
Univention Developer Reference

Manual for developers

2

Alle Rechte vorbehalten./ All rights reserved.

The mentioned brand names and registered trademarks are owned by the respective legal owners in each case.

Linux® is a registered trademark of Linus Torvalds.

3

Table of Contents
Foreword ... 9
1. Packaging software .. 11

1.1. Introduction .. 11
1.2. Preparations .. 11
1.3. Example: Re-building an UCS package ... 11
1.4. Example: Creating a new UCS package ... 12
1.5. Setup repository .. 17
1.6. Building packages through the openSUSE Build Service ... 17

2. Univention Config Registry ... 19
2.1. Using UCR .. 19

2.1.1. Using UCR from shell ... 19
2.1.2. Using UCR from Python .. 21

2.2. Configuration files ... 22
2.2.1. debian/package.univention-config-registry 22

2.2.1.1. File ... 23
2.2.1.2. Multifile ... 24
2.2.1.3. Script ... 25
2.2.1.4. Module ... 25

2.2.2. debian/package.univention-config-registry-variables 25
2.2.3. debian/package.univention-config-registry-categories 26
2.2.4. debian/package.univention-config-registry-services 27

2.3. UCR Template files conffiles/path/to/file ... 28
2.4. Build integration ... 29
2.5. Examples ... 29

2.5.1. Minimal File example .. 29
2.5.2. Multifile example .. 31
2.5.3. Services .. 32

3. Domain Join ... 35
3.1. Join scripts ... 35
3.2. Join status .. 35
3.3. Running join scripts ... 35
3.4. Writing join scripts .. 36

3.4.1. Basic join script example ... 36
3.4.2. Join script exit codes ... 38
3.4.3. Join script libraries .. 38

3.4.3.1. univention-join .. 38
3.4.3.2. shell-univention-lib .. 40

3.5. Writing unjoin scripts ... 43
4. Lightweight Directory Access Protocol (LDAP) in UCS ... 47

4.1. General .. 47
4.2. Packaging LDAP Schema Extensions .. 47
4.3. Packaging LDAP ACL Extensions ... 48
4.4. LDAP secrets ... 50

4.4.1. Password change ... 50
5. Univention Directory Listener .. 53

5.1. Structure of Listener Modules .. 53
5.2. Listener Tasks and Examples ... 56

5.2.1. Basic Example ... 56
5.2.2. Rename and Move .. 57
5.2.3. Full Example with Packaging .. 58
5.2.4. A Little Bit more Object Oriented .. 62

5.3. Technical Details ... 65

4

5.3.1. User-ID and Credentials ... 65
5.3.2. Internal Cache .. 65

5.3.2.1. univention-directory-listener-ctrl 65
5.3.2.2. univention-directory-listener-dump 65
5.3.2.3. univention-directory-listener-verify 66
5.3.2.4. get_notifier_id.py .. 66

5.3.3. Internal working ... 66
6. Univention Directory Manager (UDM) .. 69

6.1. Introduction .. 69
6.2. Packaging Extended Attributes .. 70

6.2.1. Selection lists ... 74
6.2.1.1. Static selections .. 74
6.2.1.2. Dynamic selections ... 74

6.2.2. Known issues ... 76
6.2.3. Extended Options .. 76
6.2.4. Extended Attribute Hooks .. 77

6.3. UDM Modules .. 79
6.4. UDM Syntax .. 79

6.4.1. UDM Syntax Override ... 80
6.4.2. UDM LDAP search ... 81

6.5. Packaging UDM Hooks .. 84
6.6. Packaging UDM Extension Modules ... 85
6.7. Packaging UDM Syntax Extension ... 86

7. Univention Management Console (UMC) ... 89
7.1. Architecture .. 89
7.2. Asynchronous Framework ... 90
7.3. Protocol UMCP 2.0 ... 91

7.3.1. Data flow .. 91
7.3.2. Authentication .. 91
7.3.3. Message format .. 91

7.3.3.1. Message header .. 91
7.3.3.2. Message body .. 92

7.3.4. Examples ... 92
7.4. Protocol HTTP for UMC .. 93

7.4.1. Examples ... 93
7.5. UMC files .. 94

7.5.1. debian/package.umc-modules .. 94
7.5.2. UMC Module Declaration File .. 95

7.6. Local System Module .. 95
7.6.1. Python API .. 95
7.6.2. UMC module API (Python and JavaScript) .. 95

7.6.2.1. XML definition .. 96
7.6.2.2. Python module ... 97
7.6.2.3. UMC store API .. 99

7.6.3. Packaging .. 100
7.7. Domain LDAP Module ... 102
7.8. Disabling a Module .. 103

8. Web services ... 105
8.1. Extending the overview page ... 105

9. App Center ... 107
9.1. Requirements .. 107
9.2. Packaging for the App Center .. 108
9.3. Next steps .. 108
9.4. Application meta file .. 109

5

9.5. Optional application files .. 116
9.6. Uploading the application .. 116
9.7. Notifications ... 117
9.8. Updates for the application .. 117
9.9. Integrating the Application in UCS ... 118

9.9.1. Automatic integration done by the App Center .. 118
9.9.2. Scope of the vendor ... 118

9.10. Best practices .. 119
9.10.1. Registration of LDAP and UDM Extensions ... 119

10. Integration of external repositories ... 121
10.1. Integration of repository components via Univention Management Console 121
10.2. Integration of repository components via Univention Configuration Registry 122

11. Translating UCS ... 123
11.1. Univention Management Console translations .. 123

11.1.1. Install needed tools .. 123
11.1.2. Obtain a current checkout of the UCS Subversion repository 123
11.1.3. Create a new translation package .. 123
11.1.4. Edit translation files ... 123
11.1.5. Update the translation package ... 124
11.1.6. Build the translation package ... 124

12. Univention Updater ... 127
12.1. Separate repositories ... 127
12.2. Updater scripts .. 127

12.2.1. Digital signature .. 128
12.3. Release update walkthrough ... 128

13. Single Sign-On: Integrating a service provider into UCS .. 129
13.1. Register new service provider via udm ... 129
13.2. Get information required by the service provider .. 129
13.3. Add direct login link to ucs-overview page ... 130

14. Miscellaneous .. 131
14.1. Databases ... 131

14.1.1. PostgreSQL .. 131
14.1.2. MySQL .. 131

14.2. UCS lint ... 131
14.3. Function Libraries .. 133

14.3.1. shell-univention-lib .. 133
14.3.2. python-univention-lib ... 133

14.4. Login Access Control ... 134
14.5. Network Packet Filter ... 135

14.5.1. Filter rules by Univention Configuration Registry .. 135
14.5.2. Local filter rules via iptables commands ... 136
14.5.3. Testing Univention Firewall settings ... 136

A. Bug reporting ... 137
B. Debian packaging .. 139

B.1. Prerequisites and preparation ... 139
B.2. dh_make .. 139
B.3. Debian control files ... 140

B.3.1. debian/control .. 142
B.3.2. debian/copyright ... 145
B.3.3. debian/changelog .. 146
B.3.4. debian/rules ... 146
B.3.5. debian/preinst, debian/prerm, debian/postinst, debian/postrm 148

B.4. Building .. 149
B.5. Further reading ... 149

6

Bibliography ... 151
Index ... 153

7

List of Examples
2.1. Use of ucr set ... 19
2.2. Use of ucr get ... 20
2.3. Use of is_ucr_true .. 20
2.4. Use of ucr unset ... 20
2.5. Use of ucr shell ... 20
2.6. Reading a Univention Configuration Registry variable in Python .. 21
2.7. Reading boolean Univention Configuration Registry variables in Python 21
2.8. Changing Univention Configuration Registry variables in Python ... 21
2.9. Setting and unsetting Univention Configuration Registry variables in Python 22
3.1. Service registration in join script .. 40
3.2. Service unregistration in unjoin script ... 41
3.3. Check for unused service in unjoin script .. 41
3.4. Extension registration in join script .. 42
3.5. Schema unregistration in unjoin script ... 43
4.1. Schema registration in join script ... 48
4.2. LDAP ACL registration in join script ... 49
4.3. Server password change example ... 51
6.1. Extended Attribute for custom LDAP schema ... 73
6.2. Dynamic selection list for Extended Attributes .. 75
6.3. Extended Option ... 77
7.1. Authentication request .. 92
7.2. Search for users .. 93
7.3. Authentication request .. 93
7.4. search for users ... 94
7.5. UMC module category examples .. 97
14.1. Local firewall rule .. 135
14.2. Using nmap for firewall port testing ... 136

8

Foreword
This developer guide provides information to extend Univention Corporate Server. It it targeted at third party
vendors who intend to provide applications for the Univention App Center and for power users who wish to
deploy locally built or modified software.

Feedback is very welcome! Please either file a bug (see Appendix A) or send an e-mail to
<feedback@univention.de>.

mailto:feedback@univention.de

Introduction

11

Chapter 1. Packaging software
1.1. Introduction .. 11
1.2. Preparations .. 11
1.3. Example: Re-building an UCS package ... 11
1.4. Example: Creating a new UCS package ... 12
1.5. Setup repository .. 17
1.6. Building packages through the openSUSE Build Service .. 17

This chapter describes how software for UCS is packaged. For more details on packaging software in the
Debian format, see Appendix B

1.1. Introduction
UCS is based on the Debian distribution, which is using the deb format to package software. The program
dpkg is used for handling a set of packages. On installation packages are unpacked and configured, while
on un-installation packages are de-configured and the files belonging to the packages are removed from the
system. On top of that the apt-tools provide a software repository, which allows software to be downloaded
from central file servers. Package files provide an index of all packages contained in the repository, which
is used to resolve dependencies between packages: while dpkg works on a set of packages given on the
command line, apt-get builds that set of packages and their dependencies before invoking dpkg on this
set. apt-get is a command line tool, which is fully described in its manual page apt-get(8). A more modern
version with a text based user interface is aptitude, while synaptic provides a graphical frontend.

On UCS systems the administrator is not supposed to use these tools directly. Instead all software maintenance
can be done through the UMC, which maps the requests to invocations of the commands given above.

1.2. Preparations
This chapter describes some simple examples using existing packages as examples. For downloading and
building them, some packages must be installed on the system used as a development system. subversion is
used to checkout the source files belonging to the packages. build-essential must be installed for building the
package. devscripts provides some useful tools for maintaining packages.

This can be achieved by running the following command as user root:

apt-get install subversion build-essential devscripts

1.3. Example: Re-building an UCS package
Source code: https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/pack-
aging/testdeb/

Procedure 1.1. Checking out and building a UCS package

1. Create the top level working directory

mkdir work
cd work/

2. Either fetch the latest source code from the Subversion version control system or download the source
code of the currently packaged version.

• Checkout example package from Univention Subversion

https://www.univention.com/feedback/?manual=pkg:introduction
https://www.univention.com/feedback/?manual=pkg:preparation
https://www.univention.com/feedback/?manual=pkg:rebuild
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/packaging/testdeb/
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/packaging/testdeb/

Example: Creating a new UCS package

12

SERVER=http://forge.univention.org
svn co $SERVER/svn/dev/branches/ucs-4.1/ucs-4.1-0/base/
univention-ssh
cd univention-ssh/

• Fetch the source code from the Univention Repository server

a. Enable unmaintained and source repository once

ucr set repository/online/unmaintained=yes \
 repository/online/sources=yes
apt-get update

b. Fetch source code

apt-get source univention-ssh
cd univention-ssh-*/

3. Increment the version number of package to define a newer package

debchange --local work 'Private package rebuild'

4. Build the binary package

dpkg-buildpackage -uc -us -b

5. Locally install the new binary package

sudo dpkg -i ../univention-ssh_*_*.deb

1.4. Example: Creating a new UCS package
The following example provides a walk-through for packaging a Python script called testdeb.py. It creates
a file testdeb-DATE-time in the /tmp/ directory.

A directory needs to be crated for each source package, which hosts all other files and sub-directories.

mkdir testdeb-0.1
cd testdeb-0.1

The file testdeb.py, which is the program to be installed, will be put into that directory.

#!/usr/bin/env python
"""
Example for creating UCS packages.
"""
import time

now = time.localtime()
filename = '/tmp/testdeb-%s' % time.strftime('%y%m%d%H%M', now)
tmpfile = open(filename, 'a')
tmpfile.close()

In addition to the files to be installed some meta-data needs to be created in the debian/ sub-directory. This
directory contains several files, which are needed to build a Debian package. The files and their format will
be described in the following sections.

https://www.univention.com/feedback/?manual=pkg:new

Example: Creating a new UCS package

13

To create an initial debian/ directory with all template files, invoke the dh_make(8) command provided
by the dh-make packet:

dh_make --native --single --email user@example.com

Here several options are given to create the files for a source package, which contains all files in one archive
and only creates one binary package at the end of the build process. More details are given in Section B.2.

The program will output the following information:

Maintainer name : John Doe
Email-Address : user@example.com
Date : Thu, 28 Feb 2013 08:11:30 +0100
Package Name : testdeb
Version : 0.1
License : blank
Type of Package : Single
Hit <enter> to confirm:

The package name testdeb and version “0.1” were determined from the name of the directory testdeb-0.1,
the maintainer name and address were gathered from the UNIX account information.

After pressing the enter key some warning message will be shown:

Currently there is no top level Makefile. This may require additional
tuning. Done. Please edit the files in the debian/ subdirectory now.
You should also check that the testdeb Makefiles install into $DESTDIR
and not in / .

Since this example is created from scratch, the missing Makefile is normal and this warning can be ignored.
Instead of writing a Makefile to install the single executable, dh_install will be used later to install the file.

Since the command completed successfully, several files were created in the debian/ directory. Most of
them are template files, which are unused in this example. To improve understandability they are deleted:

rm debian/*.ex debian/*.EX
rm debian/README* debian/doc

The remaining files are required and control the build process of all binary packages. Most of them don't need
to be modified for this example, but others must be completed using an editor.

debian/control
The file contains general information about the source and binary packages. It needs to be modified to
include a description and contain the right build dependencies:

Source: testdeb
Section: univention
Priority: optional
Maintainer: John Doe <user@example.com>
Build-Depends: debhelper (>= 7)
Standards-Version: 3.7.2

Package: testdeb
Architecture: all
Depends: ${misc:Depends}
Description: An example package for the developer guide
 This purpose of this package is to describe the structure of a
 Debian

Example: Creating a new UCS package

14

 packages. It also documents
 .
 * the structure of a Debian/Univention package
 * installation process.
 * content of packages
 * format and function of control files
 .
 For more information about UCS, refer to:
 http://www.univention.de/

debian/rules
This file has a Makefile syntax and controls the package build process. Because there is no special han-
dling needed in this example, the default file can be used unmodified.

#!/usr/bin/make -f

%:
 dh $@

Note that tabulators must be used for indention in this file.

debian/testdeb.install
To compensate the missing Makefile, dh_install(1) is used to install the executable. dh_install is
indirectly called by dh from the debian/rules file. To install the program into /usr/bin/, the file
needs to be created manually containing the following single line:

testdeb.py usr/bin/

Note that the path is not absolute but relative.

debian/testdeb.postinst
Since for this example the program should be invoked automatically during package installation, this file
needs to be crated. In addition to just invoking the program shipped with the package itself, it also shows
how Univention Configuration Registry variables can be set (see Section 2.1.1):

#! /bin/sh
set -e

case "$1" in
configure)
 # invoke sample program
 testdeb.py
 # Set UCR variable if previously unset
 ucr set repository/online/server?https://updates.software-
univention.de/
 # Force UCR variable on upgrade from previous package only
 if dpkg --compare-versions "$2" lt-nl 0.1-2
 then
 ucr set timeserver1=time.fu-berlin.de
 fi
 ;;
abort-upgrade|abort-remove|abort-deconfigure)
 ;;
*)
 echo "postinst called with unknown argument \`$1'" >&2
 exit 1
 ;;

Example: Creating a new UCS package

15

esac

#DEBHELPER#

exit 0

debian/changelog
The file is used to keep track of changes done to the packaging. For this example the file should look
like this:

testdeb (0.1-1) unstable; urgency=low

 * Initial Release.

 -- John Doe <user@example.com> Mon, 21 Mar 2013 13:46:39 +0100

debian/copyright
This file is used to collect copyright related information. It is critical for Debian only, which need this
information to guarantee that the package is freely redistributable. For this example the file remains
unchanged.

The copyright and changelog file are installed to the /usr/share/doc/testdeb/ directory
on the target system.

debian/compat,
debian/source/format

These files control some internal aspects of the package build process. They can be ignored for the moment
and are further described in Section B.3.

Now the package is ready and can be built by invoking the following command:

dpkg-buildpackage -us -uc

The command should then produce the following output:

dpkg-buildpackage: source package testdeb
dpkg-buildpackage: source version 0.1-1
dpkg-buildpackage: source changed by John Doe <user@example.com>
dpkg-buildpackage: host architecture amd64
 dpkg-source --before-build testdeb
 fakeroot debian/rules clean
dh clean
 dh_testdir
 dh_auto_clean
 dh_clean
 dpkg-source -b testdeb
dpkg-source: Information: Quellformat »3.0 (native)« wird verwendet
dpkg-source: Information: testdeb wird in testdeb_0.1-1.tar.gz gebaut
dpkg-source: Information: testdeb wird in testdeb_0.1-1.dsc gebaut
 debian/rules build
dh build
 dh_testdir
 dh_auto_configure
 dh_auto_build
 dh_auto_test
 fakeroot debian/rules binary
dh binary

Example: Creating a new UCS package

16

 dh_testroot
 dh_prep
 dh_installdirs
 dh_auto_install
 dh_install
 dh_installdocs
 dh_installchangelogs
 dh_installexamples
 dh_installman
 dh_installcatalogs
 dh_installcron
 dh_installdebconf
 dh_installemacsen
 dh_installifupdown
 dh_installinfo
 dh_pysupport
dh_pysupport: This program is deprecated, you should use dh_python2
 instead. Migration guide: http://deb.li/dhs2p
 dh_installinit
 dh_installmenu
 dh_installmime
 dh_installmodules
 dh_installlogcheck
 dh_installlogrotate
 dh_installpam
 dh_installppp
 dh_installudev
 dh_installwm
 dh_installxfonts
 dh_installgsettings
 dh_bugfiles
 dh_ucf
 dh_lintian
 dh_gconf
 dh_icons
 dh_perl
 dh_usrlocal
 dh_link
 dh_compress
 dh_fixperms
 dh_installdeb
 dh_gencontrol
 dh_md5sums
 dh_builddeb
dpkg-deb: building package `testdeb' in `../testdeb_0.1-1_all.deb'.
 dpkg-genchanges -b >../testdeb_0.1-1_amd64.changes
dpkg-genchanges: binary-only upload - not including any source code
 dpkg-source --after-build testdeb
dpkg-buildpackage: full upload; Debian-native package (full source is
 included)

The binary package file testdeb_0.1-1_all.deb is stored in the parent directory. When it is installed
manually using dpkg -i ../testdeb_0.1-2_all.deb as root, the Python script is installed as /usr/
bin/testdeb.py. It is automatically invoked by the postint script, so a file named /tmp/test-
deb-date-time has been created, too.

Setup repository

17

Congratulations! You've successfully built your first own Debian package.

1.5. Setup repository
Until now the binary package is only available locally, thus for installation it needs to be copied manually to
each host and must be installed manually using dpkg -i. If the package required additional dependencies,
the installation process will abort, since packages are not downloaded by dpkg, but by apt. To support
automatic installation and dependency resolution, the package must be put into an apt repository, which needs
to be made available through http or some other mechanism.

For this example the repository is created below /var/www/repository/, which is exported by default
on all UCS systems, where apache2 is installed. Below that directory several other sub-directories and files
must be created to be compatible with the UCS Updater. The following example commands create a repository
for UCS version 4.1 with the component name testcomp:

WWW_BASE="/var/www/repository/4.1/maintained/component"
TESTCOMP="testcomp/all"
install -m755 -d "$WWW_BASE/$TESTCOMP"
install -m644 -t "$WWW_BASE/$TESTCOMP" *.deb
(cd "$WWW_BASE" &&
 rm -f "$TESTCOMP/Packages"* &&
 apt-ftparchive packages "$TESTCOMP" > "Packages" &&
 gzip -9 < "Packages" > "$TESTCOMP/Packages.gz" &&
 mv "Packages" "$TESTCOMP/Packages")

This repository can be included on any UCS system by appending the following line to /
etc/apt/sources.list, assuming the FQDN of the host providing the repository is named
repository.server:

deb http://repository.server/repository/4.1/maintained/component
 testcomp/all/

Note

It is important that the directory, from were the apt-ftparchive command is invoked, matches
the first string given in the sources.list file after the deb prefix. The URL together with the
suffix testcomp/all/ not only specifies the location of the Packages file, but is also used as
the base URL for all packages listed in the Packages file.

Instead of editing the sources.list file directly, the repository can also be included as a component,
which can be configured by setting several UCR variables. As UCR variables can also be configured through
UDM policies, this simplifies the task of installing packages from such a repository on may hosts. For the
repository above the following variables need to be set:

ucr set \
 repository/online/component/testcomp=yes \
 repository/online/component/testcomp/server=repository.server \
 repository/online/component/testcomp/prefix=repository

1.6. Building packages through the openSUSE Build
Service

The openSUSE Build Service (OBS) is a framework to generate packages for a wide range of distributions.
Additional information can be found at https://build.opensuse.org/. If OBS is already used to build packages

https://www.univention.com/feedback/?manual=pkt:repository
https://www.univention.com/feedback/?manual=pkg:obs
https://build.opensuse.org/

Building packages through the openSUSE Build Service

18

for other distributions, it can also be used for Univention Corporate Server builds. The build target for UCS 4.1
is called Univention UCS 4.1. Note that OBS doesn't handle the integration steps described in later chapters
(e.g. the use of Univention Configuration Registry templates).

Using UCR

19

Chapter 2. Univention Config Registry
2.1. Using UCR .. 19

2.1.1. Using UCR from shell ... 19
2.1.2. Using UCR from Python .. 21

2.2. Configuration files ... 22
2.2.1. debian/package.univention-config-registry .. 22

2.2.1.1. File ... 23
2.2.1.2. Multifile ... 24
2.2.1.3. Script ... 25
2.2.1.4. Module ... 25

2.2.2. debian/package.univention-config-registry-variables 25
2.2.3. debian/package.univention-config-registry-categories 26
2.2.4. debian/package.univention-config-registry-services 27

2.3. UCR Template files conffiles/path/to/file ... 28
2.4. Build integration ... 29
2.5. Examples ... 29

2.5.1. Minimal File example .. 29
2.5.2. Multifile example .. 31
2.5.3. Services .. 32

The Univention Config Registry (UCR) is a local mechanism, which is used on all UCS system roles to
consistently configure all services and applications. It consists of a database, were the currently configured
values are stored, and a mechanism to trigger certain actions, when values are changed. This is mostly used
to create configuration files from templates by filling in the configured values. In addition to using simple
place holders its also possible to use Python code for more advanced templates or to call external programs
when values are changed. UCR values can also be configured through an UDM policy in Univention directory
service (LDAP), which allows values to be set consistently for multiple hosts of a domain.

2.1. Using UCR
Univention Configuration Registry provides two interfaces, which allows easy access from shell scripts and
Python programs.

2.1.1. Using UCR from shell

univention-config-registry (and its alias ucr) can be invoked directly from shell. The most com-
monly used functions are:

ucr set [key=value] | [key?value]...
Set Univention Configuration Registry variable key to the given value. Using = forces an assignment,
while ? only sets the value if the variable is unset.

Example 2.1. Use of ucr set

ucr set print/papersize?a4 \
 variable/name=value

ucr get key
Return the current value of the Univention Configuration Registry variable key.

https://www.univention.com/feedback/?manual=ucr:usage
https://www.univention.com/feedback/?manual=ucr:usage:shell

Using UCR from shell

20

Example 2.2. Use of ucr get

case "$(ucr get system/role)" in
 domaincontroller_*)
 echo "Running on a UCS Domain Controller"
 ;;
esac

For variables containing boolean values the shell-library-function is_ucr_true key from /usr/
share/univention-lib/ucr.sh should be used. It returns 0 (success) for the values "1", "yes",
"on", "true", "enable", "enabled", 1 for the negated values "0", "no", "off", "false", "disable", "disabled".
For all other values it returns a value of 2 to indicate inappropriate usage.

Example 2.3. Use of is_ucr_true

. /usr/share/univention-lib/ucr.sh
if is_ucr_true repository/online/unmaintained
then
 echo "Unmaintained is enabled"
fi

ucr unset key ...
Unset the Univention Configuration Registry variable key.

Example 2.4. Use of ucr unset

ucr unset print/papersize variable/namme

ucr shell [key ...]
Export some or all Univention Configuration Registry variables in a shell compatible manner as environ-
ment variables. All shell-incompatible characters in variable names are substituted by underscores (_).

Example 2.5. Use of ucr shell

eval "$(ucr shell)"
case "$server_role" in
 domaincontroller_*)
 echo "Running on a UCS Domain Controller serving $ldap_base"
 ;;
esac

It is often easier to export all variables once and than reference the values through shell variables.

Warning

Be careful with shell quoting, since several Univention Configuration Registry variables contain
shell meta characters. Use eval "$(ucr shell)".

Note

ucr is installed as /usr/sbin/ucr, which is not on the search path $PATH of normal users.
Changing variables requires root access to /etc/univention/base.conf, but reading works
for normal users too, if /usr/sbin/ucr is invoked directly.

Using UCR from Python

21

2.1.2. Using UCR from Python

UCR also provides a Python binding, which can be used from any Python program. An instance of
univention.config_registry.ConfigRegistry needs to be crated first. After loading the cur-
rent database state with load() the values can be accessed by using the instance like a Python dictionary:

Example 2.6. Reading a Univention Configuration Registry variable in Python

from univention.config_registry import ConfigRegistry
ucr = ConfigRegistry()
ucr.load()
print ucr['variable/name']
print ucr.get('variable/name', '<not set>')

For variables containing boolean values the methods is_true() and is_false() should be used. The
former returns True for the values "1", "yes", "on", "true", "enable", "enabled", while the later one returns
True for the negated values "0", "no", "off", "false", "disable", "disabled". Both methods accept an optional
argument default, which is returned as-is when the variable is not set.

Example 2.7. Reading boolean Univention Configuration Registry variables in Python

if ucr.is_true('repository/online/unmaintained'):
 print "unmaintained is explicitly enabled"
if ucr.is_true('repository/online/unmaintained', True):
 print "unmaintained is enabled"
if ucr.is_false('repository/online/unmaintained'):
 print "unmaintained is explicitly disabled"
if ucr.is_false('repository/online/unmaintained', True):
 print "unmaintained is disabled"

Modifying variables requires a different approach. The function ucr_update() should be used to set and
unset variables.

Example 2.8. Changing Univention Configuration Registry variables in Python

from univention.config_registry.frontend import ucr_update
ucr_update(ucr, {
 'foo': 'bar',
 'baz': '42',
 'bar': None,
 })

The function ucr_update() requires an instance of ConfigRegistry as its first argument. The method
is guaranteed to be atomic and internally uses file locking to prevent race conditions.

The second argument must be a Python dictionary mapping UCR variable names to their new value. The value
must be either a string or None, which is used to unset the variable.

