warning

It isimportant that these scripts handle error conditions properly: Maintainer scripts should terminate
withexit 0 onsuccessandexit 1 onfall, if thingsgo catastrophically wrong.

On the other hand an exit code unequal to zero usually aborts any package installation, upgrade or
removal process. This prevents any automatic package maintenance and usually requires manual

https://www.univention.com/feedback/?manual=deb:scripts

Building

intervention of a human administrator. Therefore it is essential that maintainer scripts handle error
conditions properly and are able to recover an inconsistent state.

B.4. Building

Before the first build is started, remove all unused files from the debi an/ directory. This simplifies main-
tenance of the package and hel ps other maintainers to concentrate on only the relevant differences from stan-
dard packages.

The build process is started by invoking the following command:

dpkg- bui | dpackage -us -uc

The options - us and - uc disable the PGP signing process of the source and changes files. This is only
needed for Debian packages, were al files must be cryptographically signed to be uploaded to the Debian

infrastructure.

Additionally the option - b can be added to restrict the build process to only build the binary packages. Oth-
erwise a source package will also be created.

B.5. Further reading

» [Debian FAQ]
 [Debian Guide]
» [Debian Policy]

 [Debian Reference]

Feedback Q

Feedback Q

https://www.univention.com/feedback/?manual=deb:build
https://www.univention.com/feedback/?manual=deb:links

[ucs-handbuch] Univention GmbH. 2014. Univention Corporate Server - Manual for users and administrators. https.//
docs.software-univention.de/manual-4.0.html.

[make] Free Software Foundation. 2010. The GNU Make manual [http://www.gnu.or g/softwar e/make/manual/] .

[1SO639] International Organization for Standardization. 2002. 1SO 639-1: Alpha-2 code [http://www.loc.gov/stan-
dards/iso639-2/].

[Debian FAQ] Debian. 2012. The Debian GNU/Linux FAQ - Basics of the Debian package management system [http://
www.debian.org/doc/manual s/debian-fag/ch-pkg_basics].

[Debian Guide] Debian. 2013. Debian New Maintainers Guide [http://www.debian.org/doc/devel-manual s#maint-
guide].

[Debian Policy] Debian. 2012. Debian Policy Manual [http://mwwww.debian.org/doc/debian-policy/].

[Debian Reference] Debian. 2012. Debian Developer's Reference [http: //mww.debian.or g/doc/manual s/devel oper s-ref-
erencel].

https://docs.software-univention.de/manual-4.0.html
https://docs.software-univention.de/manual-4.0.html
http://www.gnu.org/software/make/manual/
http://www.gnu.org/software/make/manual/
http://www.loc.gov/standards/iso639-2/
http://www.loc.gov/standards/iso639-2/
http://www.loc.gov/standards/iso639-2/
http://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics
http://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics
http://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics
http://www.debian.org/doc/devel-manuals#maint-guide
http://www.debian.org/doc/devel-manuals#maint-guide
http://www.debian.org/doc/devel-manuals#maint-guide
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/developers-reference/
http://www.debian.org/doc/manuals/developers-reference/
http://www.debian.org/doc/manuals/developers-reference/

Index

A
Apache (see Web Services)
App center, 95

B
Bug (see Bugzilla)
Bugzilla, 121

C
Config Registry, 19
Categories, 26
Configuration files, 22
Descriptions, 25
Examples, 29
Multifile, 31
Services, 32
Single File, 29
Repository, 17
Services, 27
Template
Module, 25
Multi file, 24
Script, 25
Singlefile, 23
Templatefile, 28
Custom Attributes (see Extended Attributes)

D

Database, 115
MySQL, 115
PostgreSQL, 115

Directory Listener, 53
Cache, 65
Credentids, 65
Debug, 65
Example module, 56
modrdn, 57
Notifier ID, 66
Verify, 66

Directory Manager, 69
Custom Modules, 79
Extended Attributes (see Extended Attributes)
Hook extension, 41
Hooks

Packaging, 84

LDAP search, 81
Module extension, 41
Syntax extension, 41
Syntax override, 80

Domain join, 35

Domain credentials, 50
Machine credentia change, 50
Join script (see Join script)
Join status, 35
Running, 36

E

Example
Config Registry, 29
Extended Attributes, 70
Hooks, 77
Options, 76
Selection list, 74

J

Join (see Domain join)

Join script
Exit codes, 38
Helpers (see Library)
Library, 38
Return codes (see Exit codes)
Writing, 36

L
LDAP
Access control list extension, 41
Schema extension, 41
Listener (see Directory Listener)
Localisation (see Trandation)

M

Management Console, 89

Files, 89
Module

Disable, 90

LDAP, 90

System, 90
umc-modules, 89
XML, 89

P

Package
binary-, 123
source-, 123

Packaging, 11
Build dependencies, 123
Checking for errors, 115
Debian, 123
Library functions, 117
Modifying existing package, 11
New package, 12
Package repository, 17

postup (see Updater)

preup (see Updater)

R
Registry (see Config Registry)
Repository (see Packaging)

S

Server password change (see Domain join)

T
Translation, 109

U
UCR (see Config Registry)
UDM (see Directory Manager)
UMC (see Management Console)
Univention Directory Listener (see Directory Listener)
Univention Directory Manager (see Directory Manager)
Univention Management Console (see Management Con-
sole)
Update (see Updater)
Updater
Repositories, 113
Scripts, 113
System update, 113
Upgrade (see Updater)