As an alternative the old functions handler_set() and handler_unset() can still be used to set and
unset variables. Both functions expect an array of strings with the same syntax as used with the command
line tool ucr. As the functions handler_set() and handler_unset() don't automatically update any
instance of ConfigRegistry, the method load() has to be called manually afterwards to reflect the
updated values.

https://www.univention.com/feedback/?manual=ucr:usage:python

Configuration files

22

Example 2.9. Setting and unsetting Univention Configuration Registry variables in
Python

from univention.config_registry import handler_set, handler_unset
handler_set(['foo=bar', 'baz?42'])
handler_unset(['foo', 'bar'])

2.2. Configuration files
Packages can use the UCR functionality to create customized configuration files themselves. UCR diverts
files shipped by Debian packages and replaces them by generated files. If variables are changed, the affected
files are committed, which regenerated their content. This diversion is persistent and even outlives updates,
so they are not overwritten by configuration files of new packages.

For this, packages need to ship additional files:

conffiles/path/to/file
This template file is used to create the target file. There exist two variants: A singe file template consists
of only a single file, from which the target file is created, while a multi file template can consist of multiple
file fragments, which are concatenated to form the target file. See Section 2.3 below for more information.

debian/package.univention-config-registry
This mandatory information file describes the each template file. It specifies the type of the template and
lists the UCR variable names, which shall trigger the regeneration of the target file. See Section 2.2.1
below for more information.

debian/package.univention-config-registry-variables
This optional file can add descriptions to UCR variables, which should describe the use of the variable,
its default and allowed values. See Section 2.2.2 below for more information.

debian/package.univention-config-registry-categories
This optional file can add additional categories to group UCR variables. See Section 2.2.3 below for more
information.

debian/package.univention-config-registry-services
This optional file is used to define long running services. See Section 2.2.4 below for more information.

In addition to these files code needs to be inserted into the package maintainer scripts (see Section B.3.5),
which registers and unregisters these files. This is done by calling univention-install-con-
fig-registry from debian/rules during the package build binary phase. The command is part of
the univention-config-dev package, which needs to be added as a Build-Depends build dependency of
the source package in debian/control.

2.2.1. debian/package.univention-config-registry

This file describes all template files in the package. The file is processed and copied by univention-in-
stall-config-registry into /etc/univention/templates/info/ when the package is built.

It can consist of multiple sections, where sections are separated by one blank line. Each section consists
of multiple key-value-pairs separated by a colon followed by one blank. A typical entry has the following
structure:

Type: <type>
[Multifile|File]: <filename>
[Subfile: <fragment-filename>]
Variables: <variable1>

https://www.univention.com/feedback/?manual=ucr:conf
https://www.univention.com/feedback/?manual=ucr:info

debian/package.univention-config-registry

23

...

Type specifies the type of the template, which the following sections describe in more detail.

2.2.1.1. File

A single file template is specified as type file. It defines a template, were the target file is created from only
a single source file. A typical entry hat the following structure:

Type: file
File: <filename>
Variables: <variable1>
User: <owner>
Group: <group>
Mode: <file-mode>
Preinst: <module>
Postinst: <module>
...

The following keys can be used:

File (required)
Specifies both the target and source file name, which are identical. The source file containing the template
must be put below the conffiles/ directory. The file can contain any textual content and is processed
as described in Section 2.3.

The template file is installed to /etc/univention/templates/files/.

Variables (optional)
This key can be given multiple times and specifies the name of UCR variables, which trigger the file
commit process. This is normally only required for templates using @!@ Python code regions. Variables
used in @%@ sections do not need to be listed explicitly, since ucr extracts them automatically.

The variable name is actually a Python regular expression, which can be used to match, for example, all
variable names starting with a common prefix.

User (optional),
Group (optional),
Mode (optional)

These specify the symbolic name of the user, group and octal file permissions for the created target file.
If no values are explicitly provided, then root:root is used by default and the file mode is inherited
from the source template.

Preinst (optional),
Postinst (optional)

These specify the name of a Python module located in /etc/univention/templates/mod-
ules/, which is called before and after the target file is re-created. The module must implement the
following two functions:

def preinst(config_registry, changes):
 pass
def postinst(config_registry, changes):
 pass

Each function receives two arguments: The first argument config_registry is a reference to an
instance of ConfigRegistry. The second argument changes is a dictionary of 2-tuples, which maps
the names of all changed variables to (old-value, new-value).

https://www.univention.com/feedback/?manual=ucr:file

debian/package.univention-config-registry

24

univention-install-config-registry installs the module file to /etc/univen-
tion/templates/modules/.

If a script /etc/univention/templates/scripts/full-path-to-file exists, it will be called
after the file is committed. The script is called with the argument postinst. It receives the list of changed
variables as documented in Section 2.2.1.3.

2.2.1.2. Multifile

A multi file template is specified once as type multifile, which describes the target file name. In addition
to that multiple sections of type subfile are used to describe source file fragments, which are concatenated
to form the final target file. A typical multifile has the following structure:

Type: multifile
Multifile: <target-filename>
User: <owner>
Group: <group>
Mode: <file-mode>
Preinst: <module>
Postinst: <module>
Variables: <variable1>

Type: subfile
Multifile: <target-filename>
Subfile: <fragment-filename>
Variables: <variable1>
...

The following keys can be used:

Multifile (required)
This specifies the target file name. It is also used to link the multifile entry to its corresponding
subfile entries.

Subfile (required)
The source file containing the template fragment must be put below the conffiles/ directory in the
Debian source package. The file can contain any textual content and is processed as described in Sec-
tion 2.3. The template file is installed to /etc/univention/templates/files/.

Common best practice is to start the filename with two digits to allow consistent sorting and to put
the file in the directory named like the target filename suffixed by .d, that is conffiles/tar-
get-filename.d/00fragment-filename.

Variables (optional)
Variables can be declared in both the multifile and subfile sections. The variables from all sec-
tions trigger the commit of the target file. Until UCS-2.4 only the multifile section was used, since
UCS-3.0 the subfile section should be preferred (if needed).

User (optional),
Group (optional),
Mode (optional),
Preinst (optional),
Postinst (optional)

Same as above for file.

The same script hook as above for file is also supported.

https://www.univention.com/feedback/?manual=ucr:multifile

debian/package.univention-config-reg-
istry-variables

25

2.2.1.3. Script

A script template allows an external program to be called when specific UCR variables are changed. A typical
script entry has the following structure:

Type: script
Script: <filename>
Variables: <variable1>

The following keys can be used:

Script (required)
Specifies the filename of an executable, which is installed to /etc/univention/tem-
plates/scripts/.

The script is called with the argument generate. It receives the list of changed variables on standard
input. For each changed variable a line containing the name of the variable, the old value, and the new
value separated by @%@ is sent.

Variables (required)
Specifies the UCR variable names, which should trigger the script.

2.2.1.4. Module

A module template allows a Python module to be run when specific UCR variables are changed. A typical
module entry has the following structure:

Type: module
Module: <filename>
Variables: <variable1>

The following keys can be used:

Module (required)
Specifies the filename of a Python module, which is installed to /etc/univention/tem-
plates/modules/.

The module must implement the following function:

def handler(config_registry, changes):
 pass

The function receives two arguments: The first argument config_registry is a reference to an in-
stance of ConfigRegistry. The second argument changes is a dictionary of 2-tuples, which maps
the names of all changed variables to (old-value, new-value).

univention-install-config-registry installs the module to /etc/univention/tem-
plates/modules/.

Variables (required)
Specifies the UCR variable names, which should trigger the module.

2.2.2. debian/package.univention-config-registry-vari-
ables

For UCR variables a description should be registered. This description is shown in the Univention Config Reg-
istry module of the UMC as a mouse-over. It can also be queried by running ucr info variable/name
on the command line.

https://www.univention.com/feedback/?manual=ucr:script
https://www.univention.com/feedback/?manual=ucr:module
https://www.univention.com/feedback/?manual=ucr:variables

debian/package.univention-config-reg-
istry-categories

26

The description is provided on a per-package basis as a file, which uses the ini-style format. The file is
processed and copied by univention-install-config-registry-info into /etc/univen-
tion/registry.info/variables/. The command univention-install-config-reg-
istry-info is invoked indirectly by univention-install-config-registry, which should be
called instead from debian/rules.

For each variable a section of the following structure is defined:

[<variable/name>]
Description[en]=<description>
Description[<language>]=<description>
Type=<type>
ReadOnly=<yes|no>
Categories=<category,...>

[variable/name] (required)
For each variable description one section needs to be created. The name of the section must match the
variable name.

To describe multiple variables with a common prefix and/or suffix, the regular expression .* can be used
to match any sequence of characters. This is the only supported regular expression!

Description[language] (required)
A descriptive text for the variable. It should mention the valid and default values. The description can be
given in multiple languages, using the two-letter-code following [ISO639].

Type (required)
The syntax type for the value. This is unused in UCS-3.1, but future versions might use this for validating
the input. Valid values include str for strings, bool for boolean values, and int for integers.

ReadOnly (optional)
This declares a variable as read-only and prohibits changing the value through UMC. The restriction is
not applied when using the command line tool ucr. Valid values are true for read-only and false,
which is the default.

Categories (required)
A list of categories, separated by comma. This is used to group related UCR variables. New categories
don't need to be declared explicitly, but it is recommended to do so following Section 2.2.3.

2.2.3. debian/package.univention-config-registry-cate-
gories

UCR variables can be grouped into categories, which can help administrators to find related settings. Cate-
gories are referenced from .univention-config-registry-variables files (see Section 2.2.2).
They are created on-the-fly, but can be described further by explicitly defining them in a .univen-
tion-config-registry-categories file.

The description is provided on a per-package basis as a file, which uses the ini-style format. The file is
processed and copied by univention-install-config-registry-info into /etc/univen-
tion/registry.info/categories/. The command univention-install-config-reg-
istry-info is invoked indirectly by univention-install-config-registry, which should be
called instead from debian/rules.

For each category a section of the following structure is defined:

[<category-name>]

https://www.univention.com/feedback/?manual=ucr:categories

debian/package.univention-config-reg-
istry-services

27

name[en]=<name>
name[<language>]=<translated-name>
icon=<file-name>

[category-name]
For each category description one section needs to be created.

name[language] (required)
A descriptive text for the category. The description can be given in multiple languages, using the two-
letter-code following [ISO639].

icon (required)
The file name of an icon in either the Portable Network Graphics (PNG) format or Graphics Interchange
Format (GIF). This is unused in UCS-3.1, but future versions might display this icon for variables in
this category.

2.2.4. debian/package.univention-config-registry-ser-
vices

Long running services should be registered with UCR and UMC. This enables administrators to control these
daemons using the UMC module System services.

The description is provided on a per-package basis as a file, which uses the ini-style format. The
file is processed and copied by univention-install-service-info into /etc/univen-
tion/service.info/services/. The command univention-install-service-info is in-
voked indirectly by univention-install-config-registry, which should be called instead from
debian/rules.

For each service a section of the following structure is defined:

[<service-name>]
description[<language>]=<description>
start_type=<service-name>/autostart
icon=<service/icon_name>
programs=<executable>

[service-name]
For each daemon one section needs to be created. The service-name should match the name of the init-
script in /etc/init.d/.

description[language] (required)
A descriptive text for the service. The description can be given in multiple languages, using the two-
letter-code following [ISO639].

start_type (required)
Specifies the name of the UCR variable, which controls if the service should be started automatically. It
is recommended to use the shell library /usr/share/univention-config-registry/init-
autostart.lib to evaluate the setting from the init-script of the service. If the variable is set to false
or no, the service should never be started. If the variable is set to manually, the service should not be
started automatically, but invoking the init-script directly with start should still start the service.

programs (required)
A comma separated list of commands, which must be running to qualify the service as running. Each
command name is checked against /proc/*/cmdline. To check the processes for additional argu-
ments, the command can also consist of additional shell-escaped arguments.

https://www.univention.com/feedback/?manual=ucr:services

UCR Template files conffiles/path/to/file

28

icon (optional)
The file name of an icon in either Portable Network Graphics (PNG) format or Graphics Interchange
Format (GIF) format. This is unused in UCS-3.1, but future versions might display the icon for the service.

2.3. UCR Template files conffiles/path/to/file
For each file, which should be written, one or more template files need be to created below the conffiles/
directory. For a single-File template (see Section 2.2.1.1), the filename must match the filename given in the
File: stanza of the file entry itself. For a Multifile template (see Section 2.2.1.2), the filename must match
the filename given in the File: stanza of the subfile entries.

Each template file is normally a text file, where certain sections get substituted by computed values during
the file commit. Each section starts and ends with a special marker. UCR currently supports the following
kinds of markers:

@%@ variable reference
Sections enclosed in @%@ are simple references to Univention Configuration Registry variable. The sec-
tion is replaced inline by the current value of the variable. If the variable is unset, an empty string is used.

ucr scans all files and subfiles on registration. All Univention Configuration Registry vari-
ables used in @%@ are automatically extracted and registered for triggering the template mecha-
nism. They don't need to be explicitly enumerated with Variables:-statements in the file de-
bian/package.univention-config-registry.

@!@ Python code
Sections enclosed in @!@ contain Python code. Everything printed to STDOUT by these sections is in-
serted into the generated file. The Python code can access the configRegistry1 variable, which is
an already loaded instance of ConfigRegistry. Each section is evaluated separately, so no state is
kept between different Python sections.

All Univention Configuration Registry variables used in a @!@ Python section must be manually matched
by a Variables: statement in the debian/package.univention-config-registry file.
Otherwise the file is not updated on changes of the UCR variable.

@%@UCRWARNING=%PREFIX@%@,
@%@UCRWARNING_ASCII=%PREFIX@%@

This variant of the variable reference inserts a warning text, which looks like this:

Warning: This file is auto-generated and might be overwritten by
univention-config-registry.
Please edit the following file(s) instead:
Warnung: Diese Datei wurde automatisch generiert und kann durch
univention-config-registry überschrieben werden.
Bitte bearbeiten Sie an Stelle dessen die folgende(n)
 Datei(en):
#
/etc/univention/templates/files/etc/hosts.d/00-base
/etc/univention/templates/files/etc/hosts.d/20-static
/etc/univention/templates/files/etc/hosts.d/90-ipv6defaults
#

It should be inserted once at the top to prevent the user from editing the generated file. For single File
templates, it should be on the top of the template file itself. For Multifile templates, it should only be
on the top the first subfile.

1 Historically Univention Configuration Registry was named “Univention Base Config”. For backward compatibility the alias baseConfig is still
provided. It should not be used anymore and will be removed in a future version of UCS.

https://www.univention.com/feedback/?manual=ucr:conffiles

Build integration

29

Everything between the equal sign and the closing @%@ defines the PREFIX, which is inserted at the
beginning of each line of the warning text. For shell scripts, this should be # , but other files use different
characters to start a comment. For files, which don't allow comments, the header should be skipped.

Warning

Several file formats require the file to start with some magic data. For example shell scripts
must start with a hash-bang (#!) and XML files must start with <?xml version="1.0"
encoding="UTF-8"?> (if used). Make sure to put the warning after these headers!

The UCRWARNING_ASCII variant only emits 7-bit ASCII characters, which can be used for files, which
are not 8 bit clean or unicode aware.

2.4. Build integration
During package build time univention-install-config-registry needs to be called. This should
be done by overriding the dh_auto_install_target in debian/rules:

override_dh_auto_install:
 univention-install-config-registry
 dh_auto_install

This invocation copies the referenced files to the right location in the binary package staging
area debian/package/etc/univention/. Internally univention-install-config-reg-
istry-info and univention-install-service-info are invoked, which should not be called
explicitly anymore. The calls also insert code into the files debian/package.preinst.debhelper,
debian/package.postinst.debhelper and debian/package.prerm.debhelper to regis-
ter and un-register the templates. Therefore it's important that customized maintainer scripts use the #DEB-
HELPER# marker, so that the generated code gets inserted into the corresponding preinst, postinst
and prerm files of the generated binary package.

The invocation also adds univention-config to misc:Depends to ensure that the package is available during
package configuration time. Therefore it's important that ${misc:Depends} is used in the Depends line
of the package section in the debian/control file.

Package: ...
Depends: ..., ${misc:Depends}, ...

2.5. Examples
This sections contains several simple examples for the use of Univention Configuration Registry. The com-
plete source of these examples is available separately. The download location is given in each example be-
low. Since almost all Univention Corporate Server packages use UCR, their source code provides additional
examples.

2.5.1. Minimal File example

This example provides a template for /etc/papersize, which is used to configure the default paper size.
A Univention Configuration Registry variable print/papersize is registered, which can be used to con-
figure the papersize.

Source code: https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/ucr/
papersize/

https://www.univention.com/feedback/?manual=ucr:build
https://www.univention.com/feedback/?manual=ucr:example
https://www.univention.com/feedback/?manual=ucr:example:minimal
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/ucr/papersize/
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/ucr/papersize/

Minimal File example

30

conffiles/etc/papersize
The template file only contains one line. Please note that this file does not start with the “UCR-
WARNING”, since the file must only contain the paper size and no comments.

@%@print/papersize@%@

debian/papersize.univention-config-registry
The file defines the templates and is processed by univention-install-config-registry
during the package build and afterwards by univention-config-registry during normal usage.

Type: file
File: etc/papersize

debian/papersize.univention-config-registry-variables
The file describes the newly defined Univention Configuration Registry variable.

[print/papersize]
Description[en]=specify preferred paper size [a4]
Description[de]=Legt die bevorzugte Papiergröße fest [a4]
Type=str
Categories=service-cups

debian/papersize.postinst
Sets the Univention Configuration Registry variable to a default value after package installation.

#!/bin/sh

#DEBHELPER#

ucr set print/papersize?a4

exit 0

debian/rules
Invoke univention-install-config-registry during package build to install the files to the
appropriate location. It also creates the required commands for the maintainer scripts (see Section B.3.5)
to register and unregister the templates during package installation and removal.

#!/usr/bin/make -f

override_dh_auto_install:
 dh_auto_install
 univention-install-config-registry

%:
 dh $@

Note that tabulators must be used for indention in this Makefile-type file.

debian/control
The automatically generated dependency on univention-config is inserted by univention-in-
stall-config-registry via debian/papersize.substvars.

Source: papersize
Section: univention
Priority: optional

Multifile example

31

Maintainer: Univention GmbH <packages@univention.de>
Build-Depends: debhelper (>= 7),
 univention-config-dev,
Standards-Version: 3.7.2

Package: papersize
Architecture: all
Depends: ${misc:Depends}
Description: An example package to configure the papersize
 This purpose of this package is to show how Univention Config
 Registry is used.
 .
 For more information about UCS, refer to:
 http://www.univention.de/

2.5.2. Multifile example

This example provides templates for /etc/hosts.allow and /etc/hosts.deny, which is used to
control access to system services. See hosts_access(5) for more details.

Source code: https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/ucr/
hosts/

conffiles/etc/hosts.allow.d/00header,
conffiles/etc/hosts.deny.d/00header

The first file fragment of the file. It starts with @%@UCRWARNING=# @%@, which is replaced by the
warning text and a list of all subfiles.

@%@UCRWARNING=# @%@
/etc/hosts.allow: list of hosts that are allowed to access the
 system.
See the manual pages hosts_access(5) and
 hosts_options(5).

conffiles/etc/hosts.allow.d/50dynamic,
conffiles/etc/hosts.deny.d/50dynamic

A second file fragment, which uses Python code to insert access control entries configured through the
Univention Configuration Registry variables hosts/allow/ and hosts/deny/.

@!@
for key, value in sorted(configRegistry.items()):
 if key.startswith('hosts/allow/'):
 print value
@!@

debian/hosts.univention-config-registry
The file defines the templates and is processed by univention-install-config-registry.

Type: multifile
Multifile: etc/hosts.allow

Type: subfile
Multifile: etc/hosts.allow
Subfile: etc/hosts.allow.d/00header

https://www.univention.com/feedback/?manual=ucr:example:multifile
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/ucr/hosts/
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/ucr/hosts/

Services

32

Type: subfile
Multifile: etc/hosts.allow
Subfile: etc/hosts.allow.d/50dynamic
Variables: ^hosts/allow/.*

Type: multifile
Multifile: etc/hosts.deny

Type: subfile
Multifile: etc/hosts.deny
Subfile: etc/hosts.deny.d/00header

Type: subfile
Multifile: etc/hosts.deny
Subfile: etc/hosts.deny.d/50dynamic
Variables: ^hosts/deny/.*

debian/hosts.univention-config-registry-variables
The file describes the newly defined Univention Configuration Registry variables.

[hosts/allow/.*]
Description[en]=An permissive access control entry for system
 services, e.g. "ALL: LOCAL"
Description[de]=Eine erlaubende Zugriffsregel für Systemdienste, z.B.
 "ALL: LOCAL".
Type=str
Categories=service-net

[hosts/deny/.*]
Description[en]=An denying access control entry for system services,
 e.g. "ALL: ALL".
Description[de]=Eine verbietende Zugriffsregel für Systemdienste,
 z.B. "ALL: ALL".
Type=str
Categories=service-net

2.5.3. Services

This example provides a template to control the atd service through an Univention Configuration Registry
variable atd/autostart.

Source code: https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/ucr/
service/

conffiles/etc/init.d/atd
The template replaces the original file with a version, which checks the Univention Configuration Registry
variable atd/autostart before starting the at daemon. Please note that the “UCRWARNING” is
put after the hash-bash line.

#! /bin/sh
@%@UCRWARNING=# @%@
BEGIN INIT INFO
Provides: atd
Required-Start: $syslog $time $remote_fs
Required-Stop: $syslog $time $remote_fs

https://www.univention.com/feedback/?manual=ucr:example:service
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/ucr/service/
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/ucr/service/

Services

33

Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Deferred execution scheduler
Description: Debian init script for the atd deferred
 executions
scheduler
END INIT INFO
#
Author: Ryan Murray <rmurray@debian.org>
#

PATH=/bin:/usr/bin:/sbin:/usr/sbin
DAEMON=/usr/sbin/atd
PIDFILE=/var/run/atd.pid

test -x $DAEMON || exit 0

. /lib/lsb/init-functions

case "$1" in
 start)
 # check ucr autostart setting
 IAL="/usr/share/univention-config-registry/init-autostart.lib"
 if [-f "$IAL"]; then
 . "$IAL"
 check_autostart atd atd/autostart
 fi
 log_daemon_msg "Starting deferred execution scheduler" "atd"
 start_daemon -p $PIDFILE $DAEMON
 log_end_msg $?
 ;;
 stop)
 log_daemon_msg "Stopping deferred execution scheduler" "atd"
 killproc -p $PIDFILE $DAEMON
 log_end_msg $?
 ;;
 force-reload|restart)
 $0 stop
 $0 start
 ;;
 status)
 status_of_proc -p $PIDFILE $DAEMON atd && exit 0 || exit $?
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|force-reload|status}"
 exit 1
 ;;
esac

exit 0

Note the inclusion of init-autostart.lib and use of check_autostart.

debian/service.univention-config-registry
The file defines the templates.

Services

34

Type: file
File: etc/init.d/atd
Mode: 755
Variables: atd/autostart

Note the additional Mode statement to mark the file as executable.

debian/service.univention-config-registry-variables
The file adds a description for the Univention Configuration Registry variable atd/autostart.

[atd/autostart]
Description[en]=Automatically start the AT daemon on system startup
 [yes]
Description[de]=Automatischer Start des AT-Dienstes beim Systemstart
 [yes]
Type=bool
Categories=service-at

debian/service.postinst
Set the Univention Configuration Registry variable to automatically start the atd on new installations.

#!/bin/sh

#DEBHELPER#

ucr set atd/autostart?yes

exit 0

debian/control
univention-base-files must be added manually as an additional dependency, since it is used from within
the shell code.

Source: service
Section: univention
Priority: optional
Maintainer: Univention GmbH <packages@univention.de>
Build-Depends: debhelper (>= 7),
 univention-config-dev,
Standards-Version: 3.7.2

Package: service
Architecture: all
Depends: ${misc:Depends},
 univention-base-files,
Description: An example package to configure services
 This purpose of this package is to show how Univention Config
 Registry is used.
 .
 For more information about UCS, refer to:
 http://www.univention.de/

Join scripts

35

Chapter 3. Domain Join
3.1. Join scripts ... 35
3.2. Join status .. 35
3.3. Running join scripts ... 35
3.4. Writing join scripts .. 36

3.4.1. Basic join script example ... 36
3.4.2. Join script exit codes ... 38
3.4.3. Join script libraries .. 38

3.4.3.1. univention-join .. 38
3.4.3.2. shell-univention-lib .. 40

3.5. Writing unjoin scripts .. 43

An UCS system is normally joined into a domain. This establishes a trust relation between the different hosts,
which enables users to access services provided by any host of the domain.

Joining a system into a domain requires write permission to create and modify entries in the Univention
directory service (LDAP). Local root permission on the joining host is not sufficient to get write access to the
domain wide LDAP service. Instead valid LDAP credentials must be entered interactively by the administrator
doing the join.

3.1. Join scripts
Packages requiring write access to the Univention directory service can provide so called join scripts. They
are installed into /usr/lib/univention-install/. The name of each join script is normally derived
from the name of the binary package containing it. It is prefixed with a two-digit number, which is used
to order the scripts lexicographically. The filename either ends in .inst or .uinst, which distinguishes
between join script and unjoin script (see Section 3.5). The file must have the executable permission bits set.

3.2. Join status
For each join script a version number is tracked. This is used to skip re-executing join scripts, which already
have been executed. This is mostly a performance optimization, but is also used to find join scripts which
need to be run.

The text file /var/univention-join/status is used to keep track of the state of all join scripts. For
each successful run of a join script a line is appended to that file. That record consists of three space separated
entries:

$script_name v$version successful

1. The first entry contains the name of the join script without the two-digit prefix and without the .inst
suffix, usually corresponding to the package name.

2. The second entry contains a version number prefixed by a v. It is used to keep track of the latest version
of the join script, which has been run successfully. This is used to identify, which join scripts need to be
executed and which can be skipped, because they were already executed in the past.

3. The third column contains the word successful.

If a new version of the join script is invoked, it just appends a new record with a higher version number at
the end of the file.

3.3. Running join scripts
There exist three commands related to running join scripts:

https://www.univention.com/feedback/?manual=chap:scripts
https://www.univention.com/feedback/?manual=join:status
https://www.univention.com/feedback/?manual=join:run

Writing join scripts

36

univention-join
When univention-join is invoked, a machine account is created. The distinguished name (dn) of
that entry is stored locally in the Univention Configuration Registry variable ldap/hostdn. A random
password is generated, which is stored in the file /etc/machine.secret.

After that the file /var/univention-join/status is cleared and all join scripts located in /usr/
lib/univention-install/ are executed in lexicographical order.

univention-run-join-scripts
This command is similar to univention-join, but skips the first step of creating a machine account.
Only those join scripts are executed, whose current version is not yet registered in /var/univen-
tion-join/status.

univention-check-join-status
This command only checks for join scripts in /usr/lib/univention-install/, whose version
is not yet registered in /var/univention-join/status.

When packages are installed, it depends on the server role, if join scripts are invoked automatically from
the postinst Debian maintainer script or not. This only happens on master and backup domain controller
system roles, where the local root user has access to the file containing the LDAP credentials. On all other
system roles the join scripts need to be run manually by invoking univention-run-join-scripts
or doing so through UMC.

3.4. Writing join scripts
Similar to the Debian maintainer scripts (see Section B.3.5) they should be idem-potent: They should transform
the system from any state into the state required by the package, that is:

• They should create newly introduced objects in the Univention directory service

• They should not fail if the object already exists

• They should be careful about modifying objects, which might have been modified by the administrator in
the past

Join scripts may be called from multiple system roles and different versions. Therefore it is important that
these scripts do not destroy or remove data still used by other systems!

3.4.1. Basic join script example

This example provides a template for writing join scripts. The package is called join-template and just contains
a join and an unjoin script. They demonstrate some commonly used functions.

Source code: https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/join/
join-template/

50join-template.inst
The join script in UCS packages is typically located in the package root directory. It has the following
base structure:

#!/bin/sh
VERSION=1
. /usr/share/univention-join/joinscripthelper.lib
joinscript_init

SERVICE="MyService"

https://www.univention.com/feedback/?manual=join:write
https://www.univention.com/feedback/?manual=join:minimal
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/join/join-template/
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/join/join-template/

Basic join script example

37

eval "$(ucr shell)"

. /usr/share/univention-lib/ldap.sh
ucs_addServiceToLocalhost "$SERVICE" "$@"

udm "computers/$server_role" modify "$@" \
 --dn "$ldap_hostdn" \
 --set reinstall=0 || die

create container for extended attributes to be placed in
udm container/cn create "$@" \
 --ignore_exists \
 --position "cn=custom attributes,cn=univention,$ldap_base" \
 --set name="myservice" || die

some extended attributes would be added here

joinscript_save_current_version
exit 0

Please note the essential argument "$@" when udm is invoked, which passes on the required LDAP
credentials described in Section 4.4.

debian/join-template.install
The scripts need to be installed into /usr/lib/univention-install/, which is achieved by the
following lines:

50join-template.inst usr/lib/univention-install/
50join-template-uninstall.uinst usr/lib/univention-uninstall/

Note that this package also installs an unjoin script.

debian/join-template.postinst
The join script should be invoked automatically on master and backup domain controller systems. On
all other system roles an administrator must run the join script manually through univention-run-
join-scripts.

#!/bin/sh

#DEBHELPER#

if ["$1" = "configure"]
then
 uinst=/usr/lib/univention-install/50join-template-uninstall.uinst
 [-e "$uinst"] && rm "$uinst"
fi

. /usr/share/univention-lib/base.sh
call_joinscript 50join-template.inst

exit 0

debian/control
The package uses two shell libraries, which are described in more detail in Section 3.4.3. Both packages
providing them must be added as additional runtime dependencies.

Join script exit codes

38

The unjoin functions were added to UCS 3.1-0 only as erratum update 811. Because of this the minimum
versions must be specified explicitly.

Source: join-template
Section: univention
Priority: optional
Maintainer: Univention GmbH <packages@univention.de>
Build-Depends: debhelper (>= 7)
Standards-Version: 3.7.2

Package: join-template
Architecture: all
Depends: univention-join (>= 5.0.20-1),
 shell-univention-lib (>= 2.0.17-1),
 ${misc:Depends}
Description: An example package for join scripts
 This purpose of this package is to show how
 Univention Join scripts are used.
 .
 For more information about UCS, refer to:
 http://www.univention.de/

3.4.2. Join script exit codes

Join scripts must return the following exit codes:

0
The join script was successful and completed all tasks to join the software package on the system into
the domain. All required entries in the Univention directory service were created or do already exist as
expected.

The script will be marked as successfully run. As a consequence the join script will not be called again
in this version.

1
The script did not complete and some task to fully join the system into the domain are still pending.
Some entries could not be created in LDAP or exist in a state, which is incompatible with this version
of the package.

The script needs to be run again after fixing the problem, either manually or automatically.

2
Some internal functions were called incorrectly. For example the credentials were wrong.

The script needs to be run again.

3.4.3. Join script libraries

There exist two shell libraries, which provide functions which help in writing join scripts:

3.4.3.1. univention-join

The package contains the shell library /usr/share/univention-join/
joinscripthelper.lib. It provides functions related to updating the join status file.

1 https://errata.software-univention.de/ucs/

https://errata.software-univention.de/ucs/
https://www.univention.com/feedback/?manual=join:exitcode
https://www.univention.com/feedback/?manual=join:libraries
https://www.univention.com/feedback/?manual=join:libraries:join
https://errata.software-univention.de/ucs/

Join script libraries

39

joinscript_init
This function parses the status file and exits the shell script, if a record is found with a version greater or
equal to value of the environment variable VERSION. The name of the join script is derived from $0.

joinscript_save_current_version
This function appends a new record to the end of the status file using the version number stored in the
environment variable VERSION.

joinscript_check_any_version_executed
This function returns success (0), if any previous version of the join scripts was successfully executed.
Otherwise it returns a failure (1).

joinscript_check_specific_version_executed version
This function returns success (0), if the specified version version of the join scripts was successfully
executed. Otherwise it returns a failure (1).

joinscript_check_version_in_range_executed min max
This function returns success (0), if any successfully run version of the join script falls within the range
min..max, inclusively. Otherwise it returns a failure (1).

joinscript_extern_init join-script
The check commands mentioned above can also be used in other shell programs, which are not join
scripts. There the name of the join script to be checked must be explicitly given. Instead of calling
joinscript_init, this function requires an additional argument specifying the name of the join-
script.

joinscript_remove_script_from_status_file name
Removes the given join script from the join script status file /var/univention-join/status.
The name should be the basename of the joinscript without the prefixed digits and the suffix .inst. So if
the joinscript /var/lib/univention-install/50join-template.inst shall be removed,
one has to execute joinscript_remove_script_from_status_file join-template.
Primarily used in unjoin scripts.

die
A convenience function to exit the join script with an error code. Used to guarantee that LDAP modifi-
cations were successful: some_udm_create_call || die

These functions use the following environment variables:

VERSION
This variable must be set before joinscript_init is invoked. It specifies the version number of the
join script and is used twice:

1. It defines the current version of the join script.

2. If that version is already recorded in the status file, the join script qualifies as having been run success-
fully and the re-execution is prevented. Otherwise the join status is incomplete and the script needs
to be invoked again.

The version number should be incremented for a new version of the package, when the join script needs
to perform additional modifications in LDAP compared to any previous packaged version.

The version number must be a positive integer. The variable assignment in the join script must be on its
own line. It may optionally quote the version number with single quotes (') or double quotes ("). The
following assignment are valid:

VERSION=1
VERSION='2'

Join script libraries

40

VERSION="3"

JS_LAST_EXECUTED_VERSION
This variable is initialized by joinscript_init with the latest version found in the join status file.
If no version of the join script was ever executed and thus no record exists, the variable is set to 0. The
join script can use this information to decide what to do on an upgrade.

3.4.3.2. shell-univention-lib

The package contains the shell library /usr/share/univention-lib/base.sh. Since package ver-
sion >= 2.0.17-1 it provides the following functions:

call_joinscript [--binddn bind-dn --bindpwd bind-password] [XXjoin-
script.inst]

This calls the join script called XXjoin-script.inst from the directory /usr/lib/univen-
tion-install/. The optional LDAP credentials bind-dn and bind-password are passed on as-
is.

call_joinscript_on_dcmaster [--binddn bind-dn --bindpwd bind-password]
[XXjoin-script.inst]

Similar to call_joinscript, but also checks the system role and only executes the script on the
master domain controller.

remove_joinscript_status [name]
Removes the given join script name from the join script status file /
var/univention-join/status. Note that this command does the same as
joinscript_remove_script_from_status_file provided by univention-join (see Sec-
tion 3.4.3.1).

call_unjoinscript [--binddn bind-dn --bindpwd bind-password] [XXun-
join-script.uinst]

Calls the given unjoin script unjoin-script on master and backup domain controller systems. The
file name must be relative to the directory /usr/lib/univention-install/. The optional LDAP
credentials bind-dn and bind-password are passed on as-is. Afterwards the unjoin script is auto-
matically deleted.

delete_unjoinscript [XXunjoin-script.uinst]
Deletes the given unjoin script XXunjoin-script.uinst if it does not belong to any package. The
file name must be relative to the directory /usr/lib/univention-install/.

stop_udm_cli_server
When univention-directory-manager is used the first time a server is started automatically
that caches some information about the available modules. When changing some of this information (e.g.
when adding or removing extended attributes) the server should be stopped manually.

The package also contains the shell library /usr/share/univention-lib/ldap.sh. It provides con-
venience functions to query the Univention directory service and modify objects. For (un)join scripts the fol-
lowing functions might be important:

ucs_addServiceToLocalhost servicename [--binddn bind-dn --bindpwd bind-
password]

Registers the additional service servicename in the LDAP object representing the local host. The
optional LDAP credentials bind-dn and bind-password are passed on as-is.

Example 3.1. Service registration in join script

ucs_addServiceToLocalhost "MyService" "$@"

https://www.univention.com/feedback/?manual=join:libraries:shell

Join script libraries

41

ucs_removeServiceFromLocalhost servicename [--binddn bind-dn --bindpwd
bind-password]

Removes the service servicename from the LDAP object representing the local host, effectively
reverting an ucs_addServiceToLocalhost call. The optional LDAP credentials bind-dn and
bind-password are passed on as-is.

Example 3.2. Service unregistration in unjoin script

ucs_removeServiceFromLocalhost "MyService" "$@"

ucs_isServiceUnused servicename [--binddn bind-dn --bindpwd bind-pass-
word]

Returns 0 if no LDAP host object exists where the service servicename is registered with.

Example 3.3. Check for unused service in unjoin script

if ucs_isServiceUnused "MyService" "$@"
then
 uninstall_my_service
fi

ucs_registerLDAPExtension [--binddn bind-dn { --bindpwd bind-password | --
bindpwdfile filename }]
{{ --schema filename | --acl filename | --udm_syntax filename | --udm_hook file-
name ...}
| --udm_module filename [--messagecatalog filename...] [--umcregistration filename]
[--icon filename...] }
[--packagename packagename] [--packageversion packageversion] [--ucsversionstart
ucsversion] [--ucsversionend ucsversion]

The shell function ucs_registerLDAPExtension from the Univention shell function library (see
Section 14.3) can be used to register several extension in LDAP. This shell function offers several modes:

--schema filename.schema
Register one or more LDAP schema extension (see Section 4.2)

--acl filename.acl
Register one or more LDAP access control list (see Section 4.3)

--udm_syntax filename.py
Register one or more UDM syntax extension (see Section 6.4)

--udm_hook filename.py
Register one or more UDM hook (see Section 6.2.4)

--udm_module filename.py
Register a single UDM module (see Section 6.3)

The modes can be combined. If more than one mode is used in one call of the function, the modes are
always processed in the order as listed above. Each of these options expects a filename as an required
argument.

The following options can be given multiple times, but only after the option --udm_module:

--messagecatalog prefix/language.mo
The option can be used to supply message translation files in GNU message catalog format. The
language must be a valid language tag, i.e. must correspond to a subdirectory of /usr/share/
locale/.

Join script libraries

42

--umcregistration filename.xml
The option can be used to supply an UMC registration file (see Section 7.5.2) to make the UDM
module accessible via Univention Management Console (UMC).

--icon filename
The option can be used to supply icon files (png or jpeg, in 16×16 or 50×50, or svgz).

Called from a joinscript, the function automatically determines some required parameters, like the app
identifier plus Debian package name and version, required for the creation of the corresponding object.
After creation of the object the function waits up to 3 minutes for the master domain controller to signal
availability of the new extension and reports success or failure. For UDM extensions it additionally checks
that the corresponding file has been made available in the local filesystem. Failure conditions may occur
e.g. in case the new LDAP schema extension collides with the schema currently active. The master domain
controller only activates a new LDAP schema or ACL extension if the configuration check succeeded.

Note

The corresponding UDM modules are documented in Chapter 4 and Chapter 6.

Before calling the shell function the shell variable UNIVENTION_APP_IDENTIFIER should be set to
the versioned app identifier (and exported to the environment of subprocesses). The shell function will
then register the specified app identifier with the extension object to indicate that the extension object is
required as long as this app is installed anywhere in the UCS domain.

The options --packagename and --packageversion should usually not be used, as
these parameters are determined automatically. To prevent accidental downgrades the function
ucs_registerLDAPExtension (as well as the corresponding UDM module) only execute modifi-
cations of an existing object if the Debian package version is not older than the previous one.

ucs_registerLDAPExtension supports two additional options to specify a valid range of UCS
versions, where an extension should be activated. The options are --ucsversionstart and --
ucsversionend. The version check is only performed whenever the extension object is modified. By
calling this function from a joinscript, it will automatically update the Debian package version number
stored in the object, triggering a re-evaluation of the specified UCS version range. The extension is ac-
tivated up to and excluding the UCS version specified by --ucsversionend. This validity range is
not applied to LDAP schema extensions, since they must not be undefined as long as there are objects
in the LDAP directory which make use of it.

Example 3.4. Extension registration in join script

export UNIVENTION_APP_IDENTIFIER="appID-appVersion" ## example
. /usr/share/univention-lib/ldap.sh

ucs_registerLDAPExtension "$@" \
 --schema /path/to/appschemaextension.schema \
 --acl /path/to/appaclextension.acl \
 --udm_syntax /path/to/appudmsyntax.py

ucs_registerLDAPExtension "$@" \
 --udm_module /path/to/appudmmodule.py \
 --messagecatalog /path/to/de.mo \
 --messagecatalog /path/to/eo.mo \
 --umcregistration /path/to/module-object.xml \
 --icon /path/to/moduleicon16x16.png \
 --icon /path/to/moduleicon50x50.png

Writing unjoin scripts

43

ucs_unregisterLDAPExtension [--binddn bind-dn { --bindpwd bind-password |
--bindpwdfile filename }]
{ --schema objectname | --acl objectname | --udm_syntax objectname | --udm_hook
objectname | --udm_module objectname ...}

There is a corresponding ucs_unregisterLDAPExtension function, which can be used to unreg-
ister extension objects. This only works if no App is registered any longer for the object. It must not be
called unless it has been verified that no object in LDAP still requires this schema extension. For this
reason it should generally not be called in unjoin scripts.

Example 3.5. Schema unregistration in unjoin script

. /usr/share/univention-lib/ldap.sh
ucs_unregisterLDAPExtension "$@" --schema appschemaextension

3.5. Writing unjoin scripts
On package removal packages should clean up the data in Univention directory service. Removing data from
LDAP also requires appropriate credentials, while removing a package only requires local root privileges.
Therefore UCS provides support for so-called unjoin scripts. In most cases it reverts the changes of a corre-
sponding join script.

Warning

A domain is a distributed system. Just because one local system no longer wants to store some infor-
mation in Univention directory service does not mean that the data should be deleted. There might
still be other systems in the domain which still require the data.

Therefore “the first system to come” should setup the data, while only “the last system to go” may
clean up the data.

Just like join scripts an unjoin script is prefixed with a two-digit number for lexicographical ordering. To
reverse the order of the unjoin scripts in comparison to the corresponding join scripts, the number of the unjoin
script should be 100 minus the number of the corresponding join script. The suffix of an unjoin script is -
uninstall.uinst and it should be installed in /usr/lib/univention-uninstall/.

On package removal the unjoin script would be deleted as well, while the Univention directory service might
still contain data managed by the package. Therefore the script must be copied from there to /usr/lib/
univention-install/ in the prerm maintainer script.

Example: The package univention-fetchmail provides both a join script /usr/lib/univen-
tion-install/91univention-fetchmail.inst and the corresponding unjoin script as /usr/
lib/univention-uninstall/09univention-fetchmail-uninstall.uinst.

As of UCS 3.1 .inst and .uinst are not distinguishable in the UMC Join module by the user. Therefore
it is important to use the -uninstall suffix to give users a visual hint. Internally join scripts are always
executed before unjoin scripts and then ordered lexicographically by their prefix.

To decide if an unjoin script is the last instance and should remove the data from LDAP, a service can be
registered for each host where the package is installed.

For example the package univention-fetchmail uses ucs_addServiceFromLocalhost "Fetch-
mail" "$@" in the join script to register and ucs_removeServiceFromLocalhost "Fetchmail"
"$@" in the unjoin script to unregister a service for the host. The data is removed from LDAP when in the
unjoin script ucs_isServiceUnused "Fetchmail" "$@" returns 0. As a side effect adding the ser-
vice also allows using this information to find and list those servers currently providing the Fetchmail service.

https://www.univention.com/feedback/?manual=join:unjoin

Writing unjoin scripts

44

50join-template-uninstall.uinst
This unjoin script reverts the changes of the join script from Section 3.4.1.

#!/bin/sh

VERSION is needed for some tools to recognize that as a join script
VERSION=1
. /usr/share/univention-join/joinscripthelper.lib
joinscript_init

SERVICE="MyService"

eval "$(ucr shell)"

. /usr/share/univention-lib/ldap.sh
ucs_removeServiceFromLocalhost "$SERVICE" "$@" || die
if ucs_isServiceUnused "$SERVICE" "$@"
then
 # was last server to implement service. now the data
 # may be removed
 univention-directory-manager container/cn remove "$@" --dn \
 "cn=myservice,cn=custom attributes,cn=univention,$ldap_base" || die

 # Terminate UDM server to force module reload
 . /usr/share/univention-lib/base.sh
 stop_udm_cli_server
fi

do NOT call "joinscript_save_current_version"
otherwise an entry will be appended to /var/univenion-join/status
instead the join script needs to be removed from the status file
joinscript_remove_script_from_status_file join-template

exit 0

debian/join-template.prerm
The unjoin script has to be copied to the join script directory before it gets removed:

#!/bin/sh

#DEBHELPER#

if ["$1" = "remove"]
then
 cp /usr/lib/univention-uninstall/50join-template-uninstall.uinst \
 /usr/lib/univention-install/
fi

exit 0

debian/join-template.postrm
The unjoin script should be invoked automatically on master and backup domain controller systems after
the package is removed. On all other system roles an administrator must run the join script manually
through univention-run-join-scripts.

#!/bin/sh

Writing unjoin scripts

45

#DEBHELPER#

if ["$1" = "remove"]
then
 . /usr/share/univention-lib/all.sh
 call_unjoinscript 50join-template-uninstall.uinst
fi

exit 0

debian/join-template.postinst
In case the package is installed again and the unjoin script still exists, because it was never executed, the
unjoin script must be removed:

#!/bin/sh

#DEBHELPER#

if ["$1" = "configure"]
then
 uinst=/usr/lib/univention-install/50join-template-uninstall.uinst
 [-e "$uinst"] && rm "$uinst"
fi

. /usr/share/univention-lib/base.sh
call_joinscript 50join-template.inst

exit 0

46

General

47

Chapter 4. Lightweight Directory Access
Protocol (LDAP) in UCS

4.1. General .. 47
4.2. Packaging LDAP Schema Extensions .. 47
4.3. Packaging LDAP ACL Extensions ... 48
4.4. LDAP secrets ... 50

4.4.1. Password change .. 50

4.1. General
An LDAP server provides authenticated and controlled access to directory objects over the network. LDAP
objects consist of a collection of attributes which conform to so called LDAP schemata. An in depth docu-
mentation of LDAP is beyond the scope of this document, other sources cover this topic exhaustively, e.g.
http://www.zytrax.com/books/ldap/ or the man pages (slapd.conf, slapd.access).

At least it should be noted that OpenLDAP offers two fundamentally different tool sets for direct access or
modification of LDAP data: The slap* commands (slapcat, etc.) are very low level, operating directly on
the LDAP backend data and should only be used in rare cases, usually with the LDAP server not running. The
ldap* commands (ldapsearch, etc.) on the other hand are the proper way to perform LDAP operations from
the command line and their functionality can equivalently be used from all major programming languages.

On top of the raw LDAP layer, the Univention Directory Manager offers an object model on a higher level,
featuring advanced object semantics (see Chapter 6). That is the level that usually appropriate for app devel-
opers, which should be considered before venturing down to the level of direct LDAP operations. On the
other hand, for the development of new UDM extensions it is important to understand some of the essential
concepts of LDAP as used in UCS.

One essential trait of LDAP as used in UCS, is the strict enforcement of LDAP schemata. An LDAP server
refuses to start if an unknown LDAP attribute is referenced either in the configuration or in the backend data.
This makes it critically important to install schemata on all systems. To simplify this task UCS features a
builtin mechanism for automatic schema replication to all UCS hosted LDAP servers in the UCS domain (see
Chapter 5). The schema replication mechanism is triggered by installation of a new schema extension package
on the UCS master. For redundancy it is strongly recommended to install schema extension packages also on
the UCS backup systems. This way, a UCS backup can replace a UCS master in case the master needs to be
replaced for some reason. To simplify these tasks even further, UCS offers methods to register new LDAP
schemata and associated LDAP ACLs from any UCS system.

4.2. Packaging LDAP Schema Extensions
For some purposes, e.g. for app installation, it is convenient to be able to register a new LDAP schema exten-
sion from any system in the UCS domain. For this purpose, the schema extension can be stored as a special
type of UDM object. The module responsible for this type of objects is called settings/ldapschema.
As these objects are replicated throughout the UCS domain, the master domain controller and backup domain
controller systems listen for modifications of these objects and integrate them into the local LDAP schema
directory. As noted above, this simplifies the task of keeping the schema on the backup domain controller
systems up to date with that on the master domain controller.

The commands to create the LDAP schema extension objects in UDM may be put into any join script (see
Chapter 3). A LDAP schema extension object is created by using the UDM command line interface univen-

https://www.univention.com/feedback/?manual=ldap:general
http://www.zytrax.com/books/ldap/
https://www.univention.com/feedback/?manual=settings:ldapschema

Packaging LDAP ACL Extensions

48

tion-directory-manager or its alias udm. LDAP schema extension objects can be stored anywhere
in the LDAP directory, but the recommended location would be cn=ldapschema,cn=univention,
below the LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good
idea to add the --ignore_exists option, which suppresses the error exit code in case the object already
exists in LDAP.

The UDM module settings/ldapschema requires several parameters:

name (required)
Name of the schema extension.

data (required)
The actual schema data in bzip2 and base64 encoded format.

filename (required)
The file name the schema should be written to on master domain controller and backup domain controller.
The file name must not contain any path elements.

package (required)
Name of the Debian package which creates the object.

packageversion (required)
Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appidentifier (optional)
The identifier of the app which creates the object. This is important to indicate that the object is required
as long as the app is installed anywhere in the UCS domain. Defaults to string.

active (internal)
A boolean flag used internally by the master domain controller to signal availability of the schema ex-
tension (default: FALSE).

Since many of these parameters are determined automatically by the ucs_registerLDAPExtension
shell library function, it is recommended to use the shell library function to create these objects (see Sec-
tion 9.10.1).

Example 4.1. Schema registration in join script

export UNIVENTION_APP_IDENTIFIER="appID-appVersion" ## example
. /usr/share/univention-lib/ldap.sh

ucs_registerLDAPExtension "$@" \
 --schema /path/to/appschemaextension.schema

4.3. Packaging LDAP ACL Extensions
For some purposes, e.g. for app installation, it is convenient to be able to register a new LDAP ACL extension
from any system in the UCS domain. For this purpose, the UCR template for an ACL extension can be stored
as a special type of UDM object. The module responsible for this type of objects is called settings/lda-
pacl. As these objects are replicated throughout the UCS domain, the master domain controller, backup
domain controller and slave domain controller systems listen for modifications on these objects and integrate
them into the local LDAP ACL UCR template directory. This simplifies the task of keeping the LDAP ACLs
on the backup domain controller systems up to date with those on the master domain controller.

https://www.univention.com/feedback/?manual=settings:ldapacl

Packaging LDAP ACL Extensions

49

The commands to create the LDAP ACL extension objects in UDM may be put into any join script (see
Chapter 3). A LDAP ACL extension object is created by using the UDM command line interface univen-
tion-directory-manager or its alias udm. LDAP ACL extension objects can be stored anywhere in
the LDAP directory, but the recommended location would be cn=ldapacl,cn=univention, below the
LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good idea to
add the --ignore_exists option, which suppresses the error exit code in case the object already exists
in LDAP.

The UDM module settings/ldapacl requires several parameters:

name (required)
Name of the ACL extension.

data (required)
The actual ACL UCR template data in bzip2 and base64 encoded format.

filename (required)
The file name the ACL UCR template data should be written to on master domain controller, backup
domain controller and slave domain controller. The file name must not contain any path elements.

package (required)
Name of the Debian package which creates the object.

packageversion (required)
Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appidentifier (optional)
The identifier of the app which creates the object. This is important to indicate that the object is required
as long as the app is installed anywhere in the UCS domain. Defaults to string.

ucsversionstart (optional)
Minimal required UCS version. The UCR template for the ACL is only activated by systems with a
version higher than or equal to this.

ucsversionend (optional)
Maximal required UCS version. The UCR template for the ACL is only activated by systems with a
version lower or equal than this. To specify validity for the whole 4.1-x release range a value like 4.1-99
may be used.

active (internal)
A boolean flag used internally by the master domain controller to signal availability of the ACL extension
on the master domain controller (default: FALSE).

Since many of these parameters are determined automatically by the ucs_registerLDAPExtension
shell library function, it is recommended to use the shell library function to create these objects (see Sec-
tion 9.10.1).

Example 4.2. LDAP ACL registration in join script

export UNIVENTION_APP_IDENTIFIER="appID-appVersion" ## example
. /usr/share/univention-lib/ldap.sh

ucs_registerLDAPExtension "$@" \
 --acl /path/to/appaclextension.acl

LDAP secrets

50

4.4. LDAP secrets
The credentials for different UCS domain accounts are stored in plain-text files on some UCS systems. The
files are named /etc/*.secret. They are owned by the user root and allow read-access for different
groups.

/etc/ldap.secret for cn=admin,$ldap_base
This account has full write access to all LDAP entries. The file is only available on master and backup
domain controller systems and is owned by the group DC Backup Hosts.

/etc/machine.secret for $ldap_hostdn
Each host uses its account to get at least read-access to LDAP. Domain controllers in the container
cn=dc,cn=computers,$ldap_base get additional rights to access LDAP attributes. The file is
available on all joined system roles and is readable only by the local root user and group.

During package installation, only the maintainer scripts (see Section B.3.5) on master and backup domain
controller can use their root permission to directly read /etc/ldap.secret. Thus only on those roles
the join scripts get automatically executed when the package is installed. On all other system roles, the join
scripts need to be executed manually. This can either be done through the UMC Join module or through the
command line tool univention-run-join-scripts. Both methods require appropriate credentials.

4.4.1. Password change

To reconfirm the trust relation between UCS systems, computers need to regularly change the password as-
sociated with the machine account. This is controlled through the Univention Configuration Registry vari-
able server/password/change. For UCS servers this is evaluated by the script /usr/lib/univen-
tion-server/server_password_change, which is invoked nightly at 01:00 by cron(8). The inter-
val is controlled through a second Univention Configuration Registry variable server/password/in-
terval, which defaults to 21 days.

The password is stored in the plain text file /etc/machine.secret. Many long running services read
these credentials only on startup, which breaks when the password is changed while they are still running.
Therefore UCS provides a mechanism to invoke arbitrary commands, when the machine password is changed.
This can be used for example to restart specific services.