W
Web Services, 93

	Univention Developer Reference
	Table of Contents
	Foreword
	Chapter 1. Packaging software
	1.1. Introduction
	1.2. Preparations
	1.3. Example: Re-building an UCS package
	1.4. Example: Creating a new UCS package
	1.5. Setup repository
	1.6. Building packages through the openSUSE Build Service

	Chapter 2. Univention Config Registry
	2.1. Using UCR
	2.1.1. Using UCR from shell
	2.1.2. Using UCR from Python

	2.2. Configuration files
	2.2.1. debian/package.univention-config-registry
	2.2.1.1. File
	2.2.1.2. Multifile
	2.2.1.3. Script
	2.2.1.4. Module

	2.2.2. debian/package.univention-config-registry-variables
	2.2.3. debian/package.univention-config-registry-categories
	2.2.4. debian/package.univention-config-registry-services

	2.3. UCR Template files conffiles/path/to/file
	2.4. Build integration
	2.5. Examples
	2.5.1. Minimal File example
	2.5.2. Multifile example
	2.5.3. Services

	Chapter 3. Domain Join
	3.1. Join scripts
	3.2. Join status
	3.3. Running join scripts
	3.4. Writing join scripts
	3.4.1. Basic join script example
	3.4.2. Join script exit codes
	3.4.3. Join script libraries
	3.4.3.1. univention-join
	3.4.3.2. shell-univention-lib

	3.5. Writing unjoin scripts

	Chapter 4. Lightweight Directory Access Protocol (LDAP) in UCS
	4.1. General
	4.2. Packaging LDAP Schema Extensions
	4.3. Packaging LDAP ACL Extensions
	4.4. LDAP secrets
	4.4.1. Password change

	Chapter 5. Univention Directory Listener
	5.1. Structure of Listener Modules
	5.2. Listener Tasks and Examples
	5.2.1. Basic Example
	5.2.2. Rename and Move
	5.2.3. Full Example with Packaging
	5.2.4. A Little Bit more Object Oriented

	5.3. Technical Details
	5.3.1. User-ID and Credentials
	5.3.2. Internal Cache
	5.3.2.1. univention-directory-listener-ctrl
	5.3.2.2. univention-directory-listener-dump
	5.3.2.3. univention-directory-listener-verify
	5.3.2.4. get_notifier_id.py

	5.3.3. Internal working

	Chapter 6. Univention Directory Manager (UDM)
	6.1. Introduction
	6.2. Packaging Extended Attributes
	6.2.1. Selection lists
	6.2.1.1. Static selections
	6.2.1.2. Dynamic selections

	6.2.2. Known issues
	6.2.3. Extended Options
	6.2.4. Extended Attribute Hooks

	6.3. UDM Modules
	6.4. UDM Syntax
	6.4.1. UDM Syntax Override
	6.4.2. UDM LDAP search

	6.5. Packaging UDM Hooks
	6.6. Packaging UDM Extension Modules
	6.7. Packaging UDM Syntax Extension

	Chapter 7. Univention Management Console (UMC)
	7.1. UMC files
	7.1.1. debian/package.umc-modules
	7.1.2. UMC Module Declaration File

	7.2. Local System Module
	7.3. Domain LDAP Module
	7.4. Disabling a Module

	Chapter 8. Web services
	8.1. Extending the overview page

	Chapter 9. App Center
	9.1. Requirements
	9.2. Packaging for the App Center
	9.3. Next steps
	9.4. Application meta file
	9.5. Optional application files
	9.6. Uploading the application
	9.7. Notifications
	9.8. Updates for the application
	9.9. Integrating the Application in UCS
	9.9.1. Automatic integration done by the App Center
	9.9.2. Scope of the vendor

	9.10. Best practices
	9.10.1. Registration of LDAP and UDM Extensions

	Chapter 10. Integration of external repositories
	10.1. Integration of repository components via Univention Management Console
	10.2. Integration of repository components via Univention Configuration Registry

	Chapter 11. Translating UCS
	11.1. Univention Management Console translations
	11.1.1. Prepare a new translation
	11.1.2. Create a new translation package
	11.1.3. Edit translation files
	11.1.4. Update the translation package
	11.1.5. Build the translation package

	Chapter 12. Univention Updater
	12.1. Separate repositories
	12.2. Updater scripts
	12.2.1. Digital signature

	12.3. Release update walkthrough

	Chapter 13. Miscellaneous
	13.1. Databases
	13.1.1. PostgreSQL
	13.1.2. MySQL

	13.2. UCS lint
	13.3. Function Libraries
	13.3.1. shell-univention-lib
	13.3.2. python-univention-lib

	13.4. Login Access Control
	13.5. Network Packet Filter
	13.5.1. Filter rules by Univention Configuration Registry
	13.5.2. Local filter rules via iptables commands
	13.5.3. Testing Univention Firewall settings

	Appendix A. Bug reporting
	Appendix B. Debian packaging
	B.1. Prerequisites and preparation
	B.2. dh_make
	B.3. Debian control files
	B.3.1. debian/control
	B.3.2. debian/copyright
	B.3.3. debian/changelog
	B.3.4. debian/rules
	B.3.5. debian/preinst, debian/prerm, debian/postinst, debian/postrm

	B.4. Building
	B.5. Further reading

	Bibliography
	Index