Hook scripts should be placed in the directory /usr/lib/univention-serv-
er/server_password_change.d/. The name must consist of only digits, upper and lower ASCII char-
acters, hyphens and underscores. They file must be executable and is called via run-parts(8). It receives one
argument, which is used to distinguish three phases:

Procedure 4.1. Server password change procedure

1. Each script will be called with the argument prechange before the password is changed. If any script
terminates with an exit status unequal zero, the change is aborted.

2. A new password is generated locally using makepasswd(1). It is changed in the Univention directo-
ry service via UDM and stored in /etc/machine.secret. The old password is logged in /etc/
machine.secret.old.

If anything goes wrong in this step, the change is aborted and the changes need to be rolled back.

3. All hook scripts are called again.

• If the password change was successful, postchange gets passed to the hook scripts. This should
complete any change prepared in the prechange phase.

https://www.univention.com/feedback/?manual=join:secret
https://www.univention.com/feedback/?manual=join:secret:change

Password change

51

• If the password change failed for any reason, all hook scripts are called with the argument
nochange. This should undo any action already done in the prechange phase.

Example 4.3. Server password change example

Install this file to /usr/lib/univention-server/server_password_change.d/.

#!/bin/sh
case "$1" in
prechange)
 # nothing to do before the password is changed
 exit 0
 ;;
nochange)
 # nothing to do after a failed password change
 exit 0
 ;;
postchange)
 # restart daemon after password was changed
 invoke-rc.d my-daemon restart
 ;;
esac

init-scripts should only be invoked indirectly through invoke-rc.d(8). This is required for chroot environ-
ments and allows the policy layer to control starting and stopping in certain special situations like during an
system upgrade.

52

Structure of Listener Modules

53

Chapter 5. Univention Directory Listener

5.1. Structure of Listener Modules .. 53
5.2. Listener Tasks and Examples .. 56

5.2.1. Basic Example ... 56
5.2.2. Rename and Move .. 57
5.2.3. Full Example with Packaging .. 58
5.2.4. A Little Bit more Object Oriented .. 62

5.3. Technical Details ... 65
5.3.1. User-ID and Credentials ... 65
5.3.2. Internal Cache .. 65

5.3.2.1. univention-directory-listener-ctrl .. 65
5.3.2.2. univention-directory-listener-dump .. 65
5.3.2.3. univention-directory-listener-verify .. 66
5.3.2.4. get_notifier_id.py .. 66

5.3.3. Internal working ... 66

Replication of the directory data within a UCS domain is provided by the Univention Directory Listener/No-
tifier mechanism:

• The Univention Directory Listener service runs on all UCS systems.

• On the master domain controller (and possibly existing backup domain controller systems) the Univention
Directory Notifier service monitors changes in the LDAP directory and makes the selected changes avail-
able to the Univention Directory Listener services on all UCS systems joined into the domain.

The active Univention Directory Listener instances in the domain connect to a Univention Directory Notifier
service. If an LDAP change is performed on the master domain controller (all other LDAP servers in the
domain are read-only), this is registered by the Univention Directory Notifier and reported to the listener
instances.

Each Univention Directory Listener instance hosts a range of Univention Directory Listener modules. These
modules are shipped by the installed applications; the print server package includes, for example, listener
modules which generate the CUPS configuration.

Univention Directory Listener modules can be used to communicate domain changes to services which are
not LDAP-aware. The print server CUPS is an example of this: The printer definitions are not read from the
LDAP, but instead from the file /etc/cups/printers.conf. Now, if a printer is saved in the printer
management of the Univention Management Console, it is stored in the LDAP directory. This change is
detected by the Univention Directory Listener module cups-printers and an entry gets added to, modified in
or deleted from /etc/cups/printers.conf based on the modification in the LDAP directory.

5.1. Structure of Listener Modules
By default the Listener loads all modules from the directory /usr/lib/univention-directo-
ry-listener/system/. Other directories can be specified using the option -m when starting the uni-
vention-directory-listener daemon.

Each listener module must declare several string constants. They are required by the Univention Directory
Listener to handle each module. They should be defined at the beginning of the module.

name = "module_name"
description = "Module description"

https://www.univention.com/feedback/?manual=listener:handler

Structure of Listener Modules

54

filter = "(objectClass=*)"
attribute = ["objectClass"]
modrdn = "1"

name (required)
This name is used to uniquely identify the module. This should match with the filename containing this
listener module without the .py suffix. The name is used to keep track of the module state in /var/
lib/univention-directory-listener/handlers/.

description (required)
A short description. It is currently unused and displayed nowhere.

filter (required)
Defines a LDAP filter which is used to match the objects the listener is interested in. This filter is similar
to the LDAP search filter as defined in RFC 2254, but more restricted:

• it is case sensitive

• it only supports equal matches

Note

The name filter has the drawback that it shadows the Python built-in function filter(),
but its use has historical reasons. If that function is required for implementing the listener mod-
ule, an alias-reference may be defined before overwriting the name or it may be explicitly ac-
cessed via the Python __builtin__ module.

attributes (optional)
A Python list of LDAP attribute names which further narrows down the condition under which the listener
module gets called. By default the module is called on all attribute changes of objects matching the filter.
If the list is specified, the module is only invoked when at least one of the listed attributes is changed.

modrdn (optional)
Setting this variable to the string 1 changes the signature of the function handler(). It receives an
additional 4th argument, which specifies the LDAP operation triggering the change.

In addition to the static strings a module must implement several functions. They are called in different situ-
ations of the live-cycle of the module.

def initialize(): pass
def handler(dn, new, old[, command='']): pass
def clean(): pass
def prerun(): pass
def postrun(): pass
def setdata(key, value): pass

handler(dn, old, new, command='') (required)
This function is called for each change matching the filter and attributes as declared in the
header of the module. The distinguished name (dn) of the object is supplied as the first argument dn.

Depending on the type of modification, old and new may each independently either be None or refer-
ence a Python dictionary of lists. Each list represents one of the multi-valued attributes of the object. The
Univention Directory Listener uses a local cache to store the values of each object as it has seen most
recently. This cache is used to supply the values for old, while the values in new are those retrieved from
that LDAP directory service which is running on the same server as the Univention Directory Notifier
(master domain controller or backup domain controller servers in the domain).

http://tools.ietf.org/html/rfc2254

http://tools.ietf.org/html/rfc2254
http://tools.ietf.org/html/rfc2254

Structure of Listener Modules

55

If and only if the global modrdn setting is enabled, command is passed as a fourth argument. It contains a
single letter, which indicates the type of modification. This can be used to distinguish an modrdn operation
from a delete operation followed by a create operation.

m (modify)
Signals a modify operation, where an existing object is changed. old contains a copy of the previ-
ously cached values and new contains the new values as retrieved from the LDAP directory service.

a (add)
Signals the addition of a new object. old is None and new contains the values of the added object.

d (delete)
Signals the removal of a previously existing object. old contains a copy of the previously cached
values, while new is None.

r (rename: modification of distinguished name via modrdn)
Signals a change in the distinguished name, which may be caused by renaming a object or moving
the object from one container into another. The module is called with this command instead of the
delete command, so that modules can recognize this special case and avoid deletion of local data
associated with the object. The module will be called again with the add command just after the
modrdn command, where it should process the rename or move operation. Each module is responsible
for keeping track of the rename-case by internally storing the previous distinguished name during
the modrdn phase of this two phased operation.

n (new or schema change)
This command can signal two changes:

• If dn is cn=Subschema, it signals that a schema change occurred.

• All other cases signal the initialization of a new object, which should be handled just like a normal
add operation.

initialize() (optional),
clean() (optional)

The function initialize() is called once when the Univention Directory Listener loads the mod-
ule for the first time. This is recorded persistently in the file /var/lib/univention-directo-
ry-listener/name, where name equals the value from the header.

If for whatever reason the listener module should be reset and re-run for all matching objects, the state can
be reset by running the command univention-directory-listener-ctrl resync name.
In that case the function initialize() will be called again.

The function clean() is only called when the Univention Directory Listener is initialized for the first
time or is forced to “re-initialize from scratch” using the -g or -i option. The function should purge all
previously generated files and return the module into a clean state.

prerun() (optional),
postrun() (optional)

For optimization the Univention Directory Listener does not keep open an LDAP connection all time.
Instead the connection is opened once at the beginning of a change and closed only if no new change
arrives within 15 seconds. The opening is signaled by the invocation of the function prerun() and the
closing by postrun().

The function postrun() is most often used to restart services, as restarting a service takes some time
and makes the service unavailable during that time. It's best practice to use the handler() only to
process the stream of changes, set UCR variables or generate new configuration files. Restarting associ-
ated services should be delayed to the postrun() function.

Listener Tasks and Examples

56

Warning

The function postrun() is only called, when no change happens for 15 seconds. This is not
on a per-module basis, but globally. In an ever changing system, where the stream of changes
never pauses for 15 seconds, the functions may never be called!

setdata(key, value) (optional)
This function is called up to four times by the Univention Directory Listener main process to pass con-
figuration data into the modules. The following keys are supplied in the following order:

basedn
The base distinguished name the Univention Directory Listener is using.

binddn
The distinguished name the Univention Directory Listener is using to authenticate to the LDAP server
(via simple bind).

bindpw
The password the Univention Directory Listener is using to authenticate to the LDAP server.

ldapserver
The hostname of the LDAP server the Univention Directory Listener is currently reading from.

Note

It's strongly recommended to avoid initiating LDAP modifications from a listener module. This
potentially creates a complex modification dynamic, considering that a module may run on sev-
eral systems in parallel at their own timing.

5.2. Listener Tasks and Examples
All changes trigger a call to the function handle(). For simplicity and readability it is advisable to delegate
the different change types to different sub-functions.

5.2.1. Basic Example
The following boilerplate code delegates each change type to a separate function. It does not handle renames
and moves explicitly, but only as the removal of the object at the old dn and the following addition at the
new dn.

Source code: https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/lis-
tener/simple.py

def handler(dn, new, old):
 if new and not old:
 handler_add(dn, new)
 elif new and old:
 handler_modify(dn, old, new)
 elif not new and old:
 handler_remove(dn, old)
 else:
 pass # ignore

def handler_add(dn, new):
 """Handle addition of object."""
 pass # replace this

https://www.univention.com/feedback/?manual=listener:example
https://www.univention.com/feedback/?manual=listener:example:simple
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/listener/simple.py
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/listener/simple.py

Rename and Move

57

def handler_modify(dn, old, new):
 """Handle modification of object."""
 pass # replace this

def handler_remove(dn, old):
 """Handle removal of object."""
 pass # replace this

5.2.2. Rename and Move

In case rename and move actions should be handled separately, the following code may be used:

Source code: https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/lis-
tener/modrdn.py

modrdn = "1"

_delay = None

def handler(dn, new, old, command):
 global _delay
 if _delay:
 old_dn, old = _delay
 _delay = None
 if "a" == command and old['entryUUID'] == new['entryUUID']:
 handler_move(old_dn, old, dn, new)
 return
 handler_remove(old_dn, old)

 if "n" == command and "cn=Subschema" == dn:
 handler_schema(old, new)
 elif new and not old:
 handler_add(dn, new)
 elif new and old:
 handler_modify(dn, old, new)
 elif not new and old:
 if "r" == command:
 _delay = (dn, old)
 else:
 handler_remove(dn, old)
 else:
 pass # ignore, reserved for future use

def handler_move(old_dn, old, new_dn, dn):
 """Handle rename or move of object."""
 pass # replace this

def handler_schema(old, new):
 """Handle change in LDAP schema."""

https://www.univention.com/feedback/?manual=listener:example:modrdn
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/listener/modrdn.py
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/listener/modrdn.py

Full Example with Packaging

58

 pass # replace this

Warning

Please be aware that tracking the two subsequent calls for modrdn in memory might cause dupli-
cates, in case the Univention Directory Listener is terminated while such an operation is performed.
If this is critical, the state should be stored persistently into a temporary file.

5.2.3. Full Example with Packaging

The following example shows a listener module, which logs all changes to users into the file /root/
UserList.txt.

Source code: https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/lis-
tener/printusers/

"""
Example for a listener module, which logs changes to users.
"""
__package__ = "" # workaround for PEP 366
import listener
import os
import errno
import univention.debug as ud
from collections import namedtuple

name = 'printusers'
description = 'print all names/users/uidNumbers into a file'
filter = """\
(&
 (|
 (&
 (objectClass=posixAccount)
 (objectClass=shadowAccount)
)
 (objectClass=univentionMail)
 (objectClass=sambaSamAccount)
 (objectClass=simpleSecurityObject)
 (objectClass=inetOrgPerson)
)
 (!(objectClass=univentionHost))
 (!(uidNumber=0))
 (!(uid=*$))
)""".translate(None, '\t\n\r')
attributes = ['uid', 'uidNumber', 'cn']
_Rec = namedtuple('Rec', ' '.join(attributes))

USER_LIST = '/root/UserList.txt'

def handler(dn, new, old):
 """
 Write all changes into a text file.
 This function is called on each change.
 """

https://www.univention.com/feedback/?manual=listener:example:user
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/listener/printusers/
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/listener/printusers/

Full Example with Packaging

59

 if new and old:
 _handle_change(dn, new, old)
 elif new and not old:
 _handle_add(dn, new)
 elif old and not new:
 _handle_remove(dn, old)

def _handle_change(dn, new, old):
 """
 Called when an object is modified.
 """
 o_rec = _rec(old)
 n_rec = _rec(new)
 ud.debug(ud.LISTENER, ud.INFO, 'Edited user "%s"' % (o_rec.uid,))
 _writeit(o_rec, u'edited. Is now:')
 _writeit(n_rec, None)

def _handle_add(dn, new):
 """
 Called when an object is newly created.
 """
 n_rec = _rec(new)
 ud.debug(ud.LISTENER, ud.INFO, 'Added user "%s"' % (n_rec.uid,))
 _writeit(n_rec, u'added')

def _handle_remove(dn, old):
 """
 Called when an previously existing object is removed.
 """
 o_rec = _rec(old)
 ud.debug(ud.LISTENER, ud.INFO, 'Removed user "%s"' % (o_rec.uid,))
 _writeit(o_rec, u'removed')

def _rec(data):
 """
 Retrieve symbolic, numeric ID and name from user data.
 """
 return _Rec(*(data.get(attr, (None,))[0] for attr in attributes))

class AsRoot(object):

 """
 Temporarily change effective UID to 'root'.
 """

 def __enter__(self):
 listener.setuid(0)

 def __exit__(self, exc_type, exc_value, traceback):

Full Example with Packaging

60

 listener.unsetuid()

def _writeit(rec, comment):
 """
 Append CommonName, symbolic and numeric User-IDentifier, and comment to
 file.
 """
 nuid = u'*****' if rec.uid in ('root', 'spam') else rec.uidNumber
 indent = '\t' if comment is None else ''
 try:
 with AsRoot():
 with open(USER_LIST, 'a') as out:
 print >> out, u'%sName: "%s"' % (indent, rec.cn)
 print >> out, u'%sUser: "%s"' % (indent, rec.uid)
 print >> out, u'%sUID: "%s"' % (indent, nuid)
 if comment:
 print >> out, u'%s%s' % (indent, comment,)
 except IOError as ex:
 ud.debug(
 ud.LISTENER, ud.ERROR,
 'Failed to write "%s": %s' % (USER_LIST, ex))

def initialize():
 """
 Remove the log file.
 This function is called when the module is forcefully reset.
 """
 try:
 with AsRoot():
 os.remove(USER_LIST)
 ud.debug(
 ud.LISTENER, ud.INFO,
 'Successfully deleted "%s"' % (USER_LIST,))
 except OSError as ex:
 if errno.ENOENT == ex.errno:
 ud.debug(
 ud.LISTENER, ud.INFO,
 'File "%s" does not exist, will be created' % (USER_LIST,))
 else:
 ud.debug(
 ud.LISTENER, ud.WARN,
 'Failed to delete file "%s": %s' % (USER_LIST, ex))

Some comments on the code:

• Overwriting __package__ is currently necessary, as the Univention Directory Listener imports the lis-
tener module by its own mechanism, which is incompatible with the mechanism normally used by Python
itself. Be aware, that this might cause problems when using pickle.

• The LDAP filter is specifically chosen to only match user objects, but not computer objects, which have
a uid characteristically terminated by a $-sign.

• The attribute filter further restricts the module to only trigger on changes to the numeric and symbolic
user identifier and the last name of the user.

Full Example with Packaging

61

• To test this run a command like tail -f /root/UserList.txt &. Then create a new user or modify
the lastname of an existing one to trigger the module.

For packaging the following files are required:

debian/printusers.install
The module should be installed into the directory /usr/lib/univention-directory-listen-
er/system/.

printusers.py usr/lib/univention-directory-listener/system/

debian/printusers.postinst
The Univention Directory Listener must be restarted after package installation and removal:

#! /bin/sh
set -e

case "$1" in
configure)
 invoke-rc.d univention-directory-listener restart
 ;;
abort-upgrade|abort-remove|abort-deconfigure)
 ;;
*)
 echo "postinst called with unknown argument \`$1'" >&2
 exit 1
 ;;
esac

#DEBHELPER#

exit 0

debian/printusers.postrm

#! /bin/sh
set -e

case "$1" in
remove)
 invoke-rc.d univention-directory-listener restart
 ;;
purge|upgrade|failed-upgrade|abort-install|abort-upgrade|disappear)
 ;;
*)
 echo "postrm called with unknown argument \`$1'" >&2
 exit 1
 ;;
esac

#DEBHELPER#

exit 0

A Little Bit more Object Oriented

62

5.2.4. A Little Bit more Object Oriented

For larger modules it might be preferable to use a more object oriented design like the following example,
which logs referential integrity violations into a file.

Source code: https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/lis-
tener/obj.py

__package__ = "" # workaround for PEP 366
name = "refcheck"
description = "Check referential integrity of uniqueMember relations"
filter = "(uniqueMember=*)"
attribute = ["uniqueMember"]
modrdn = "1"

import os
import ldap
import listener
import univention.debug as ud
from pwd import getpwnam

class LocalLdap(object):
 PORT = 7389

 def __init__(self):
 self.data = {}
 self.con = None

 def setdata(self, key, value):
 self.data[key] = value

 def prerun(self):
 try:
 self.con = ldap.open(self.data["ldapserver"], port=self.PORT)
 self.con.simple_bind_s(self.data["binddn"], self.data["bindpw"])
 except ldap.LDAPError as ex:
 ud.debug(ud.LISTENER, ud.ERROR, str(ex))

 def postrun(self):
 try:
 self.con.unbind()
 self.con = None
 except ldap.LDAPError as ex:
 ud.debug(ud.LISTENER, ud.ERROR, str(ex))

class LocalFile(object):
 USER = "listener"
 LOG = "/var/log/univention/refcheck.log"

 def initialize(self):
 try:
 ent = getpwnam(self.USER)
 with AsRoot():

https://www.univention.com/feedback/?manual=listener:example:setdata
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/listener/obj.py
https://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-4/doc/developer-reference/listener/obj.py

A Little Bit more Object Oriented

63

 open(self.LOG, "wb")
 os.chown(self.LOG, ent.pw_uid, -1)
 except OSError as ex:
 ud.debug(ud.LISTENER, ud.ERROR, str(ex))

 def log(self, msg):
 with open(self.LOG, 'ab') as log:
 print >> log, msg

 def clean(self):
 try:
 with AsRoot():
 os.remove(self.LOG)
 except OSError as ex:
 ud.debug(ud.LISTENER, ud.ERROR, str(ex))

class AsRoot(object):

 """
 Temporarily change effective UID to 'root'.
 """

 def __enter__(self):
 listener.setuid(0)

 def __exit__(self, exc_type, exc_value, traceback):
 listener.unsetuid()

class ReferentialIntegrityCheck(LocalLdap, LocalFile):
 MESSAGES = {
 (False, False): "Still invalid: ",
 (False, True): "Now valid: ",
 (True, False): "Now invalid: ",
 (True, True): "Still valid: ",
 }

 def __init__(self):
 super(ReferentialIntegrityCheck, self).__init__()
 self._delay = None

 def handler(self, dn, new, old, command=''):
 if self._delay:
 old_dn, old = self._delay
 self._delay = None
 if "a" == command and old['entryUUID'] == new['entryUUID']:
 self.handler_move(old_dn, old, dn, new)
 return
 self.handler_remove(old_dn, old)

 if "n" == command and "cn=Subschema" == dn:
 self.handler_schema()
 elif new and not old:

A Little Bit more Object Oriented

64

 self.handler_add(dn, new)
 elif new and old:
 self.handler_modify(dn, old, new)
 elif not new and old:
 if "r" == command:
 self._delay = (dn, old)
 else:
 self.handler_remove(dn, old)
 else:
 pass # ignore, reserved for future use

 def handler_add(self, dn, new):
 if not self._validate(new):
 self.log("New invalid object: " + dn)

 def handler_modify(self, dn, old, new):
 valid = (self._validate(old), self._validate(new))
 msg = self.MESSAGES[valid]
 self.log(msg + dn)

 def handler_remove(self, dn, old):
 if not self._validate(old):
 self.log("Removed invalid: " + dn)

 def handler_move(self, old_dn, old, new_dn, new):
 valid = (self._validate(old), self._validate(new))
 msg = self.MESSAGES[valid]
 self.log("%s %s -> %s" % (msg, old_dn, new_dn))

 def handler_schema(self):
 self.log("Schema change")

 def _validate(self, data):
 try:
 for dn in data["uniqueMember"]:
 self.con.search_ext_s(dn, ldap.SCOPE_BASE, attrlist=[], attrsonly=1)
 return True
 except ldap.NO_SUCH_OBJECT:
 return False
 except ldap.LDAPError as ex:
 ud.debug(ud.LISTENER, ud.ERROR, str(ex))
 return False

_instance = ReferentialIntegrityCheck()
initialize = _instance.initialize
handler = _instance.handler
clean = _instance.clean
prerun = _instance.prerun
postrun = _instance.postrun
setdata = _instance.setdata

Technical Details

65

5.3. Technical Details

5.3.1. User-ID and Credentials

The listener runs with the effective permissions of the user listener. If root-privileges are required,
listener.setuid() can be used to switch the effective UID. When done, listener.unsetuid()
should be called to drop back to the listener UID. It's best practice to code this as try/finally clauses
in Python.

5.3.2. Internal Cache

The directory /var/lib/univention-directory-listener/ contains several files:

cache.db, cache.db.lock
The cache file contains a copy of all objects and their attributes. It is used to supply the old values supplied
through the old parameter, when the function handle() is called.

The cache is also used to keep track, for which object which module was called. This is required when
a new module is added, which is invoked for all already existing objects when the Univention Directory
Listener is restarted.

On domain controllers the cache could be replaced by doing a query to the local LDAP server, before the
new values are written into it. But member server do not have a local LDAP server, so there the cache
is needed. Also note that the cache keeps track of the associated listener modules, which is not available
from the LDAP.

notifier_id
This file contains the last notifier ID read from the Univention Directory Notifier.

handlers/
For each module the directory contains a text file consisting of a single number. The name of the file is
derived from the values of the variable name as defined in each listener module. The number is to be
interpreted as a bit-field of HANDLER_INITIALIZED=0x1 and HANDLER_READY=0x2. If both bits
are set, it indicates that the module was successfully initialized by running the function initialize().
Otherwise both bits are unset.

The package univention-directory-listener contains several commands useful for controlling and debugging
problems with the Univention Directory Listener. This can be useful for debugging listener cache inconsis-
tencies.

5.3.2.1. univention-directory-listener-ctrl

The command univention-directory-listener-ctrl resync name can be used to reset and
re-initialize a module. It stops any currently running listener process, removes the state file for the specified
module and starts the listener process again. This forces the functions clean() and initialize() to
be called one after the other.

5.3.2.2. univention-directory-listener-dump

The command univention-directory-listener-dump can be used to dump the cache file /var/
lib/univention-directory-listener/cache.db. The Univention Directory Listener must be
stopped first by invoking service univention-directory-listener stop. It outputs the cache
in format compatible to the LDAP Data Interchange Format (LDIF).

https://www.univention.com/feedback/?manual=listener:details
https://www.univention.com/feedback/?manual=listener:details:credentials
https://www.univention.com/feedback/?manual=listener:details:cache
https://www.univention.com/feedback/?manual=listener:commands:ctrl
https://www.univention.com/feedback/?manual=listener:commands:dump

Internal working

66

5.3.2.3. univention-directory-listener-verify

The command univention-directory-listener-verify can be used to compare the content
of the cache file /var/lib/univention-directory-listener/cache.db to the content of an
LDAP server. The Univention Directory Listener must be stopped first by invoking service univen-
tion-directory-listener stop. LDAP credentials must be supplied at the command line. For ex-
ample, the following command would use the machine password:

univention-directory-listener-verify \
 -b "$(ucr get ldap/base)" \
 -D "$(ucr get ldap/hostdn)" \
 -w "$(cat /etc/machine.secret)"

5.3.2.4. get_notifier_id.py

The command /usr/share/univention-directory-listener/get_notifier_id.py can
be used to get the latest ID from the notifier. This is done by querying the Univention Directory Notifier run-
ning on the LDAP server configured through the Univention Configuration Registry variable ldap/master.
The returned value should be equal to the value currently stored in the file /var/lib/univention-di-
rectory-listener/notifier_id. Otherwise the Univention Directory Listener might still be pro-
cessing a transaction or it might indicate a problem with the Univention Directory Listener

5.3.3. Internal working

The Listener/Notifier mechanism is used to trigger arbitrary actions when changes occur in the LDAP directory
service. In addition to the LDAP server slapd it consists of two other services: The Univention Directory
Notifier service runs next to the LDAP server and broadcasts change information to interested parties. The
Univention Directory Listener service listens for those notifications, downloads the changes and runs listener
modules performing arbitrary local actions like storing the data in a local LDAP server for replication or
generating configuration files for non-LDAP-aware local services.

Figure 5.1. Listener/Notifier mechanism

On startup the listener connects to the notifier and opens a persistent TCP connection. The host can be con-
figured through several Univention Configuration Registry variables:

• If notifier/server is explicitly set, only that named host is used. In addition the Univention Config-
uration Registry variable notifier/server/port can be used to explicitly configure a different TCP
port other then 6669.

https://www.univention.com/feedback/?manual=listener:commands:verify
https://www.univention.com/feedback/?manual=listener:commands:getnid
https://www.univention.com/feedback/?manual=listener:details:internal

Internal working

67

• Otherwise on the master domain controller and on all backup domain controllers, only the host named in
ldap/master is used.

• Otherwise on all other system roles a host is chosen randomly from the combined list of names in ldap/
master and ldap/backup1.

The following steps occur on changes:

Procedure 5.1. Listener/Notifier procedure

1. An LDAP object is modified on the master domain controller. Changes initiated on all other system roles
are re-directed to the master.

2. The UCS-specific overlay-module translog appends the DN to the file /var/lib/univen-
tion-ldap/listener/listener2.

3. The Univention Directory Notifier watches that file, picks up and removes each line it processed. It
assigns the next transaction number and writes it into the file /var/lib/univention-ldap/no-
tify/transaction3, including the DN and change type. For efficient access by transaction ID the
index transaction.index is updated.

4. All listeners get notified of the new transaction.

5. Each listener triggered in this way queries the Notifier for the latest transaction ID, DN and change type.

6. Each listener opens a connection to the LDAP server running on the UCS system which was used to
query the Notifier. It retrieves the latest state of the object identified through the DN. If access is blocked,
for example, by selective replication, the change is handled as a delete operation instead.

7. The old state of the object is fetched from the local listener cache.

8. For each module it is checked, if either the old or new state of the object matches the filter and
attributes specified in the corresponding Python variables. If not, the module is skipped.

9. If the function prerun() of module was not called yet, this is done to signal the start of changes.

10. The function handler() specified in the module is called, passing in the DN and the old and new state.

11. The main listener process updates its cache with the new values, including the names of the modules
which successfully handled that object. This guarantees that the module is still called, even when the
filter criteria would no longer match the object after modification.

12. On a backup domain controller the Univention Directory Listener writes the transaction data to the file
/var/lib/univention-ldap/listener/listener4 to allow the Univention Directory No-
tifier to be cascaded. This is configured internally with the option -o of univention-directo-
ry-listener and is done for load balancing and failover reasons.

13. The transaction ID is written into the local file /var/lib/univention-directory-listen-
er/notifier_id.

14. After 15 seconds of inactivity the function postrun() is invoked for all prepared modules. This signals
a break in the stream of changes and requests the module to release its resources and/or start pending
operations.

1This list of backup domain controllers stored in the Univention Configuration Registry variable ldap/backup is automatically updated by the listener
module ldap_server.py.
2Referred to as FILE_NAME_LISTENER, TRANSACTION_FILE in the source code
3Referred to as FILE_NAME_TF in the source code
4Referred to as FILE_NAME_LISTENER, TRANSACTION_FILE in the source code

68

Introduction

69

Chapter 6. Univention Directory
Manager (UDM)

6.1. Introduction .. 69
6.2. Packaging Extended Attributes .. 70

6.2.1. Selection lists ... 74
6.2.1.1. Static selections ... 74
6.2.1.2. Dynamic selections ... 74

6.2.2. Known issues ... 76
6.2.3. Extended Options .. 76
6.2.4. Extended Attribute Hooks .. 77

6.3. UDM Modules .. 79
6.4. UDM Syntax .. 79

6.4.1. UDM Syntax Override ... 80
6.4.2. UDM LDAP search ... 81

6.5. Packaging UDM Hooks .. 84
6.6. Packaging UDM Extension Modules ... 85
6.7. Packaging UDM Syntax Extension ... 86

The Univention Directory Manager (UDM) is a wrapper for LDAP objects. Traditionally LDAP stores objects
as a collection of attributes, which are defines by so called schemata. Modifying entries is slightly complicated,
as there are no high-level operations to add or remove values from multi-valued attributes, or to keep the
password used by different authentication schemes such as Windows NTLM-hashes, UNIX MD5 hashes, or
Kerberos tickets in sync.

6.1. Introduction
The command line client udm provides different modes of operation.

udm [--binddn bind-dn --bindpwd bind-password] [module] [mode] [options]

Creating object:

udm module create --set property=value...

eval "$(ucr shell)"
udm container/ou create --position "$ldap_base" --set name="xxx"

Multiple --sets may be used to set the values of a multivalued property.

The equivalent LDAP command would look like this:

eval "$(ucr shell)"
ldapadd -D "cn=admin,$ldap_base" -y /etc/ldap.secret <<__LDIF__
dn: uid=xxx,$ldap_base
objectClass: organizationalRole
cn: xxx
__LDIF__

List object:

udm module list [--dn dn | --filter property=value]

udm container/ou list --filter name="xxx"

https://www.univention.com/feedback/?manual=udm:intro

Packaging Extended Attributes

70

univention-ldapsearch cn=xxx

Modify object:

udm module modify [--dn dn | --filter property=value] [--set property=value | --
append property=value | --remove property=value ...]

udm container/ou modify --dn "cn=xxx,$ldap_base" --set name="xxx"

For multivalued attributes --append and --remove can be used to add additional values or remove
existing values. --set overwrites any previous value, but can also be used multiple times to specify
further values. --set and --append should not be mixed for any property in one invocation.

Delete object:

udm module remove [--dn dn | --filter property=value]

udm container/ou delete --dn "cn=xxx,$ldap_base"

If --filter is used, it must match exactly one object. Otherwise udm refuses to delete any object.

6.2. Packaging Extended Attributes
Each UDM module provides a set of mappings from LDAP attributes to properties. This set is not complete,
because LDAP objects can be extended with additional auxiliary objectClasses Extended Attributes can be
used to extend modules to show additional properties. These properties can be mapped to any already defined
LDAP attribute, but objects can also be extended by adding additional auxiliary object classes, which can
provide new attributes.

For packing purpose any additional LDAP schema needs to be registered on the master domain controller,
which is replicated from there to all other Domaincontrollers via the Listener/Notifier mechanism (see Chap-
ter 5). This is best done trough a separate schema package, which should be installed on the master domain
controller and backup domain controller. Since Extended Attributes are declared in LDAP, the commands
to create them can be put into any join script (see Chapter 3). To be convenient, the declaration should be
also included with the schema package, since installing it there does not require the Administrator to provide
additional LDAP credentials.

An Extended Attribute is created by using the UDM command line interface univention-direc-
tory-manager or its alias udm. The module is called settings/extended_attribute. Extend-
ed Attributes can be stored anywhere in the LDAP, but the default location would be cn=custom
attributes,cn=univention, below the LDAP base. Since the join script creating the attribute may
be called on multiple hosts, it is a good idea to add the --ignore_exists option, which suppresses the
error exit code in case the object already exists in LDAP.

The module settings/extended_attribute requires many parameters. They are described in ????.

name (required)
Name of the attribute.

CLIName (required)
An alternative name for the command line version of UDM.

shortDescription (required)
Default short description.

translationShortDescription (optional, multiple)
Translation of short description.

https://www.univention.com/feedback/?manual=udm:ea

Packaging Extended Attributes

71

longDescription (required)
Default long description.

translationLongDescription (optional, multiple)
Translation of long description.

objectClass (required)
The name of an LDAP object class which is added to store this property.

deleteObjectClass (optional)
Remove the object class when the property is unset.

ldapMapping (required)
The name of the LDAP attribute the property matches to.

syntax (optional)
A syntax class, which also controls the visual representation in UDM. Defaults to string.

default (optional)
The default value is used when a new UDM object is created. It is also used when for an object if the
option is enabled, which only then activates the property.

valueRequired (optional)
A value must be entered for the property.

multivalue (optional)
Controls if only a singe value or multiple values can be entered. This must be in sync with the SIN-
GLE-VALUE setting of the attribute in the LDAP schema.

mayChange (optional)
The property may be modified later.

notEditable (optional)
Disable all modification of the property, even when the object is first created. The property is only mod-
ified through hooks.

hook (optional)
The name of a Python class implementing hook functions. See Section 6.2.4 for more information.

doNotSearch (optional)
If this is enabled, the property is not show in the drop-down list of properties when searching for UDM
objects.

tabName (optional)
The name of the tab in the UMC where the property should be displayed. The name of existing tabs can be
copied from UMC session with the English locale. A new tab is automatically created for new names.
If no name is given, ???

translationTabName (optional, multiple)
Translation of tab name.

tabPosition (optional)
This setting is only relevant, when a new tab is created by using a tabName, for which no tab exists.
The integer value defines the position where the newly tab is inserted. By default the newly created tab
is appended at the end, but before the Extended settings tab.

Packaging Extended Attributes

72

overwriteTab (optional)
If enabled, the tab declared by the UDM module with the name from the tabName settings is replaces
by a new clean tab with only the properties defined by Extended Attributes.

tabAdvanced (optional)
If this setting is enabled, the tab is created inside the Extended settings tab instead of being a tab by its own.

groupName (optional)
The name of the group inside a tab where the property should be displayed. The name of existing groups
can be copied from UMC session with the English locale. A new tab is automatically created for new
names. If no name is given, the property is placed before the first tab.

translationGroupName (optional, multiple)
Translation of group name.

groupPosition (optional)
This setting is only relevant, when a new group is created by using a groupName, for which no group
exists. The integer value defines the position where the newly group is inserted. By default the newly
created group is appended at the end.

overwritePosition (optional)
The name of an existing property this property wants to overwrite.

disableUDMWeb (optional)
Disables showing this property in the UMC.

fullWidth (optional)
The widget for the property should span both columns.

module (required, multiple)
A list of module names where this Extended Attribute should be added to.

options (required, multiple)
A list of options, which enable this Extended Attribute.

version (required)
The version of the Extended Attribute format. The current version is 2.

Tip

Create the Extended Attribute first through UMC-UDM. Modify it until you're satisfied. Only then
dump it using udm settings/extended_attribute list and convert the output to an
equivalent shell script creating it.

Packaging Extended Attributes

73

Example 6.1. Extended Attribute for custom LDAP schema

This example provides a simple LDAP schema called extended-attribute.schema, which declares
one object class univentionExamplesUdmOC and one attribute univentionExamplesUdmAt-
tribute.

#objectIdentifier univention 1.3.6.1.4.1.10176
#objectIdentifier univentionCustomers univention:99999
#objectIdentifier univentionExamples univentionCustomers:0
objectIdentifier univentionExamples 1.3.6.1.4.1.10176:99999:0
objectIdentifier univentionExmaplesUdm univentionExamples:1
objectIdentifier univentionExmaplesUdmAttributeType
 univentionExmaplesUdm:1
objectIdentifier univentionExmaplesUdmObjectClass
 univentionExmaplesUdm:2

attributetype (univentionExmaplesUdmAttributeType:1
 NAME 'univentionExamplesUdmAttribute'
 DESC 'An example attribute for UDM'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{42}
 SINGLE-VALUE
)

objectClass (univentionExmaplesUdmObjectClass:1
 NAME 'univentionExamplesUdmOC'
 DESC 'An example object class for UDM'
 SUP top
 AUXILIARY
 MUST (univentionExamplesUdmAttribute)
)

The schema is shipped as /usr/share/extended-attribute/extended-attribute.schema
and installed by calling ucs_registerLDAPSchema from the debian/package.postinst

#!/bin/sh

#DEBHELPER#

. /usr/share/univention-lib/base.sh

. /usr/share/univention-lib/ldap.sh

ucs_registerLDAPSchema /usr/share/extended-attribute/extended-
attribute.schema

call_joinscript 50extended-attribute.inst

exit 0

This also calls a join-script 50extended-attribute.inst, which created an Extended Attribute by
using the udm command line interface:

#!/bin/bash
VERSION=1
. /usr/share/univention-join/joinscripthelper.lib
joinscript_init

Register new service entry for this host
eval "$(ucr shell)"
udm settings/extended_attribute create "$@" --ignore_exists \
 --position "cn=custom attributes,cn=univention,$ldap_base" \
 --set name="My Attribute" \
 --set CLIName="myAttribute" \
 --set shortDescription="Example attribute" \
 --set translationShortDescription='"de_DE" "Beispielattribut"' \
 --set longDescription="An example attribute" \
 --set translationLongDescription='"de_DE" "Ein Beispielattribut"' \
 --set tabAdvanced=1 \
 --set tabName="Examples" \
 --set translationTabName='"de_DE" "Beispiele"' \
 --set tabPosition=1 \
 --set module="groups/group" \
 --set module="computers/memberserver" \
 --set syntax=string \
 --set default="Lorem ipsum" \
 --set multivalue=0 \
 --set valueRequired=0 \
 --set mayChange=1 \
 --set doNotSearch=1 \
 --set objectClass=univentionExamplesUdmOC \
 --set ldapMapping=univentionExamplesUdmAttribute \
 --set deleteObjectClass=0
 # --set overwritePosition=
 # --set overwriteTab=
 # --set hook=
 # --set options=

Terminate UDM server to force module reload
. /usr/share/univention-lib/base.sh
stop_udm_cli_server

joinscript_save_current_version
exit 0

This example is deliberately missing an unjoin-script (see Section 3.5) to keep this example simple. It should
check if the Extended Attribute is no longer used in the domain and then remove it.

Selection lists

74

6.2.1. Selection lists

Sometimes an Extended Attribute should show a list of options to choose from. This list can either be static
or dynamic. After defining such a new syntax it can be used by referencing its name in the syntax property
of an Extended Attribute.

6.2.1.1. Static selections

The static list of available selections is defined once and can not be modified interactively through UMC. Such
a list is best implemented though a custom syntax class. As the implementation must be available on all system
roles, the new syntax is best registered in LDAP. This can be done by using ucs_registerLDAPSchema
which is described in Section 3.4.3.2.

As an alternative the file can be put into the directory /usr/share/pyshared/univention/ad-
min/syntax.d/ and linked into the directory /usr/lib/pymodules/python2.6/univen-
tion/admin/syntax.d/. When included into a Debian package, the linking is normally done by
dh_python.

The following example is comparable to the default example in file /usr/share/pyshared/univen-
tion/admin/syntax.d/example.py:

class StaticSelection(select):
 choices = [
 ('value1', 'Description for selection 1'),
 ('value2', 'Description for selection 2'),
 ('value3', 'Description for selection 3'),
]

6.2.1.2. Dynamic selections

A dynamic list is implemented as an LDAP search, which is described in Section 6.4.2. For performance
reason it is recommended to implement a class derived from UDM_Attribute or UDM_Objects instead
of using LDAP_Search. The file /usr/share/pyshared/univention/admin/syntax.py con-
tains several examples.

https://www.univention.com/feedback/?manual=udm:ea:select
https://www.univention.com/feedback/?manual=udm:ea:select:static
https://www.univention.com/feedback/?manual=udm:ea:select:dynamic

Selection lists

75

Example 6.2. Dynamic selection list for Extended Attributes
The idea is to create a container with sub-entries for each selection. This following listing declares a new
syntax class for selecting a profession level.
class DynamicSelection(UDM_Objects):
 udm_modules = ('container/cn',)
 udm_filter = '(&(objectClass=organizationalRole)
(ou:dn:=DynamicSelection))'
 simple = True # only one value is selected
 empty_value = True # allow selecting nothing
 key = '%(name)s' # this is stored
 label = '%(description)s' # this is displayed
 regex = None # no validation in frontend
 error_message = 'Invalid value'

The Python code should be put into a file named DynamicSelection.py. The following code registers
this new syntax in LDAP and adds some values. It also creates an Extended Attribute for user objects using
this syntax.
syntax='DynamicSelection'
base="cn=univention,$(ucr get ldap/base)"

udm container/ou create --position "$base" \
 --set name="$syntax" --set description='UCS profession level'
dn="ou=$syntax,$base"

udm container/cn create --position "$dn" \
 --set name="value1" --set description='UCS Guru (> 5)'
udm container/cn create --position "$dn" \
 --set name="value2" --set description='UCS Regular (1..5)'
udm container/cn create --position "$dn" \
 --set name="value3" --set description='UCS Beginner (< 1)'

udm container/cn create --ignore_exists --position "$base" \
 --set name='udm_syntax'
dn="cn=udm_syntax,$base"
udm settings/udm_syntax create --position "$dn" \
 --set name="$syntax" --set filename="DynamicSelection.py" \
 --set data="$(bzip2 <DynamicSelection.py | base64)" \
 --set package="$syntax" --set packageversion="1"

udm settings/extended_attribute create --position "cn=custom attributes,
$base" \
 --set name='Profession' \
 --set module='users/user' \
 --set tabName='General' \
 --set translationTabName='"de_DE" "Allgemein"' \
 --set groupName='Personal information' \
 --set translationGroupName='"de_DE" "Persönliche Informationen"' \
 --set shortDescription='UCS profession level' \
 --set translationShortDescription='"de_DE" "UCS Erfahrung"' \
 --set longDescription='Select a level of UCS experience' \
 --set translationLongDescription='"de_DE" "Wählen Sie den Level der
 Erfahrung mit UCS"' \
 --set objectClass='univentionFreeAttributes' \
 --set ldapMapping='univentionFreeAttribute1' \
 --set syntax="$syntax" --set mayChange=1 --set valueRequired=0

Known issues

76

6.2.2. Known issues
• The tabName and groupName values must exactly match the values already used in the modules. If

they do not match, a new tab or group is added. This also applies to the translation: They must match the
already translated strings and must be repeated for every Extended Attribute again and again. The untrans-
lated strings are best extracted directly from the Python source code of the modules in /usr/share/
pyshared/univention/admin/handlers/*/*.py. For the translated strings run msgunfmt /
usr/share/locale/language-code/LC_MESSAGES/univention-admin*.mo.

• The overwritePosition values must exactly match the name of an already defined property. Other-
wise UDM will crash.

• Extended Attributes may be removed, when matching data is still stored in LDAP. The schema on the other
hand must only be removed when all matching data is removed. Otherwise the server slapd will fail to
start.

• Removing objectClasses from LDAP objects must be done manually. Currently UDM does not provide
any functionality to remove unneeded object classes or methods to force-remove an object class including
all attributes, for which the object class is required.

6.2.3. Extended Options
UDM properties can be enabled and disabled via options. For example all properties of a user related to Samba
can be switched on or off to reduce the settings shown to an administrator. If many Extended Attributes are
added to a UDM module, it might proof necessary to also create new options. Options are per UDM module.

Similar to Extended Attributes an Extended Option is created by using the UDM command line
interface univention-directory-manager or its alias udm. The module is called set-
tings/extended_options. Extended Options can be stored anywhere in the LDAP, but the default
location would be cn=custom attributes,cn=univention, below the LDAP base. Since the join
script creating the option may be called on multiple hosts, it is a good idea to add the --ignore_exists
option, which suppresses the error exit code in case the object already exists in LDAP.

The module settings/extended_options has the following properties:

name (required)
Name of the option.

shortDescription (required)
Default short description.

translationShortDescription (optional, multiple)
Translation of short description.

longDescription (required)
Default long description.

translationLongDescription (optional, multiple)
Translation of long description.

default (optional)
Enable the option by default.

editable (optional)
Option may be repeatedly turned on and off.

module (required, multiple)
A list of module names where this Extended Option should be added to.

https://www.univention.com/feedback/?manual=udm:ea:issues
https://www.univention.com/feedback/?manual=udm:ea:option

Extended Attribute Hooks

77

objectClass (optional, multiple)
A list of LDAP object classes, which when found, enable this option.

Example 6.3. Extended Option

eval "$(ucr shell)"
udm settings/extended_options create "$@" --ignore_exists \
 --position "cn=custom attributes,cn=univention,$ldap_base" \
 --set name="My Option" \
 --set shortDescription="Example option" \
 --set translationShortDescription='"de_DE" "Beispieloption"' \
 --set longDescription="An example option" \
 --set translationLongDescription='"de_DE" "Eine Beispieloption"' \
 --set default=0 \
 --set editable=0 \
 --set module="users/user" \
 --set objectClass=univentionExamplesUdmOC

6.2.4. Extended Attribute Hooks

Hooks provide a mechanism to pre- and post-process the values of Extended Attributes. Normally UDM
properties are stored as-is in LDAP attributes. Hooks can modify the LDAP operations when an object is
created, modified, deleted or retrieved. They are implemented in Python and the file must be placed in the
directory /usr/share/pyshared/univention/admin/hooks.d/1. The file name must end with
.py.

The module univention.admin.hook provides the class simpleHook, which implements all required hook
functions. By default they don't modify any request but do log all calls. This class should be used as a base
class for inheritance.

 hook_open(self,

 module);
This method is called by the default open handler just before the current state of all properties is saved.

 hook_ldap_pre_create(self,

 module);
This method is called before a UDM object is created. It is called after the module validated all properties
but before the add-list is created.

 list hook_ldap_addlist(self,

 module,
 al= []);

This method is called before a UDM object is created. It gets passed a list of two-tuples (ldap-at-
tribute-name, list-of-values) which will be used to create the LDAP object. The method
must return the (modified) list. Notice that hook_ldap_modlist will also be called next.

 hook_ldap_post_create(self,

 module);
This method is called after the object was created in LDAP.

1 This assumes that the hook file is packaged and linked by dh_pysupport to /usr/lib/pymodules/python2.6/univention/ad-
min/hooks.d/ for Python 2.6 or whatever Python version is used. If the file is installed manually, it must be placed on a path listed in sys.path.

https://www.univention.com/feedback/?manual=udm:hook

Extended Attribute Hooks

78

 hook_ldap_pre_modify(self,

 module);
This method is called before a UDM object is modified. It is called after the module validated all properties
but before the modification-list is created.

 list hook_ldap_modlist(self,

 module,
 ml= []);

This method is called before a UDM object is created or modified. It gets passed a list of tuples, which are
either two-tuples (ldap-attribute-name, list-of-new-values) or three-tuples (ldap-
attribute-name, list-of-old-values, list-of-new-values). It will be used to cre-
ate or modify the LDAP object. The method must return the (modified) list.

 hook_ldap_post_modify(self,

 module);
This method is called after the object was modified in LDAP.

 hook_ldap_pre_remove(self,

 module);
This method is called before a UDM object is removed.

 hook_ldap_post_remove(self,

 module);
This method is called after the object was removed from LDAP.

The following example implements a hook, which removes the object-class univentionFreeAttrib-
utes if the property isSampleUser is no longer set.

from univention.admin.hook import simpleHook

class RemoveObjClassUnused(simpleHook):
 type = 'RemoveObjClassUnused'

 def hook_ldap_post_modify(self, module):
 """Remove unused objectClass."""
 ext_attr_name = 'isSampleUser'
 class_name = 'univentionFreeAttributes'

 if module.oldinfo.get(ext_attr_name) in ('1',) and \
 module.info.get(ext_attr_name) in ('0', None):
 if class_name in module.oldattr.get('objectClass', []):
 module.lo.modify(module.dn,
 [('objectClass', class_name, '')])

After installing the file the hook can be activated by setting the hook property of an Extended Attribute to
RemoveObjClassUnused:

udm settings/extended_attribute modify \
 --dn ... \
 --set hook=RemoveObjClassUnused

UDM Modules

79

6.3. UDM Modules
The development of Univention Directory Manager modules is currently only document-
ed in Univention Wiki (currently only available in German): http://wiki.univention.de/index.php?
title=Entwicklung_und_Integration_eigener_Module_in_Univention_Directory_Manager

6.4. UDM Syntax
Every UDM property has a syntax, which is used to check the value for correctness. Univention Corpo-
rate Server already provides several syntax types, which are defined in the Python file /usr/share/
pyshared/univention/admin/syntax.py. The following list of syntaxes is not complete, for a
complete overview the file should be consulted directly.

string,
string64,
OneThirdString,
HalfString,
TwoThirdsString,
FourThirdsString,
OneAndAHalfString,
FiveThirdsString,
TextArea

Different string classes, which are mapped in Univention Management Console to text input widgets with
different widths and heights.

string_numbers_letters_dots,
string_numbers_letters_dots_spaces,
IA5string,
...

Different string classes with restrictions on the allowed character set.

Upload,
Base64Upload,
jpegPhoto

Binary data.

integer
Positive integers.

boolean,
booleanNone,
TrueFalse,
TrueFalseUpper,
TrueFalseUp

Different boolean types which map to yes and no or true and false.

https://www.univention.com/feedback/?manual=udm:modules
http://wiki.univention.de/index.php?title=Entwicklung_und_Integration_eigener_Module_in_Univention_Directory_Manager
http://wiki.univention.de/index.php?title=Entwicklung_und_Integration_eigener_Module_in_Univention_Directory_Manager
https://www.univention.com/feedback/?manual=udm:syntax

UDM Syntax Override

80

hostName,
DNS_Name,
windowsHostName,
ipv4Address,
ipAddress,
hostOrIP,
v4netmask,
netmask,
IPv4_AddressRange,
IP_AddressRange,
...

Different classes for host names or addresses.

unixTime,
TimeString,
iso8601Date,
date

Date and time.

GroupDN,
UserDN,
UserID,
HostDN,
DomainController,
Windows_Server,
UCS_Server,
...

Dynamic classes, which do an LDAP search to provide a list of selectable values like users, groups and
hosts

LDAP_Search,
UDM_Objects,
UDM_Attribute

These syntaxes do an LDAP search and display the result as a list. They are further described in Sec-
tion 6.4.2.

Additional syntax classes can be added by placing a Python file in /usr/share/pyshared/univen-
tion/admin/syntax.d/. They're automatically imported by UDM.

6.4.1. UDM Syntax Override

Sometimes the predefined syntax is inappropriate in some scenarios. This can be because of performance
problems with LDAP searches or the need for more restrictive or lenient value checking. The latter case might
require a change to the LDAP schema, since slapd also checks the provided values for correctness.

The syntax of UDM properties can be overwritten by using Univention Configuration Registry variables.
For each module and each property the variable directory/manager/web/modules/module/
properties/property/syntax can be set to the name of a syntax class. For example directo-
ry/manager/web/modules/users/user/properties/username/syntax=uid would re-
strict the name of users to not contain umlauts.

Since UCR variables only affect the local system, the variables must be set on all systems were UDM is
used. This can be either done through a Univention Configuration Registry policy (see ????) or by setting the
variable in the .postinst script of some package, which is installed on all hosts.

https://www.univention.com/feedback/?manual=udm:syntax:overwrite

UDM LDAP search

81

6.4.2. UDM LDAP search

It is often required to present a list of entries to the user, from which she can select one or — in case of a
multi-valued property — more entries. Several syntax classes derived from select provide a fixed list of
choices. If the set of values is known and fixed, it's best to derive an own class from select and provide the
Python file in /usr/share/pyshared/univention/admin/syntax.d/.

If on the other hand the list is dynamic and is stored in LDAP, UDM provides three methods to retrieve the
values.

UDM_Attribute
This class does a UDM search. For each object found all values of a multi-valued property are returned.

For a derived class the following class variables can be used to customize the search:

udm_module
The name of the UDM module, which does the LDAP search and retrieves the properties.

udm_filter
An LDAP search filter which is used by the UDM module to filter the search. The special value dn
skips the search and directly returns the property of the UDM object specified by depends.

attribute
The name of a multi-valued UDM property which stores the values to be returned.

is_complex,
key_index,
label_index

Some UDM properties consist of multiple parts, so called complex properties. These variables are
used to define, which part is displayed as the label and which part is used to reference the entry.

label_format
A Python format string, which is used to format the UDM properties to a label string presented to
the user. %(property-name)s should be used to reference properties. The special property name
$attribute$ is replaced by the value of variable attribute declared above.

regex
This defines an optional regular expression, which is used in the frontend to check the value for
validity.

static_values
A list of two-tuples (value, display-string), which are added as additional selection op-
tions.

empty_value
If set to True, the empty value is inserted before all other static and dynamic entries.

depends
This variable may contain the name of another property, which this property depends on. This can be
used to link two properties. For example, one property can be used to select a server, while the second
dependent property then only lists the services provided by that selected host. For the dependent
syntax attribute must be set to dn.

error_message
This error message is shown when the user enters a value which is not in the set of allowed values.

The following example syntax would provide a list of all users with their telephone numbers:

https://www.univention.com/feedback/?manual=udm:syntax:ldap

UDM LDAP search

82

class DelegateTelephonedNumber(UDM_Attribute):
 udm_module = 'users/user'
 attribute = 'phone'
 label_format = '%(displayName)s: %($attribute$)s'

UDM_Objects
This class performs a UDM search returning each object found.

For a derived class the following class variables can be used to customize the search:

udm_modules
A List of one or more UDM modules, which do the LDAP search and retrieve the properties.

key
A Python format string generating the key value used to identify the selected object. The default is
dn, which uses the distinguished name of the object.

label
A Python format string generating the display label to represent the selected object. The default is
None, which uses the UDM specific description. dn can be used to use the distinguished name.

regex
This defines an optional regular expression, which is used in the frontend to check the value for
validity. By default only valid distinguished names are accepted.

simple
By default a widget for selecting multiple entries is used. Setting this variable to True changes the
widget to a combo-box widget, which only allows to select a single value. This should be in-sync
with the multivalue property of UDM properties.

use_objects
By default UDM opens each LDAP object through a UDM module implemented in Python. This can
be a performance problem if many entries are returned. Setting this to False disables the Python
code and directly uses the attributes returned by the LDAP search. Several properties can then no
longer be used as key or label, as those are not explicitly stored in LDAP but are only calculated
by the UDM module. For example, to get the fully qualified domain name of a host %(name)s.
%(domain)s must be used instead of the calculated property %(fqdn)s.

udm_filter,
static_values,
empty_value,
depends,
error_message

Same as above with UDM_Attribute.

The following example syntax would provide a list of all servers providing a required service:

class MyServers(UDM_Objects):
 udm_modules = (
 'computers/domaincontroller_master',
 'computers/domaincontroller_backup',
 'computers/domaincontroller_slave',
 'computers/memberserver',
)
 label = '%(fqdn)s'
 udm_filter = 'service=MyService'

UDM LDAP search

83

LDAP_Search
This is the old implementation, which should only be used, if UDM_Attribute and UDM_Objects
are not sufficient. In addition to ease of use it has the drawback that Univention Management Console
can not do as much caching, which can lead to severe performance problems.

LDAP search syntaxes can be declared in two equivalent ways:

Python API
By implementing a Python class derived from LDAP_Search and providing that implementation
in /usr/share/pyshared/univention/admin/syntax.d/.

UDM API
By creating a UDM object in LDAP using the module settings/syntax.

The Python API uses the following variables:

syntax_name
This variable stores the common name of the LDAP object, which is used to define the syntax. It is
only used internally and should never be needed when creating syntaxes programmatically.

filter
An LDAP filter to find the LDAP objects providing the list of choices.

attribute
A list of UDM module property definitions like "shares/share: dn". They are used as the
human readable label for each element of the choices.

value
The UDM module attribute that will be stored to identify the selected element. The value is specified
like shares/share: dn

viewonly
If set to True the values can not be changed.

addEmptyValue
If set to True the empty value is add to the list of choices.

appendEmptyValue
Same as addEmptyValue but added at the end. Used to automatically choose an existing entry
in the frontend.

class MyServers(LDAP_Search):
 def __init__(self):
 LDAP_Search.__init__(self,
 filter=('(&(univentionService=MyService)'
 '(univentionServerRole=member))'),
 attribute=(
 'computers/memberserver: fqdn',
),
 value='computers/memberserver: dn'
)
 self.name = 'LDAP_Search' # required workaround

The UDM API uses the following properties:

name (required)
The name for the syntax.

Packaging UDM Hooks

84

description (optional)
Some descriptive text.

filter (required)
An LDAP filter, which is used to find the objects.

base (optional)
The LDAP base, where the search starts.

attribute (optional, multivalued),
ldapattribute (optional, multivalued)

The name of UDM properties, which are display as a label to the user. Alternatively LDAP attribute
names may be used directly.

value (optional),
ldapvalue (optional)

The name of the UDM property, which is used to reference the object. Alternatively an LDAP at-
tribute name may be used directly.

viewonly (optional)
If set to 1 the values can not be changed.

addEmptyValue (optional)
If set to 1 the empty value is add to the list of choices.

eval "$(ucr shell)"
udm settings/syntax create "$@" --ignore_exists \
 --position "cn=custom attributes,cn=univention,$ldap_base" \
 --set name=MyServers \
 --set filter='(&(univentionService=MyService)
 (univentionServerRole=member))' \
 --set attribute='computers/memberserver: fqdn' \
 --set value='computers/memberserver: dn'

6.5. Packaging UDM Hooks
For some purposes, e.g. for app installation, it is convenient to be able to deploy a new UDM hook in the
UCS domain from any system in the domain. For this purpose, a UDM hook can be stored as a special type
of UDM object. The module responsible for this type of objects is called settings/udm_hook. As these
objects are replicated throughout the UCS domain, the UCS servers listen for modifications on these objects
and integrate them into the local UDM.

The commands to create the UDM hook objects in UDM may be put into any join script (see Chapter 3). Like
every UDM object a UDM hook object can be created by using the UDM command line interface univen-
tion-directory-manager or its alias udm. UDM hook objects can be stored anywhere in the LDAP
directory, but the recommended location would be cn=udm_hook,cn=univention, below the LDAP
base. Since the join script creating the attribute may be called on multiple hosts, it is a good idea to add the
--ignore_exists option, which suppresses the error exit code in case the object already exists in LDAP.

The module settings/udm_hook requires several parameters. Since many of these are determined auto-
matically by the ucs_registerLDAPExtension shell library function, it is recommended to use the shell library
function to create these objects (see Section 9.10.1).

name (required)
Name of the UDM hook.

https://www.univention.com/feedback/?manual=settings:udm_hook

Packaging UDM Extension Modules

85

data (required)
The actual UDM hook data in bzip2 and base64 encoded format.

filename (required)
The file name the UDM hook data should be written to by the listening servers. The file name must not
contain any path elements.

package (required)
Name of the Debian package which creates the object.

packageversion (required)
Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appidentifier (optional)
The identifier of the app which creates the object. This is important to indicate that the object is required
as long as the app is installed anywhere in the UCS domain. Defaults to string.

ucsversionstart (optional)
Minimal required UCS version. The UDM hook is only activated by systems with a version higher than
or equal to this.

ucsversionend (optional)
Maximal required UCS version. The UDM hook is only activated by systems with a version lower than
or equal to this. To specify validity for the whole 4.1-x release range a value like 4.1-99 may be used.

active (internal)
A boolean flag used internally by the master domain controller to signal availability of the new UDM
hook on the master domain controller (default: FALSE).

6.6. Packaging UDM Extension Modules
For some purposes, e.g. for app installation, it is convenient to be able to deploy a new UDM module in the
UCS domain from any system in the domain. For this purpose, a UDM module can be stored as a special
type of UDM object. The module responsible for this type of objects is called settings/udm_module.
As these objects are replicated throughout the UCS domain, the UCS servers listen for modifications on these
objects and integrate them into the local UDM.

The commands to create the UDM module objects in UDM may be put into any join script (see Chapter 3).
Like every UDM object a UDM module object can be created by using the UDM command line interface
univention-directory-manager or its alias udm. UDM module objects can be stored anywhere
in the LDAP directory, but the recommended location would be cn=udm_module,cn=univention,
below the LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good
idea to add the --ignore_exists option, which suppresses the error exit code in case the object already
exists in LDAP.

The module settings/udm_module requires several parameters. Since many of these are determined
automatically by the ucs_registerLDAPExtension shell library function, it is recommended to use the shell
library function to create these objects (see Section 9.10.1).

name (required)
Name of the UDM module, e.g. newapp/someobject.

data (required)
The actual UDM module data in bzip2 and base64 encoded format.

https://www.univention.com/feedback/?manual=settings:udm_module

Packaging UDM Syntax Extension

86

filename (required)
The file name the UDM module data should be written to by the listening servers. The file name
may contain path elements and should conform to the name of the UDM module (e.g. newapp/
someobject.py).

messagecatalog (optional)
Multivalued property to supply message translation files (syntax: <language tag> <base64 encoded GNU
message catalog>).

umcregistration (optional)
XML definition required to make the UDM module available though the Univention Management Con-
sole (base64 encoded XML)

icon (optional)
Multivalued property to supply icons for the Univention Management Console (base64 encoded png,
jpeg or svgz).

package (required)
Name of the Debian package which creates the object.

packageversion (required)
Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appidentifier (optional)
The identifier of the app which creates the object. This is important to indicate that the object is required
as long as the app is installed anywhere in the UCS domain. Defaults to string.

ucsversionstart (optional)
Minimal required UCS version. The UDM module is only activated by systems with a version higher
than or equal to this.

ucsversionend (optional)
Maximal required UCS version. The UDM module is only activated by systems with a version lower than
or equal to this. To specify validity for the whole 4.1-x release range a value like 4.1-99 may be used.

active (internal)
A boolean flag used internally by the master domain controller to signal availability of the new UDM
module on the master domain controller (default: FALSE).

6.7. Packaging UDM Syntax Extension
For some purposes, e.g. for app installation, it is convenient to be able to deploy a new UDM syntax in the
UCS domain from any system in the domain. For this purpose, a UDM syntax can be stored as a special type
of UDM object. The module responsible for this type of objects is called settings/udm_syntax. As
these objects are replicated throughout the UCS domain, the UCS servers listen for modifications on these
objects and integrate them into the local UDM.

The commands to create the UDM syntax objects in UDM may be put into any join script (see Chapter 3).
Like every UDM object a UDM syntax object can be created by using the UDM command line interface
univention-directory-manager or its alias udm. UDM syntax objects can be stored anywhere in the
LDAP directory, but the recommended location would be cn=udm_syntax,cn=univention, below
the LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good idea to
add the --ignore_exists option, which suppresses the error exit code in case the object already exists
in LDAP.

https://www.univention.com/feedback/?manual=settings:udm_syntax

Packaging UDM Syntax Extension

87

The module settings/udm_syntax requires several parameters. Since many of these are determined
automatically by the ucs_registerLDAPExtension shell library function, it is recommended to use the shell
library function to create these objects (see Section 9.10.1).

name (required)
Name of the UDM syntax.

data (required)
The actual UDM syntax data in bzip2 and base64 encoded format.

filename (required)
The file name the UDM syntax data should be written to by the listening servers. The file name must
not contain any path elements.

package (required)
Name of the Debian package which creates the object.

packageversion (required)
Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appidentifier (optional)
The identifier of the app which creates the object. This is important to indicate that the object is required
as long as the app is installed anywhere in the UCS domain. Defaults to string.

ucsversionstart (optional)
Minimal required UCS version. The UDM syntax is only activated by systems with a version higher than
or equal to this.

ucsversionend (optional)
Maximal required UCS version. The UDM syntax is only activated by systems with a version lower than
or equal to this. To specify validity for the whole 4.1-x release range a value like 4.1-99 may be used.

active (internal)
A boolean flag used internally by the master domain controller to signal availability of the new UDM
syntax on the master domain controller (default: FALSE).

88

89

Chapter 7. Univention Management
Console (UMC)

7.1. Architecture .. 89
7.2. Asynchronous Framework ... 90
7.3. Protocol UMCP 2.0 ... 91

7.3.1. Data flow .. 91
7.3.2. Authentication .. 91
7.3.3. Message format .. 91

7.3.3.1. Message header .. 91
7.3.3.2. Message body .. 92

7.3.4. Examples ... 92
7.4. Protocol HTTP for UMC .. 93

7.4.1. Examples ... 93
7.5. UMC files .. 94

7.5.1. debian/package.umc-modules .. 94
7.5.2. UMC Module Declaration File .. 95

7.6. Local System Module .. 95
7.6.1. Python API .. 95
7.6.2. UMC module API (Python and JavaScript) .. 95

7.6.2.1. XML definition .. 96
7.6.2.2. Python module ... 97
7.6.2.3. UMC store API .. 99

7.6.3. Packaging .. 100
7.7. Domain LDAP Module ... 102
7.8. Disabling a Module .. 103

The Univention Management Console (UMC) is a service that runs an all UCS systems by default. This service
provides access to several system information and implements modules for management tasks. What modules
are available on a UCS system depends on the system role and the installed components. Each domain user
can log an to the service via a web interface. Depending on the access policies for the user the visible modules
for management tasks will differ.

In the following the technical details of the architecture and the Python and JavaScript API for modules are
described.

7.1. Architecture
The Univention Management Console service consists of four components. The communication between these
components is encrypted using SSL. The architecture and the communication channels is shown in Figure 7.1.

https://www.univention.com/feedback/?manual=umc:architecture

Asynchronous Framework

90

Figure 7.1. UMC architecture and communication channels

UMC HTTP s e rv e r

UMC m o d u le
UCR

UMC m o d u le
UVMM

UMC m o d u le
UDM

.....

We b b ro w s e r
Dojo/UMC Ja va Scrip t API

UMC s e rv e r
UMC Pyth on API

com m u n ca t ion
via AJAX a n d JSON

• The UMC server is the core component. It provides access to the modules and manages the connection
and verifies that only authorized users gets access. The protocol used to communicate is the Univention
Management Console Protocol (UMCP) in version 2.0.

• The UMC HTTP server is a small web server that provides HTTP access to the UMC server. It is used
by the web frontend.

• The UMC module processes are forked by the UMC server to provide a specific area of management tasks
within a session.

7.2. Asynchronous Framework
All server-side components of the UMC service are based on the asynchronous framework Python Notifier,
that provides techniques for handling quasi parallel tasks based on events. The framework follows three basic
concepts:

Non-blocking sockets
For servers that should handling several communication channels at a time have to use so called non-
blocking sockets. This is an option that needs to be set for each socket, that should be management by
the server. This is necessary to avoid blocking on read or write operations on the sockets.

Timer
To perform tasks after a defined amount of time the framework provides an API to manage timer (one
shot or periodically).

Signals
To inform components within a process of a specific a events the framework provide the possibility to
define signals. Components being interested in events may place a registration.

Further details, examples and a complete API documentation for Python Notifier can be found at the website
of Python Notifier1.

1 https://github.com/crunchy-github/python-notifier

https://www.univention.com/feedback/?manual=umc:framework
https://github.com/crunchy-github/python-notifier
https://github.com/crunchy-github/python-notifier
https://github.com/crunchy-github/python-notifier

Protocol UMCP 2.0

91

7.3. Protocol UMCP 2.0
This protocol is used by the UMC server for external clients and between the UMC server and its UMC
module processes.

7.3.1. Data flow

The protocol is based on a server/client model. The client sends requests to the server that will be answered
with a response message by the server.

With a status code in the response message the client can determine the type of result of its request:

• An error occurred during the processing of the request. The status code contains details of the error.

• The command was processed successfully. A status message may contain details about the performed task.

7.3.2. Authentication

Before a client may send request messages to the server that contain commands to execute, the client has to
authenticate. After a successful authentication the UMC server determines the permissions for the user defined
by policies in the LDAP directory. If the LDAP server is not reachable a local cache is checked for previously
discovered permissions. If none of these sources is available the user is prohibited to use any command.

The authentication process within the UMC server uses the PAM service univention-manage-
ment-console. By default, this service uses a cache for credentials if the LDAP server is not available to
provide the possibility to access the UMC server also in case of problems with the LDAP server.

7.3.3. Message format

The messages, request and response, have the same format that consists of a single header line, one empty
line and the body.

The header line contains control information that allows the UMC server to verify the correctness of the
message without reading the rest of the message.

7.3.3.1. Message header

The header defines the message type, a unique identifier, the length of the message body in bytes, the command
and the mime type of the body.

(REQUEST|RESPONSE)/<id>/<length of body>[/<mime-type>]:
 <command>[<arguments>]

By the first keyword the message type is defined. Supported message types are REQUEST and RESPONSE.
Any other type will be ignored.

Separated by a / the message id follows, that must be unique within a communication channel. By default
it consists of a timestamp and a counter.

The next field is a number, defining the length of the body in bytes, starting to count after the empty line.

Since UMCP 2.0 there is as another field specifying the mime type of the body. If not given then the guessed
value for the mime type is application/json. If the body can not be decoded using a JSON parser the
message is invalid.

https://www.univention.com/feedback/?manual=umc:umcp2
https://www.univention.com/feedback/?manual=umc:umcp2:flow
https://www.univention.com/feedback/?manual=umc:umcp2:auth
https://www.univention.com/feedback/?manual=umc:umcp2:message
https://www.univention.com/feedback/?manual=umc:umcp2:message:header

Examples

92

The last two fields define the UMCP command that should be executed by the server. The following commands
are supported:

AUTH
This commands sends an authentication request. It must be the first command send by the client. All
commands send before a successful authentication are rejected.

GET
This command is used to retrieve information from the UMC server, e.g. a list of all UMC modules
available in this session.

SET
This command is used to define settings for the session, e.g. the language.

COMMAND
This command is used to pass requests to UMC modules. Each module defines a set of commands, that
it implements. The UMC module command is defined by the first argument in the UMCP header, e.g.
a request like REQUEST/123423423-01/42/application/json: COMMAND ucr/query
passes on the module command ucr/query to a UMC module.

7.3.3.2. Message body

The message body may contain one object of any type, e.g. an image, an OpenOffice document or a JSON
object. The JSON object is the default type and is the only supported mime type for request messages. It
contains a dictionary that has a few predefined keys (for both message types):

options
Contains the arguments for the command.

status
Defines the status code in response messages. The codes are similar to the HTTP status codes , e.g. 200
defines a successful execution of the command.

message
May contain a human readable description of the status code. This may contain details to explain the
user the situation.

flavor
An optional field. If given in a request message the module may act differently than without the flavor.

7.3.4. Examples

This section contains a few example messages of UMCP 2.0.

Example 7.1. Authentication request

REQUEST/130928961341733-1/147/application/json: AUTH

{"username": "root", "password": "univention"}

https://www.univention.com/feedback/?manual=umc:umcp2:message:body
https://www.univention.com/feedback/?manual=umc:umcp2:example

Protocol HTTP for UMC

93

Example 7.2. Search for users

Request:

REQUEST/130928961341726-0/125/application/json: COMMAND udm/query

{"flavor": "users/user",
 "options": {"objectProperty": "name",
 "objectPropertyValue": "test1*1",
 "objectType": "users/user"}}

Response:

RESPONSE/130928961341726-0/1639/application/json: COMMAND udm/query

{"status": 200,
 "message": null,
 "options": {"objectProperty": "name",
 "objectPropertyValue": "test1*1",
 "objectType": "users/user"},
 "result": [{"ldap-dn": "uid=test11,cn=users,dc=univention,dc=qa",
 "path": "univention.qa:/users",
 "name": "test11",
 "objectType": "users/user"},
...
 {"ldap-dn": "uid=test191,cn=users,dc=univention,dc=qa",
 "path": "univention.qa:/users",
 "name": "test191",
 "objectType": "users/user"}]}

7.4. Protocol HTTP for UMC
With the new generation of UMC there is also an HTTP server available that can be used to access the UMC
server. The web server is implemented as a frontend to the UMC server and translates HTTP POST requests
to UMCP commands.

7.4.1. Examples

Example 7.3. Authentication request

POST http://10.200.15.31/umcp/auth HTTP/1.1

{"options": {"username": "root", "password": "univention"}}

https://www.univention.com/feedback/?manual=umc:http
https://www.univention.com/feedback/?manual=umc:http:example

UMC files

94

Example 7.4. search for users

Request

POST http://10.200.15.31/umcp/command/udm/query HTTP/1.1

{"options": {"container": "all",
 "objectType":"users/user",
 "objectProperty":"username",
 "objectPropertyValue":"test1*1"},
 "flavor":"users/user"}

Response

{"status": 200,
 "message": null,
 "options": {"objectProperty": "username",
 "container": "all",
 "objectPropertyValue": "test1*1",
 "objectType": "users/user"},
 "result": [{"ldap-dn": "uid=test11,cn=users,dc=univention,dc=qa",
 "path": "univention.qa:/users",
 "name": "test11",
 "objectType": "users/user"},
...
 {"ldap-dn": "uid=test191,cn=users,dc=univention,dc=qa",
 "path": "univention.qa:/users",
 "name": "test191",
 "objectType": "users/user"}]}

7.5. UMC files
Files for building a UMC module.

7.5.1. debian/package.umc-modules

dh-umc-module-build builds translation files. dh-umc-module-install installs files. Configured
through debian/package.umc-modules.

Module: module-name
Python: umc
Definition: umc/module-name.xml
Javascript: umc
Icons: umc/icons

Module
Internal (?) name of the module.

Python
Directory containing the Python code relative to top-level directory.

Definition
Path to an XML file, which describes the module. See Section 7.5.2 for more information.

Javascript
Directory containing the Java-Script code relative to top-level directory.

https://www.univention.com/feedback/?manual=umc:files
https://www.univention.com/feedback/?manual=umc:umc-modules

UMC Module Declaration File

95

Icons (deprecated)
Directory containing the Icons relative to top-level directory. Must provide icons in sizes 16×16 (umc/
icons/16x16/udm-module.png) and 50×50 (umc/icons/50x50/udm-module.png) pix-
els.

7.5.2. UMC Module Declaration File

umc/module.xml

<?xml version="1.0" encoding="UTF-8"?>
<!--DOCTYPE umc SYSTEM "branches/ucs-4.1/ucs-4.1-0/management/
univention-management-console/doc/module.dtd"-->
<umc version="2.0">
 <module id="udm" icon="udm-MODULE" version="1.0"
 translationId="MODULE">
 <name>...</name>
 <description>...</description>
 <flavor>...</flavor>
 <categories>
 <category name="domain"/>
 </categories>
 <command>...</command>
 </module>
</umc>

umc/categories/category.xml

<?xml version="1.0" encoding="UTF-8"?>
<umc version="2.0">
 <categories>
 <category id="category" priority="..." icon="....svg" color="#xxxxxx"/
>
 </categories>
</umc>

7.6. Local System Module
The UMC server provides management services that are provided by so called UMC modules. These modules
are implemented in Python (backend) and in JavaScript (web frontend). The following page provides infor-
mation about developing and packaging of UMC modules. It is important to know the details of Section 7.1.

The package univention-management-console-dev provides the command umc-create-module, which
can be used to create a template for a custom UMC module.

7.6.1. Python API

The Python API for the UMCP is defined in the python module
univention.management.console.protocol.

7.6.2. UMC module API (Python and JavaScript)

A UMC module consists of three components

• A XML document containing the definition.

• The Python module defining the command functions.

https://www.univention.com/feedback/?manual=umc:xml
https://www.univention.com/feedback/?manual=umc:module
https://www.univention.com/feedback/?manual=umc:module:python
https://www.univention.com/feedback/?manual=umc:module:api

UMC module API (Python and JavaScript)

96

• The JavaScript frontend providing the web frontend.

7.6.2.1. XML definition

The UMC server knows three types of resources that define the functionality it can provide:

UMC modules
provide commands that can be executed if the required permission is given.

Syntax types
can be used to verify the correctness of command attributes defined by the UMCP client in the request
message or return values provided by the UMC modules.

Categories
help to define a structure and to sort the UMC modules by its type of functionality.

All these resources are defined in XML files. The details are described in the following sections

7.6.2.1.1. Module definition

The UMC server does not load the Python modules to get the details about the modules name, description
and functionality. Therefor each UMC module must provide an XML file containing this kind of information.
The following example defines a module with the id udm:

<?xml version="1.0" encoding="UTF-8"?>
<umc version="2.0">
 <module id="udm" icon="udm/module" version="1.0">
 <name>Univention Directory Manager</name>
 <description>Manages all UDM modules</description>
 <flavor icon="udm-users" id="users/user">
 <name>Users</name>
 <description>Managing users</description>
 </flavor>
 <categories>
 <category name="domain"/>
 </categories>
 <command name="udm/query" function="query"/>
 <command name="udm/containers" function="containers"/>
 </module>
</umc>

The element module defines the basic details of a UMC module.

id
This identifier must be unique among the modules of an UMC server. Other files may extend the definition
of a module by adding more flavors or categories.

icon
The value of this attribute defines an identifier for the icon that should be used for the module. Details
for installing icons can be found in the Section 7.6.3.

The child elements name and description define the English human readable name and description of
the module. For other translations the build tools will create translation files. Details can be found in the
Section 7.6.3.

This example defines a so called flavor. A flavor defines a new name, description and icon for the same UMC
module. This can be used to show several virtual modules in the overview of the web frontend. Additionally

https://www.univention.com/feedback/?manual=umc:module:api:xml
https://www.univention.com/feedback/?manual=umc:module:api:xml:definition

UMC module API (Python and JavaScript)

97

the flavor is passed to the UMC server with each request i.e. the UMC module has the possibility to act
differently for a specific flavor.

As the next element categories is defined in the example. The child elements category set the cate-
gories within the overview where the module should be shown. Each module can be part of multiple cate-
gories. The attribute name is the internal identify of a category.

At the end of the definition file a list of commands is specified. The UMC server only passes commands to a
UMC module that are defined. A command definition has two attributes:

name
is the name of the command that is passed to the UMC module. Within the UMCP message it is the first
argument after the UMCP COMMAND.

function
defines the method to be invoked within the python module when the command is called.

7.6.2.1.2. Category definition

The predefined set of categories can be extended by each module.

Example 7.5. UMC module category examples

<?xml version="1.0" encoding="UTF-8"?>
<umc version="2.0">
 <categories>
 <category id="favorites">
 <name>Favorites</name>
 </category>
 <category id="system">
 <name>System</name>
 </category>
 <category id="wizards">
 <name>Wizards</name>
 </category>
 <category id="monitor">
 <name>Surveillance</name>
 </category>
 </categories>
</umc>

7.6.2.2. Python module

The Python API for UMC modules primary consists of one base class that must be implemented. As an
addition to python API provides some helper:

• exception classes

• translation support

• logging functions

• UCR access

In the definition file for the UMC module specifies functions for the commands provided by the
module. These functions must be implemented as methods of the class Instance that inherits from
univention.management.console.base.Base.

https://www.univention.com/feedback/?manual=umc:module:api:xml:category
https://www.univention.com/feedback/?manual=umc:module:api:python

UMC module API (Python and JavaScript)

98

The following Python code example matches the definition in the previous section:

from univention.management.console import Translation
from univention.management.console.base import Base, UMC_Error
from univention.management.console.log import MODULE
from univention.management.console.config import ucr
from univention.management.console.modules.sanitizers import
 IntegerSanitizer
from univention.management.console.modules.decorators import sanitize

_ = Translation('univention-management-console-modules-udm').translate

class Instance(Base):

 def init(self):
 """Initialize the module with some values"""
 super(Instance, self).init()
 self.data = [int(x) for x in ucr.get('some/examle/ucr/variable',
 '1,2,3').split(',')]

 def query(self, request):
 """get all values of self.data"""
 self.finished(request.id, self.data)

 @sanitize(item=IntegerSanitizer(required=True))
 def get(self, request):
 """get a specific item of self.data"""
 try:
 item = self.data[request.options['item']]
 except IndexError:
 MODULE.error('A invalid item was accessed.')
 raise UMC_Error(_('The item %d does not exists.') %
 (request.options['item'],), status=400)
 self.finished(request.id, self.data[item])

 @sanitize(IntegerSanitizer(required=True))
 def put(self, request):
 """replace all data with the list provided in request.options"""
 self.data = request.options
 self.finished(request.id, None)

Each command methods has one parameter that contains the UMCP request. Such an object has the following
properties:

id
the unique identifier of the request.

options
contains the arguments for the command. For most commands it is a dictionary.

flavor
the name of the flavor that was used to invoke the command. This might be None.

The method init() in the example is invoked when the module process starts. It could e.g.
be used to initialize a database connection. The other methods in the example will serve spe-

UMC module API (Python and JavaScript)

99

cific request. To respond to a request the function finished must be invoked. To validate
the request body the decorator @sanitize might be used with various sanitizers defined in
univention.management.console.modules.sanitizers. For a way to send an error message
back to the client the UMC_Error can be raised with the error message as argument and an optional HTTP
status code. The base class for modules provides some properties and methods that could be useful when
writing UMC modules:

username
The username of the owner of this session.

user_dn
The DN of the user or None if the user is only a local user.

password
The password of the user.

init()
Is invoked after the module process has been initialized. At that moment, the settings, like locale and
username and password are available.

destroy()
Is invoked before the module process shuts down.

7.6.2.3. UMC store API

In order to encapsulate and ease the access to module data from the JavaScript side, a store object offers a
unified way to query and modify module data. The UMC JavaScript API comes with an object store imple-
mentation of the Dojo store API2. This allows the JavaScript code to easily access/modify module data and
to observe changes on the data in order to react immediately. The following methods are supported:

get(id)
Returns a dictionary of all properties for the object with the specified identifier.

put(dictionary, options)
modifies an object with the corresponding properties and an optional dictionary of options.

add(dictionary, options)
Adds a new object with the corresponding properties and an optional dictionary of options.

remove(id)
Removes the object with the specified identifier.

query(dictionary)
Queries a list of objects (returned as list of dictionaries) corresponding to the given query which is rep-
resented as dictionary. Note that not all object properties need to be returned in order to save bandwidth.

The UMC object store class in JavaScript will be able to communicate directly with the Python module if the
following methods are implemented:

module/get
Expects as input a list if unique IDs (as strings) and returns a list of dictionaries as result. Each dictionary
entry holds all object properties.

module/put
Expects as input a list of dictionaries where each entry has the properties object and options. The property
object holds all object properties to be set (i.e., this may also be a subset of all possible properties) as

2 http://dojotoolkit.org/reference-guide/dojo/store.html

https://www.univention.com/feedback/?manual=umc:module:api:storepython
http://dojotoolkit.org/reference-guide/dojo/store.html
http://dojotoolkit.org/reference-guide/dojo/store.html

Packaging

100

a dictionary. The second property options is an optional dictionary that holds additional options as a
dictionary.

module/add
Expects similar input values as module/put.

module/remove
Expects as input a list of dictionaries where each entry has the properties object (containing the object's
unique ID (as string)) and options. The options property can be necessary as a removal might be executed
in different ways (recursively, shallow removal etc.).

module/query
Expects as input a dictionary with entries that specify the query parameters and returns a list of dictio-
naries. Each entry may hold only a subset of all possible object properties.

Further references:

• Dojo object store reference guide3

• Object store tutorial4

• HTML5 IndexedDB object store API5

7.6.3. Packaging

A UMC module consists of several files that must be installed at a specific location. As this mechanism is
always the same there are debhelper tools making package creation for UMC modules very easy.

The following example is based on the package for the UMC module UCR.

A UMC module may be part of a source package with multiple binary packages. The examples uses a own
source package for the module.

As a first step create a source package with the following directories and files:

• univention-management-console-module-ucr/
• univention-management-console-module-ucr/debian/
• univention-management-console-module-ucr/
debian/univention-management-console-module-ucr.umc-modules

• univention-management-console-module-ucr/debian/rules
• univention-management-console-module-ucr/debian/changelog
• univention-management-console-module-ucr/debian/control
• univention-management-console-module-ucr/debian/copyright
• univention-management-console-module-ucr/debian/compat

All these files are standard Debian packaging files except univention-management-console-mod-
ule-ucr.umc-modules. This file contains information about the locations of the UMC module source
files:

Module: ucr
Python: umc/python
Definition: umc/ucr.xml
Syntax: umc/syntax/ucr.xml

3 http://dojotoolkit.org/reference-guide/dojo/store.html
4 http://www.sitepen.com/blog/2011/02/15/dojo-object-stores/
5 http://www.w3.org/TR/IndexedDB/#object-store

http://dojotoolkit.org/reference-guide/dojo/store.html
http://www.sitepen.com/blog/2011/02/15/dojo-object-stores/
http://www.w3.org/TR/IndexedDB/#object-store
https://www.univention.com/feedback/?manual=umc:module:packaging
http://dojotoolkit.org/reference-guide/dojo/store.html
http://www.sitepen.com/blog/2011/02/15/dojo-object-stores/
http://www.w3.org/TR/IndexedDB/#object-store

Packaging

101

Javascript: umc/js
Icons: umc/icons

The keys in this file of the following meaning:

Module
The internal name of the module

Python
A directory that contains the python package for the UMC module

Definition
The filename of the XML file with the module definition

Javascript
A directory containing the JavaScript source code

Icons
A directory containing the icons required by the modules web frontend

Syntax (optional)
The filename of the XML file with the syntax definitions

Category (optional)
The filename of the XML file with the category definitions

The directory structure for such a UMC module file would look like this:

• univention-management-console-module-ucr/umc/
• univention-management-console-module-ucr/umc/syntax/
• univention-management-console-module-ucr/umc/syntax/ucr.xml
• univention-management-console-module-ucr/umc/js/
• univention-management-console-module-ucr/umc/js/ucr.js
• univention-management-console-module-ucr/umc/js/de.po
• univention-management-console-module-ucr/umc/de.po
• univention-management-console-module-ucr/umc/icons/
• univention-management-console-module-ucr/umc/icons/16x16/
• univention-management-console-module-ucr/umc/icons/16x16/ucr.png
• univention-management-console-module-ucr/umc/icons/24x24/
• univention-management-console-module-ucr/umc/icons/24x24/ucr.png
• univention-management-console-module-ucr/umc/icons/64x64/
• univention-management-console-module-ucr/umc/icons/64x64/ucr.png
• univention-management-console-module-ucr/umc/icons/32x32/
• univention-management-console-module-ucr/umc/icons/32x32/ucr.png
• univention-management-console-module-ucr/umc/ucr.xml
• univention-management-console-module-ucr/umc/python/
• univention-management-console-module-ucr/umc/python/ucr/
• univention-management-console-module-ucr/umc/python/ucr/de.po
• univention-management-console-module-ucr/umc/python/ucr/__init__.py

If such a package has been created a few things need to be adjusted

debian/compat

7

Domain LDAP Module

102

debian/rules

%:
 dh $@

override_dh_auto_build:
 dh-umc-module-build
 dh_auto_build

override_dh_auto_install:
 dh-umc-module-install
 dh_auto_install

debian/control

Source: univention-management-console-module-ucr
Section: univention
Priority: optional
Maintainer: Univention GmbH <packages@univention.de>
Build-Depends: debhelper (>= 7.0.50~),
 python-support,
 univention-management-console-dev,
 python-all
Standards-Version: 3.5.2
XS-Python-Version: all

Package: univention-management-console-module-ucr
Architecture: all
Depends: univention-management-console-server
Description: UMC module for UCR
 This package contains the UMC module for Univention Configuration
 Registry

7.7. Domain LDAP Module
Done through flavor.

<?xml version="1.0" encoding="UTF-8"?>
<umc version="2.0">
 <module id="udm" icon="udm-MODULE" version="1.0"
 translationId="MODULE">
 <flavor priority="25" icon="udm-MODULE-SUBMODULE" id="MODULE/
SUBMODULE">
 <name>MODULE name</name>
 <description>MODULE description</description>
 </flavor>
 <categories>
 <category name="domain"/>
 </categories>
 </module>
</umc>

Must use /umc/module/category/@name="domain"! Must use /umc/module/@transla-
tionId to specify alternative translation file, which must be installed as /usr/share/univen-
tion-management-console/i18n/language/module.mo.

https://www.univention.com/feedback/?manual=umc:udm

Disabling a Module

103

7.8. Disabling a Module
To disabling a module use the following XML file as a template:

<?xml version="1.0" encoding="UTF-8"?>
<umc version="2.0">
 <module id="udm" icon="udm/module" version="1.0"
 translationId="MODULE">
 <name/>
 <description/>
 <flavor id="MODULE/SUBMODULE" deactivated="yes" />
 </module>
</umc>

https://www.univention.com/feedback/?manual=umc:module:disable

104

Extending the overview page

105

Chapter 8. Web services
8.1. Extending the overview page ... 105

8.1. Extending the overview page
When a user opens http://localhost/ or http://hostname/ in a browser, she is redirected to the
UCS overview page.

Depending on the preferred language negotiated by the web browser the user is either redirected to the German
or English version. The overview page is split between Installed web services and Administration entries.

The start page can be extended using Univention Configuration Registry variables. PACKAGE refers to a
unique identifier, typically the name of the package shipping the extensions to the overview page. The con-
figurable options are explained below:

• ucs/web/overview/entries/admin/PACKAGE/OPTION variables extend the administrative
section.

• ucs/web/overview/entries/service/PACKAGE/OPTION variables extend the web services
section.

To configure an extension of the overview page the following options must/can be set using the pattern ucs/
web/overview/entries/admin/PACKAGE/OPTION=VALUE (and likewise for services).

• link defines a link to a URL representing the service (usually a web interface).

• label specifies a title for an overview entry. The title can also be translated; e.g. label/de can be used
for a title in German.

• description configures a longer description of an overview entry. The description can also be trans-
lated; e.g. description/de can be used for a description in German. Should not exceed 60 characters,
because of space limitations of the rendered box.

• Optionally an icon can be displayed. Using icon either a filename or a URI can be provided. When spec-
ifying a filename, the name must be relative to the directory /var/www, i.e. with a leading '/'. All file for-
mats typically displayed by browsers can be used (e.g. PNG/JPG). All icons must be scaled to 50x50 pixels.

• The display order can be specified using priority. Depending on the values the entries are displayed
in lexicographical order (i.e. 100 < 50).

The following example configures the link to the Nagios web interface:

ucs/web/overview/entries/admin/nagios/description/de: Netzwerk-, Host-
 und Serviceüberwachung
ucs/web/overview/entries/admin/nagios/description: Network, host and
 service monitoring system
ucs/web/overview/entries/admin/nagios/icon: /icon/50x50/nagios.png
ucs/web/overview/entries/admin/nagios/label/de: Univention Nagios
ucs/web/overview/entries/admin/nagios/label: Univention Nagios
ucs/web/overview/entries/admin/nagios/link: /nagios/
ucs/web/overview/entries/admin/nagios/priority: 50

https://www.univention.com/feedback/?manual=www:overview

106

Requirements

107

Chapter 9. App Center
9.1. Requirements .. 107
9.2. Packaging for the App Center .. 108
9.3. Next steps .. 108
9.4. Application meta file .. 109
9.5. Optional application files .. 116
9.6. Uploading the application .. 116
9.7. Notifications ... 117
9.8. Updates for the application .. 117
9.9. Integrating the Application in UCS ... 118

9.9.1. Automatic integration done by the App Center ... 118
9.9.2. Scope of the vendor ... 118

9.10. Best practices .. 119
9.10.1. Registration of LDAP and UDM Extensions ... 119

The Univention App Center provides a platform for software vendors and an easy-to-use entry point for
Univention Corporate Server users to extend their environment with business software.

Univention App Center is the simplest form to install applications on Univention Corporate Server. In the
Univention Management Console it is the first entry point for their installation. Univention App Center is
no app store in a classical point of view as known from iOS or Android and no license management for
applications. The sale of licenses, maintenance or support for applications follows the default procedure of
the respective vendor.

This chapter mainly aims at software vendors that want to provide their software in Univention App Center
and describes the necessary steps.

A catalog with the available applications can be viewed on the Univention website1.

9.1. Requirements
The requirements for providing a software solution in Univention App Center are:

• Formally:

• The certification of the software solution for UCS and sign the Univention Logoprogram Certified for
Univention Corporate Server2

• Sign the contract to use "Univention App Center" as platform to provide applications to users

• Technically: The packaging of the software solution in the Debian package format (see Section 9.2), pro-
vided for the architectures i386 and/or amd64

• Out-of-the-Box functionality: The app has to work already after installation

The following items are no disqualifying criteria:

• Missing documentation

• No or little integration of the app with Univention Corporate Server

The following items are important for packaging:

1 https://www.univention.com/products/univention-app-center/
2 https://www.univention.com/products/univention-app-center/for-software-vendors/

https://www.univention.com/products/univention-app-center/
https://www.univention.com/feedback/?manual=app:requirements
https://www.univention.com/products/univention-app-center/for-software-vendors/
https://www.univention.com/products/univention-app-center/for-software-vendors/
https://www.univention.com/products/univention-app-center/
https://www.univention.com/products/univention-app-center/for-software-vendors/

Packaging for the App Center

108

• The application has to be installed without any user interaction (unattended). The installation process is
not allowed to be interrupted or canceled which would result in an inconsistent state of the package man-
agement.

• The application has to be installed and uninstalled cleanly. "Uninstalled cleanly" especially aims for re-
moving Extended Attributes the application created during installation. See Section 3.5.

• The application does not (neither after installation nor after uninstallation) break Univention Corporate
Server functionality.

• Recommended: The application is integrated in UCS and the UCS management system (see Section 9.9).

Note

The software vendor is responsible for the maintenance of his application(s). Package updates are
provided for Univention App Center in a contemporary way (see also Section 9.8).

9.2. Packaging for the App Center
The App Center is based on the Debian package system. From a technical point of view, the installation of an
application via the App Center consists roughly of two steps: (1) adding a new repository to the system which
resides on the App Center server and (2) apt-get which installs the required package. This means that 3rd
party vendors need to package their application as a .deb file and send that to Univention.

For deeper integration in Univention Corporate Server it is necessary to add at least one more file, a Join
Script (see Section 9.9.2). This file can be included in the core package of the application or in a dedicated
package for Univention Corporate Server integration, say, univention-appname and have a dependency on
the core application (on dpkg level).

See Appendix B for further details on how to build Debian packages.

In most cases the core application depends on several other packages, e.g. apache, python, etc. Those pack-
ages are automatically installed by the App Center (via apt). All packages (except games) from Debian were
rebuilt for Univention Corporate Server, but not all packages are maintained by Univention. The maintained
repository for Univention Corporate Server contains the most common packages, but it may be that the ap-
plication needs some specific packages not found there. If this packages exists for Debian, it can be found
in the unmaintained repository. But as the unmaintained repository is not activated by default the App Cen-
ter cannot install the application without user configuration if some packages are only available through the
unmaintained repository. But this is a requirement for any application! To workaround this issue, the vendor
has to do the following: In a first step he has to grab the packages from the unmaintained repository (see
for example https://updates.software-univention.de/4.1/unmaintained/) and bundle it with his own packages
so that they are put into the app's own repository. In a second step he should inform Univention about these
packages. We will probably move them into maintained so that this procedure will become obsolete in future
versions of the application.

9.3. Next steps
As soon as the software complies to the requirements the following steps are to be taken:

• Collect the meta data for the software for the App Center (see Section 9.4 and Section 9.5).

• Upload the packages along with the ini file, some README files, an icon and (maybe) a screenshot in a
file archive (everything should go in one "directory"). See Section 9.6.

• Test the software solution with Univention Test App Center (more information is given by Univention after
the upload).

https://www.univention.com/feedback/?manual=app:package
https://updates.software-univention.de/4.1/unmaintained/
https://www.univention.com/feedback/?manual=app:nextsteps

Application meta file

109

Important

Univention will not test if the application works as expected. We have a test suite that is run before
we publish the application but it only covers base functionality of Univention Corporate Server
itself (e.g. LDAP, Join, etc.)

• Give approval for provisioning in the productive Univention App Center towards Univention.

• Show with the badge "Available in Univention App Center" that the App is ready to use. The HTML snippet
will be provided by Univention.

See also Section 9.8 for how to proceed if an update is to be released.

9.4. Application meta file
The App Center needs some meta information about the application to handle the installation and to present
information to the user. The application needs a so-called .ini file for that. The particulars in the meta data
have to be in English at least.

An example along with some comments on the variables is attached:

[Application]
internal id
ID=application

display name of the application
Name=The Application

application version
Version=7.1

the logo that is used in the App Center overview
scalable, square
Logo=myapplication.svg

the logo shown in the App's details
scalable, no ratio restriction (e.g. with the app's claim)
if not set, defaults to Logo
LogoDetailPage=myapplication-big.svg

whether the user's email address will be transmitted to the vendor
NotifyVendor=False

a short description of the application (max. 90 characters)
Description=Lorem ipsum dolor sit amet, consetetur sadipscing elitr, se.

a more complete description of the application (max. 1400 characters)
in order to use multiple lines, preceed lines with one or more
white spaces
LongDescription=Lorem ipsum dolor sit amet, consetetur sadipscing
 elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore
 magna aliquyam erat, sed diam voluptua. At vero eos et accusam et
 justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea
 takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor
 sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor

https://www.univention.com/feedback/?manual=app:iniFile

Application meta file

110

 invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.
 At vero eos et accusam et justo duo dolores et.

reference to screenshot files (.png or .jpg file) or youtube videos
 (optional)
Thumbnails=application_screenshot.jpg

applicable category
Categories=System services

website for more information about the product (e.g. landing page)
Website=http://www.software.com/products/application/welcome

website for getting support (or information about how to buy a
 license)
SupportURL=http://www.software.com/products/application/buy

display name of the vendor
Vendor=Software GmbH

contact email address for the customer
#Contact=

email address that should be used to send notifications.
If none is provided the address from "Contact" will be used
Note: An empty email (NotificationEmail=) is not valid! Remove the
 line (or
put in comments) in this case
#NotificationEmail=

optional: website of the vendor for more information
WebsiteVendor=http://www.software.com/

optional: display name of the maintainer
If the vendor does not maintain the application, this is the place,
where the maintainer can be named. This value is optional.
Maintainer=Maintain GmbH

optional: website of the maintainer for more information
WebsiteMaintainer=http://www.maintain.com

optional: If the Application provides its own web interface
it can be specified. The App Center then points to it if installed.
WebInterface=/application-webinterface

optional: A dedicated name for the web interface may be given.
If not, Name is taken
WebInterfaceName=Web interface of The Application

WebInterface will be added to UCS startsite.
Possible values: service, admin, False. If not given "service" is
 used.
Only useful when a WebInterface is defined
UCSOverviewCategory=admin

Application meta file

111

The minimal amount of memory in MB. This value is compared with the
currently available memory (without Swap) when trying to install the
application. A value of 0 disables the check
MinPhysicalRAM=1024

other applications which cannot be installed at the same time (comma
separated list) (optional)
ConflictedApps=fooapp,barapp

other applications which need to be installed first (comma separated
 list)
(optional)
RequiredApps=bazapp,quxapp

system packages which conflict with the application (comma separated
list) ... these are essential similar to those conflicts specified in
the debian packages themselves, however, in order to show conflicts
directly in the app center and without querying the debian package
information, these can be specified in the .ini file, as well
(optional)
ConflictedSystemPackages=mysql5,python2.5

application packages to be installed (comma separated list)
DefaultPackages=univention-application

optional: If the application adds its own UMC Module, it can be added
here. The App Center can then directly point to that module if it is
installed. Name as specified in the UMC XML File of that module.
UMCModuleName=univention-application-module

optional: A module may have a multiple Flavors. UDM uses this
functionality. If the application does not add a dedicated UMC Module
but extends UDM, the UMCModuleName should be "udm" and the flavor
should be specified:
#UMCModuleFlavor=users/user

optional: If domain users have to be somehow modified ("activated") to
use the application, the following line should be included so that the
App Center can give a hint and point to the Users module of UDM.
UserActivationRequired=True

allow installation on these server roles
ServerRole=domaincontroller_master,domaincontroller_backup,domaincontroller_slave,memberserver

allow installation on these architectures
possible values are (comma separated): amd64, i386
if not set, both architectures are supported
#SupportedArchitectures=amd64,i386

whether a "Shop" button is displayed in the App details, leading to
 the ShopURL
UseShop=True

Application meta file

112

URL that the user is directed to. Only makes sense in combination with
 UseShop=True.
Default is https://shop.univention.com
ShopURL=https://shop.maintain.com/application

When UCS is not managing the domain but instead is only part of a
 Windows
controlled Active Directory domain, the environment in which the app
 runs is
different and certain services that this app relies may not not be
 running.
Thus, there are issues and incompatibilities that should be stated:
* App should not be installed in an AD (results in not being shown in
 the App
Center in such environments):
#ADMemberIssueHide=True
* App needs a password service running on the Windows domain
 controller, e.g.
because it needs the samba hashes to authenticate users (results in
 a
warning and a link to the documentation how to set up that service
 in such
environments)
#ADMemberIssuePassword=True

German translations
[de]
Description=Lorem ipsum dolor sit amet, consetetur sadipscing elitr, se.
LongDescription=Lorem ipsum dolor sit amet, consetetur sadipscing
 elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore
 magna aliquyam erat, sed diam voluptua. At vero eos et accusam et
 justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea
 takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor
 sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor
 invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.
 At vero eos et accusam et justo duo dolores et.

Sizing information about a single server running the app that manages
 X users (computers...)
Optional
#[Sizing: 10]
#CPU=1
#RAM=1 GB
#Disk=20 GB
#
#[Sizing: 100]
#CPU=2
#RAM=2 GB
#Disk=30 GB
#
#[Sizing: 5000]
#CPU=8
#RAM=32 GB
#Disk=500 GB

Application meta file

113

This file needs to be shipped with the application and should be updated with each new version of the appli-
cation at least changing Version.

Besides the text file and the above mentioned statements, a product logo and a screenshot, if given, are needed:

• Product logo in SVG format, ratio: square. Required.

• "Big" product logo in SVG format (e.g. with claim, app name in logo, etc), ratio: no restrictions. Optional.

• Screenshot(s) of the application. Format can be JPG or (preferably) PNG. Optional.

A few variables of the ini file need further explanation:

ID
Needs to stay the same all the time. It is used to connect different versions.

Categories
Comma separated list of categories. In order to keep the overall list clean and simple an application should
use categories from this list:

• Administration

• Business

• Collaboration

• Education

• System services

• UCS components

• Virtualization

Version
Has to rise every time. Needs to be comparable, i.e. versions consisting only of a codename are not useful.
In the App Center, only the newest version (or the currently installed one) is shown. It is possible to install
one specific version but this needs knowledge of internal IDs (beyond control even for the application
vendor).

Logo
The file name of the logo of the App. It is used in the App Center overview when all Apps are shown in
a gallery. As the gallery items are squared, the logo should be squared, too.

LogoDetailPage
The file name of a "bigger" logo. It is shown in the detail page of the App Center. Useful when there is
a stretched version with the logo, the name, maybe a claim. If not given, the Logo is used on the detail
page, too.

LongDescription
A (more exhaustive) description that will be displayed when viewing the details of the application. This
description needs to be in HTML (this also means that characters like "&" need to be escaped to "&").
Other variables are escaped automatically if not stated otherwise (meaning that "&" may be used).

MinPhysicalRAM
The minimal amount of free memory in MB when trying to install the application. The application should
work fluently above that limit at least for smaller environments. If this requirement is not met, it only
shows a warning that can be overridden by the user.

Application meta file

114

RequiredApps
Application IDs for apps that need to be installed in order to run this one correctly. These applications
will not be installed automatically. Multiple IDs may be split by comma.

Note

Application IDs are the ID values in the ini file. To find the ID, use univention-app list.
The command is new in UCS 4.1.

RequiredAppsInDomain
Like RequiredApps, but the Apps may be installed anywhere in the domain, not necessarily on this very
server. Uses Application IDs, multiple IDs may be split by comma.

Note

Application IDs are the ID values in the ini file. To find the ID, use univention-app list.
The command is new in UCS 4.1.

ConflictedApps
Application IDs for apps that not may to be installed along with this App on the same server. Multiple
IDs may be split by comma.

Note

Application IDs are the ID values in the ini file. To find the ID, use univention-app list.
The command is new in UCS 4.1.

PortsExclusive
Comma separated list of ports that the App will use exclusively. For conventional Apps, this has no
immediate effects but will build an implicit list of ConflictedApps. For Docker Apps, this will set up the
bridge to the container accordingly and change the Firewall rules.

PortsRedirection
Same as PortsExclusive, but only for Docker Apps: The port in the Docker Container will be redirected
to a port on the Docker Host. Syntax: PortsRedirection=8080:80 will make the container's port
80 accessible on port 8080. Note that in this case it may be a better idea to use WebInterface.

ConflictedSystemPackages
Package names that may not be installed along with the application. It is highly recommended that this
list is reflected on dpkg level in some other package of the application. This list is just to show the user
conflicts before the application is to be installed. Conflicts on package level are resolved automatically
and the user has to confirm if some packages will be uninstalled.

DefaultPackages
A list of packages that will be installed. It is recommended to keep this list as small as possible and
install other packages as dependencies as this is less error prone. Preferably only one package like uni-
vention-appname is given here.

DefaultPackagesMaster (deprecated)

Warning

Old apps will have to be migrated eventually. Please see below for some easy replacements.
Otherwise get in touch with Univention if you feel that you need DefaultPackagesMaster func-
tionality.

Application meta file

115

Installing an application may require an extension of the LDAP schema. This can be done by providing a
separate package for this schema file and install it on the master domain controller (and all backup domain
controller servers). The App Center will install these packages automatically throughout the domain —
in opposite to the DefaultPackages which are only installed locally. Another difference is that these
packages will not be uninstalled even when the whole application is removed because a schema that was
used before it is removed again will break the whole LDAP server.

It is possible (and preferable) to register schema extensions via the Join Script (see Section 9.10.1). In
most cases this makes DefaultPackagesMaster unnecessary.

DefaultPackagesMaster is not allowed in Docker Apps.

Thumbnails
A comma separated list of screenshots and/or YouTube videos. Will be listed in the App's detail page of
the UMC module. For screenshots, filenames need to be specified (and they need to be sent along with
the ini file), for YouTube videos, a URL to that video has to be given. The URL needs to point directly
to the video on https://www.youtube.com/

NotifyVendor
See Section 9.7 for further explanation. Has to be set to True to be activated.

SupportURL
Points to a website where the user can get/buy support for the app. If not set, the user will instead be
encouraged to contact the app vendor (Contact). If set to None, the user will see something like "No
support option provided".

ShopURL
If set, a button appears in the App Center: "Buy". This button leads to the URL specified here. The
following parameters are sent to this URL via GET:

• key_id (Key ID of the License)

• ucs_version (major and minor version of UCS, e.g. 4.1)

• app_id (internal ID of the Application)

• app_version (current version of the Application)

• locale (locale used in the frontend, e.g. de)

WebInterface
If a web frontend is installed by the application, one may state this here. Should probably start with a "/".

UCSOverviewCategory
If there is a WebInterface the App Center automatically registers a link in the overview page of the UCS
server. By default these are added in the “service” section of the overview page. If UCSOverviewCategory
is set to admin the link will be generated there. Can be disabled completely if set to False. See also
Section 9.9.1.

ServerRole
Roles that may use this application, separate by comma. Pos-
sible roles are domaincontroller_master, domaincontroller_backup,
domaincontroller_slave, and memberserver. If not given, every role is allowed.

[Sizing: xx]
(Optional) Sections starting with Sizing are not evaluated by the App Center itself but give Cloud
Service Providers a hint how to tailor a server for a customer. The number inside the section name means
users (or something else depending on the app's functionality) working with the app (not simultaneously,
of course). The following variables can be defined inside this section:

https://www.youtube.com/

Optional application files

116

CPU: The number of cores, e.g., 2

RAM: The amount of memory and the unit, e.g., 2 GB

Disk: The amount of disk space and the unit, e.g., 20 GB

The numbers should be minimal, enabling a reasonable performance. The following sections are com-
mon: [Sizing: 10], [Sizing: 50], [Sizing: 100], [Sizing: 500], [Sizing: 1000],
[Sizing: 5000].

9.5. Optional application files
Along with the .ini file, there are more files that can be shipped along with the Application, each of them
optionally (at least in English if given):

LICENSE_AGREEMENT
A file the user has to accept before the installation starts. HTML is allowed in this file and it may be
localized by using the files LICENSE_AGREEMENT_EN resp. LICENSE_AGREEMENT_DE.

README_INSTALL
A file that is presented to the user before installation (but after LICENSE_AGREEMENT). HTML is
allowed. It may be localized by using the files README_INSTALL_EN resp. README_INSTALL_DE.

README_POST_INSTALL
A file that is presented to the user after installation. HTML is allowed. It may be localized by using the
files README_POST_INSTALL_EN resp. README_POST_INSTALL_DE.

README_UPDATE
A file that is presented to the user before upgrading, listing changes. Note that a user may only upgrade
to the newest version and does so in one step. Only the latest README_UPDATE is shown. It may be
localized by using the files README_UPDATE_EN resp. README_UPDATE_DE.

README_POST_UPDATE
A file that is presented to the user after upgrading. Note that a user may only upgrade to the newest version
and does so in one step. Only the latest README_POST_UPDATE is shown. HTML is allowed. It may
be localized by using the files README_POST_UPDATE_EN resp. README_POST_UPDATE_DE.

README
A README file that the user may see in a dedicated Univention Management Console module for the
installed application. Should contain something like first steps with the installed application and explain
what can be done with it and how. HTML is allowed. It may be localized by using the files README_EN
resp README_DE.

README_UNINSTALL
A file that is presented to the user before uninstallation. HTML is allowed. It may be localized by using
the files README_UNINSTALL_EN resp. README_UNINSTALL_DE.

README_POST_UNINSTALL
A file that is presented to the user after uninstallation. HTML is allowed. It may be localized by using the
files README_POST_UNINSTALL_EN resp. README_POST_UNINSTALL_DE.

9.6. Uploading the application
If the meta data (text file, logo and screenshot) and the packages are ready for upload, they can be put into a
file archive (.zip or (preferably) .tar.gz) and uploaded to http://upload.univention.de/. If the archive is
larger than 150 MB it has to be split into single parts not larger than 150 MB.

https://www.univention.com/feedback/?manual=app:optionalFiles
https://www.univention.com/feedback/?manual=app:upload
http://upload.univention.de/

Notifications

117

A unique upload ID will be displayed after the download that has to be forwarded to Univention. Please send
the following information via e-mail to <appcenter@univention.de>:

• Upload ID for the file archive. Please provide all upload IDs if the archive had to be split.

• Grant permission to Univention to distribute the software through Univention App Center.

All further communication will be done through the ticket system after the upload.

9.7. Notifications
Univention always receives an estranged notification for statistical purposes upon installation and uninstalla-
tion of an application in Univention App Center that is only saved at Univention for data processing and will
not be forwarded to any third party.

Depending on the guideline of the respective application vendor an updated UCS license key with so-called
key identification (Key ID) is required for the installation of an application. In this case, the Key ID will
be sent to Univention together with the notification. As a result the application vendor regularly receives a
message from Univention with the following information:

• Name of the installed application

• Registered email address

The description of every application includes a respective indication for such cases and is shown before in-
stallation.

If a UCS environment does not have such a key at its disposal (e.g. UCS Core Edition) and the vendor requires
a Key ID, the user will be asked to request an updated license key directly from Univention. Afterwards the
new key can be applied and the application installed.

9.8. Updates for the application
If an update for an application is available, the software vendor has to provide the recent packages to Univen-
tion. The updated packages go in general through the same procedure as with the initial process described
in Section 9.3.

This holds for minor updates (i.e. just small bug fixes) as well as major updates (added functionality, over-
hauled interface, etc.). The vendor is responsible for a smooth transition from one version to another.

Important

The App Center always installs the newest version, i.e. we do not incrementally upgrade an applica-
tion. So each newer version needs to make sure that the update from any older version works.

For the App Center, there is no difference between a minor and a major update. The old version is completely
replaced by the newer one. We do not natively support two (more or less independent) "versions lines" of
the same application (e.g. one for those who want the newest features and one for those who wish to have a
stable platform with nothing but conservative bug fixes). If this is desired, two separate applications need to
be uploaded to the App Center that will show up next to each other. In this case the ID in the ini file needs
to be changed and the application somehow needs to make sure that they cannot both be installed in parallel
(e.g. a version dependency on dpkg level of some meta package). Univention may help you with the details.

Updates for the application description (.ini file), the product logo, the screenshot, readme files (especially
README_UPDATE) and the packages are all submitted to <appcenter@univention.de>. Only those

mailto:appcenter@univention.de
https://www.univention.com/feedback/?manual=app:notification
https://www.univention.com/feedback/?manual=app:update
mailto:appcenter@univention.de

Integrating the Application in UCS

118

files that changed need to be uploaded again, everything else can be copied by Univention. The ini file needs
to change every time, because the Version has to be increased. If this is the only change in the ini file, this
may be stated in the email instead of shipping the file and we will take care of that during copying. Please use
the upload if a higher amount of data has to be transferred (see Section 9.6).

As the application has already gone through the initial approval process and passed, Univention will offer
to "semi-automatically" publish the application. I.e. we will run our test suite while giving you the chance
to test your application. If our tests go well and we do not hear anything contrary from you, we will publish
the application by then.

9.9. Integrating the Application in UCS

9.9.1. Automatic integration done by the App Center

Some tasks can be done automatically by the App Center and do not need any (or much) help from the vendor.

The overview of any UCS system (i.e. plain https://IP/) can link to various web frontends, e.g. the Univention
Management Console. If the application provides a WebInterface in the ini file, a link is built automatically,
with the ini's Name and Description as text.

This feature can be disabled by stating UCSOverviewCategory=False. This may be a good idea if there
are multiple web frontends and they should be maintained manually and in one place. In this case the following
UCR variables should be set in postinst and removed in postrm (see also Section 8.1):

ucs/web/overview/entries/service/appid/icon
Path to the icon for the link.

ucs/web/overview/entries/service/appid/label
English version of the headline. German version is ucs/web/overview/entries/service/ap-
pid/label/de

ucs/web/overview/entries/service/appid/description
English version of the short text below the headline. German version is ucs/web/overview/en-
tries/service/appid/description/de

ucs/web/overview/entries/service/appid/link
Link to the web interface. Probably something like /appid.

Each application registers itself in the LDAP directory and sets the hosts on which it is in-
stalled automatically. These information can be accessed by any machine connection. The path is
univentionAppID=appid_appversion,cn=appid,cn=apps,cn=univention,ldap_base.
See also Chapter 6 if this data shall be accessed.

9.9.2. Scope of the vendor

Reuse users, groups, computers already administered in domain.

An Application may need more attributes than there are present. For example something like This user is
allowed to use the app. For this it needs to add Extended Attributes (see Section 6.2) in a Join Script (see
Chapter 3) in a package from DefaultPackages. It will also have to extend the LDAP schema. This can also
be done in the Join Script (see Section 9.10.1) or, alternatively, in a package of DefaultPackagesMaster.

If the application wants to sync certain attributes (for example passwords) there are listener modules. See
Chapter 5.

https://www.univention.com/feedback/?manual=app:integration
https://www.univention.com/feedback/?manual=app:integration-by-app-center
https://www.univention.com/feedback/?manual=app:integration-by-vendor

Best practices

119

9.10. Best practices

9.10.1. Registration of LDAP and UDM Extensions

LDAP schema and ACL extensions as well as UDM syntax, UDM hook and UDM extension modules can be
installed via the library function ucs_registerLDAPExtension, see Section 3.4.3.2.

https://www.univention.com/feedback/?manual=app:bestpractices
https://www.univention.com/feedback/?manual=app:ucs_registerLDAPExtension

120

Integration of repository components via Univention Management
Console

121

Chapter 10. Integration of external
repositories

10.1. Integration of repository components via Univention Management Console 121
10.2. Integration of repository components via Univention Configuration Registry 122

Sometimes it might be necessary to add external repositories, e.g. when testing an application which is devel-
oped for the UCS@school. Such components can be registered via Univention Management Console or in
Univention Configuration Registry.

Components can be versioned. This ensures that only components are installed that are compatible with a
UCS version.

empty or unset
All versions of the same major number will be used. If for example UCS-4.2 is installed, all repositories
of the component with version numbers 4.0, 4.1 and 4.2 will be used if available.

current
current Using the keyword current will likewise include all versions of the same major version. Addi-
tionally it will block all minor and major upgrades of the installed UCS system until the respective com-
ponent is also available for the new release. Patch level and errata updates are not affected. If for example
UCS-3.1 is currently installed and UCS-3.2 or UCS-4.0 is already available, the release updated will be
postponed until the component is also available for version 3.2 and 4.0 respectively.

major.minor
By specifying an explicit version number only the specified version of the component will be used. Re-
lease updates of the system will not be hindered by such components. Multiple versions can be given
using commas as delimiters, for example 3.2,4.0.

10.1. Integration of repository components via Univen-
tion Management Console

A list of the integrated repository components is in the UMC module Repository Settings. Applications
which have been added via the Univention App Center are still listed here, but should be managed via the
App Center module.

A further component can be set up with Add. The Component name identifies the component on the repos-
itory server. A free text can be entered under Description, for example, for describing the functions of the
component in more detail.

The host name of the download server is to be entered in the input field Repository server, and, if necessary,
an additional file path in Repository prefix.

A Username and Password can be configured for repository servers which require authentication.

A software component is only available once Enable this component has been activated.

A differentiation is also made for components between maintained and unmaintained components.

https://www.univention.com/feedback/?manual=computers:Integration_of_repository_components_via_the_Univention_Management_Console

Integration of repository components via Univention Configura-
tion Registry

122

10.2. Integration of repository components via Univen-
tion Configuration Registry

The following Univention Configuration Registry variables can be used to register a repository component.
It is also possible to activate further functions here which cannot be configured via the UMC module. NAME
stands for the component's name:

repository/online/component/NAME/server
The repository server on which the components are available. If this variable is not set, the server from
the Univention Configuration Registry variable repository/online/server uses.

repository/online/component/NAME
This variable must be set to enabled if the components are to be mounted.

repository/online/component/NAME/localmirror
This variable can be used to configure whether the component is mirrored locally. In combination with the
Univention Configuration Registry variable repository/online/component/NAME/server,
a configuration can be set up so that the component is mirrored, but not activated, or that it is activated,
but not mirrored.

repository/online/component/NAME/description
A descriptive name for the repository.

repository/online/component/NAME/prefix
Defines the URL prefix which is used on the repository server. This variable is usually not set.

repository/online/component/NAME/username
If the repository server requires authentication, the user name can be entered in this variable.

repository/online/component/NAME/password
If the repository server requires authentication, the password can be entered in this variable.

repository/online/component/NAME/version
This variable controls the versions to include, see Chapter 10 for details.

repository/online/component/NAME/defaultpackages
A list of package names separated by blanks. The UMC module Repository Settings offers the installation
of this component if at least one of the packages is not installed. Specifying the package list eases the
subsequent installation of components.

https://www.univention.com/feedback/?manual=computers::softwaremanagement::repoadducr

Univention Management Console translations

123

Chapter 11. Translating UCS
11.1. Univention Management Console translations .. 123

11.1.1. Install needed tools .. 123
11.1.2. Obtain a current checkout of the UCS Subversion repository 123
11.1.3. Create a new translation package .. 123
11.1.4. Edit translation files ... 123
11.1.5. Update the translation package ... 124
11.1.6. Build the translation package ... 124

11.1. Univention Management Console translations
By default UCS includes English and German localizations. Univention provides a set of tools that facilitates
the process of creating translations for Univention Management Console.

This section describes all steps necessary to create a working translation package for UCS. We recommend
having a running UCS installation where the tools can be set up in an easy manner. Further more a current
Subversion checkout of the UCS source code is required.

11.1.1. Install needed tools

The package univention-ucs-translation-template contains all tools required to setup and update a translation
package. It requires some additional Debian tools to build the package. Run the following command on your
UCS to install all needed packages.

univention-install univention-ucs-translation-template dpkg-dev
 subversion

11.1.2. Obtain a current checkout of the UCS Subversion repository

The Subversion repository is later processed to get initial files for a new translation(often referred to as PO
file or Portable Objects).

mkdir ~/translation
cd ~/translation
svn co http://forge.univention.org/svn/dev/branches/ucs-4.1/ucs-4.1-3

11.1.3. Create a new translation package

To create a new translation package for, e.g., French in the current working directory, the following command
must be executed:

cd ~/translation
univention-ucs-translation-build-package \
 -s ~/translation/ucs-4.1-3 -c fr -l fr_FR.UTF-8:UTF-8 -n French

This creates a new directory ~/translation/univention-ucs-translation-fr/ which con-
tains a Debian source package of the same name. It includes all source and target files for the translation.

11.1.4. Edit translation files

The translation source files(.po files) are located below the directory ~/translation/univen-
tion-ucs-translation-fr/fr. Each file should be edited to create the translation.

https://www.univention.com/feedback/?manual=misc:translation
https://www.univention.com/feedback/?manual=misc:translation:preparation
https://www.univention.com/feedback/?manual=misc:translation:checkoutsvn
https://www.univention.com/feedback/?manual=misc:translation:createpackage
https://www.univention.com/feedback/?manual=misc:translation:translate

Update the translation package

124

These files are generated by the package gettext. The manual can be found at http://www.gnu.org/software/get-
text/manual/gettext.html. Translation files created by gettext consist of a header and various entries of the form

#: umc/app.js:637
#, python-format
msgid "The %s will expire in %d days and should be renewed!"
msgstr ""

The first line provides a hint, were the text is used. The second line is optional and contains flags, which
indicate the type and state of the translation. The string fuzzy indicates an entry, which was copied by gettext
from a previous version and needs to be updated.

The line starting with msgid contains the original text. The translation has to be placed on the line containing
msgstr. Long texts can be split over multiple lines, were each line must start and end with a double-quote.
The following example from the German translation shows a text spanning two lines, with the placeholder
present in the original and translated text.

#: umc/js/appcenter/AppCenterPage.js:1067
#, python-format
msgid ""
"If everything else went correct and this is just a temporary network "
"problem, you should execute %s as root on that backup system."
msgstr ""
"Wenn keine weiteren Fehler auftraten und dies nur ein temporäres "
"Netzwerkproblem ist, sollten Sie %s als root auf dem Backup System
 ausführen."

Some lines contain parameters, in this example %s and %d. They are indicated by a flag like c-format or
python-format, which must not be removed. The placeholders have to be carried over to the translated
string unmodified and in the same order. Some other files contain placeholders of the form %{text}s, which
are more flexible and can be reordered.

After a file has been translated completely, the line containing fuzzy at the beginning of the entry should
be removed to avoid warnings. If a translation string consists of multiple lines the translated string should
roughly contain as many lines as the original string.

11.1.5. Update the translation package

First update your Subversion checkout:

cd ~/translation/ucs-4.1-3
svn update

If changes affecting translations are made in the Subversion repository, existing translation packages need to
be updated to reflect those changes. Given a path to an updated Subversion checkout, univention-ucs-
translation-merge can update a previously created translation source package. The following example
will update the translation package univention-ucs-translation-fr/:

univention-ucs-translation-merge ~/translation/ucs-4.1-3 \
 ~/translation/univention-ucs-translation-fr

11.1.6. Build the translation package

Before using the new translation, the Debian package has to be built and installed. This can be done with the
following commands:

http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
https://www.univention.com/feedback/?manual=misc:translation:updatepackage
https://www.univention.com/feedback/?manual=misc:translation:buildpackage

Build the translation package

125

cd ~/translation/univention-ucs-translation-fr
dpkg-buildpackage -uc -us -b
dpkg -i ../univention-ucs-translation-fr_*.deb

After logging out of the Univention Management Console the new language should now be selectable in
the Univention Management Console login window. Untranslated strings will be still shown in their original
language, i.e. in English.

126

Separate repositories

127

Chapter 12. Univention Updater
12.1. Separate repositories ... 127
12.2. Updater scripts .. 127

12.2.1. Digital signature .. 128
12.3. Release update walkthrough ... 128

The Univention Updater is used for updating the software. It is based on the Debian APT tools. On top of that
the updater provides some UCS specific additions.

12.1. Separate repositories
UCS releases are provided either via DVD images or via online repositories. For each major, minor and patch-
level release there is a separate online repository. They are automatically added to the files in /etc/apt/
sources.list.d/ depending on the Univention Configuration Registry variables version/version
and version/patchlevel, which are managed by the updater.

Separate repositories are used to prevent automatic updates of software packages. This is done to encouraged
users to thoroughly test a new release before their systems are updated. The only exception from this rule are
the errata updates, which are put into a single repository, which is updated incrementally.

Therefore the updater will include the repositories of a new release in a file called /etc/apt/
sources.list.d/00_ucs_temporary_errata__components_update.list and then do the
updates. Only at the end of a successful update are the Univention Configuration Registry variables updated.

Additional components can be added as separate repositories using Univention Configuration Registry vari-
ables repository/online/component/…, which are described in ???? manual. Setting the variable
…/version=current can be used to mark a component as required, which blocks an upgrade until the
component is available for the new release.

12.2. Updater scripts
In addition to the regular Debian Maintainer Scripts (see Section B.3.5) the UCS updater supports additional
scripts, which are called before and after each release update. Each UCS release and each component can
include its own set of scripts.

preup.sh
These scripts is called before the update is started. If any of the scripts aborts with an exit value unequal
zero, the update is canceled and never started. The scripts receives the version number of the next release
as an command line argument.

For components their preup.sh scripts is called twice: Once before the main release preup.sh script
is called and once more after the main script was called. This is indicated by the additional command line
argument pre respectively post, which is inserted before the version string.

postup.sh
These scripts is called after the update successfully completed. If any of the scripts aborts with an exit
value unequal zero, the update is canceled and does not finish successfully. The scripts receives the same
arguments as described above.

The scripts are located in the all/ component of each release and component. For UCS-4.1 this would be
4.1/maintained/4.1-0/all/preup.sh and 4.1/maintained/components/some-com-
ponent/all/preup.sh for the preup.sh script. The same applies to the postup.sh script. The full
process is shown in Procedure 12.1.

https://www.univention.com/feedback/?manual=updater:repositories
https://www.univention.com/feedback/?manual=updater:scripts

Digital signature

128

12.2.1. Digital signature

From UCS 3.2 on the scripts must be digitally signed by an PGP (Pretty Good Privacy) key stored in the key-
ring of apt-key(8). The detached signature must be placed in a separate file next to each updater scripts with
the additional file name extension .gpg, that is preup.sh.gpg and postup.sh.gpg. These extra files
are downloaded as well and any error in doing so and in the validation process aborts the updater immediately.

The signatures must be updated after each change to the underlying scripts. This can be automated or be done
manually with a command like the following: gpg -a -u key-id --passphrase-file key-
phrase-file -o script.sh.gpg -b script.sh

Signatures can be checked manually using the following command: gpgv --keyring /etc/apt/
trusted.gpg script.sh.gpg script.sh

12.3. Release update walkthrough
For an release update the following steps are performed. It assumes a single component is enabled. If multiple
components are enabled, the order in which their scripts are called is unspecified. It shows which scripts are
called in which order with which arguments.

Procedure 12.1. Update process steps

1. Create temporary source list file 00_ucs_temporary_errata__components_update.list

2. Download the preup.sh and postup.sh files for the next release and all components into a tempo-
rary directory and validate their PGP signatures

3. Execute component-preup.sh pre $version

4. Execute release-preup.sh $version

5. Execute component-preup.sh post $version

6. Download the new Packages and Release files. Their PGP signatures validated by APT internally.

7. Preform the update

8. Execute component-postup.sh pre $version

9. Execute release-postup.sh $version

10. Execute component-postup.sh post $version

11. Set the release related Univention Configuration Registry variables to the new version

https://www.univention.com/feedback/?manual=updater:scripts:signature
https://www.univention.com/feedback/?manual=updater:release-update

Register new service provider via udm

129

Chapter 13. Single Sign-On: Integrating
a service provider into UCS

13.1. Register new service provider via udm ... 129
13.2. Get information required by the service provider ... 129
13.3. Add direct login link to ucs-overview page ... 130

UCS provides Single Sign-On functionality with a SAML 2.0 compatible identity provider based on sim-
plesamlphp. The identity provider is by default installed on the DC Master and all DC Backup servers.
A DNS Record for all systems providing Single Sign-On services is registered for failover, usually ucs-
sso.domainname. Clients are required to be able to resolve the Single Sign-On DNS name.

13.1. Register new service provider via udm
New service providers can be registered by using the UDM module saml/serviceprovider. To create
a new service provider entry in a joinscript, see the following example:

eval "$(ucr shell)"
udm saml/serviceprovider create "$@" \
 --ignore_exists \
 --position "cn=saml-serviceprovider,cn=univention,$ldap_base" \
 --set isActivated=TRUE \
 --set Identifier="MyServiceProviderIdentifier" \
 --set NameIDFormat="urn:oasis:names:tc:SAML:1.1:nameid-
format:unspecified" \
 --set simplesamlAttributes="false" \
 --set AssertionConsumerService="https://$hostname.$domainname/sso-
login-page" \
 --set simplesamlNameIDAttribute="uid" \
 --set privacypolicyURL="https://example.com/policy.html" \
 --set serviceProviderOrganizationName="My Service Name" \
 --set serviceproviderdescription="A long description shown to the user
 on the Single Sign-On page." || die

13.2. Get information required by the service provider
The service provider usually requires at least a public certificate or XML metadata about the identity provider.
The certificate can e.g. be downloaded with the following call:

eval "$(ucr shell)"
wget --ca-certificate /etc/univention/ssl/ucsCA/CAcert.pem \
https://"${ucs_server_sso_fqdn:-ucs-sso.$domainname}"/simplesamlphp/
saml2/idp/certificate \
 -O /etc/idp.cert

The XML metadata is available e.g. from

eval $(ucr shell)
wget --ca-certificate /etc/univention/ssl/ucsCA/CAcert.pem \
https://"${ucs_server_sso_fqdn:-ucs-sso.$domainname}"/simplesamlphp/
saml2/idp/metadata.php \
 -O /etc/idp.metadata

https://www.univention.com/feedback/?manual=sso:register
https://www.univention.com/feedback/?manual=sso:idpinfo

Add direct login link to ucs-overview page

130

The Single Sign-On Login page to be configured in the service provider is https://ucs-
sso.domainname/simplesamlphp/saml2/idp/SSOService.php

13.3. Add direct login link to ucs-overview page
To provide users with a convenient link to an identity provider initiated login, the following ucr command
may be used

fqdn="ucs-sso.domainname"
myspi="MyServiceProviderIdentifier"
ucr set ucs/web/overview/entries/service/SP/description="External
 Service Login" \
ucs/web/overview/entries/service/SP/label="External Service SSO" \
ucs/web/overview/entries/service/SP/link="https://$fqdn/simplesamlphp/
saml2/idp/SSOService.php?spentityid=$myspi" \
ucs/web/overview/entries/service/SP/description/de="Externer Dienst
 Login" \
ucs/web/overview/entries/service/SP/label/de="Externer Dienst SSO" \
ucs/web/overview/entries/service/SP/priority=50

Where MyServiceProviderIdentifier is the identifier used when creating the UDM service provider object.

https://www.univention.com/feedback/?manual=sso:addlink

Databases

131

Chapter 14. Miscellaneous
14.1. Databases ... 131

14.1.1. PostgreSQL .. 131
14.1.2. MySQL ... 131

14.2. UCS lint ... 131
14.3. Function Libraries .. 133

14.3.1. shell-univention-lib .. 133
14.3.2. python-univention-lib ... 133

14.4. Login Access Control ... 134
14.5. Network Packet Filter ... 135

14.5.1. Filter rules by Univention Configuration Registry .. 135
14.5.2. Local filter rules via iptables commands ... 136
14.5.3. Testing Univention Firewall settings ... 136

14.1. Databases
UCS ships with two major database management systems, which are used for UCS internal purposes, but can
also be used for custom additions.

14.1.1. PostgreSQL

UCS uses PostgreSQL by default for its package tracking database, which collects the state and versions of
packages installed on all systems of the domain.

14.1.2. MySQL

By default the MySQL root password is set to ___. Debian provides the dbconfig package, which can be used
to create and modify additional databases from maintainer scripts.

14.2. UCS lint
Use ucslint to find packaging mistakes. Called best from debian/rules, needs build dependency on
ucslint.

override_dh_auto_test:
 dh_auto_test
 ucslint

For each issue, ucslint prints one line, which line contains several fields separated by ::

severity:module-id-test-id[:filename[:line-number[:column-
number]]]: message

For some issues extra context data is printed on the following lines, which are indented with space characters.
All other lines start with a letter specifying the severity:

E
Error: Missing data, conflicting information, real bugs.

W
Warning: Possible bug, but might be okay in some situations.

https://www.univention.com/feedback/?manual=misc:database
https://www.univention.com/feedback/?manual=misc:postgresql
https://www.univention.com/feedback/?manual=misc:mysql
https://www.univention.com/feedback/?manual=misc:ucslint

UCS lint

132

I
Informational: found some issue, which needs further investigation.

S
Style: There might be some better less error prone way.

The severities are ordered by importance. By default ucslint only aborts on errors, but this can be over-
written using the --exitcode-categories argument followed by a subset of the characters EWIS.

After the severity an identifier follows, which uniquely identifies the module and the test. The module is given
as four digits, which is followed by a dash and the number of the test in that module. Currently the following
modules exist:

0001-CheckJoinScript
Checks join file issues

0002-CopyPasteErrors
Checks for copy&paste error from example files

0004-CheckUCR
Checks UCR info files

0006-CheckPostinst
Checks Debian maintainer scripts

0007-Changelog
Checks debian/changelog file for conformance with Univention rules

0008-Translations
Checks translation files for completeness and errors

0009-Python
Checks Python files for common errors

0010-Copyright
Checks for Univention copyright

0011-Control
Checks debian/control file for errors

0013-bashism
Checks files using /bin/sh for BASH constructs

0014-Depends
Checks files for missing runtime dependencies on UCS packages

0015-FuzzyNames
Checks for mis-spellings of Univention

0016-Deprecated
Checks files for usage of deprecated functions

0017-Shell
Checks shell scripts for quoting errors

The module and test number may be optionally followed by a file name, line number in that file, and column
number in that line, where the issue was found. After that a message is printed, which describes the issue
in more detail.

Function Libraries

133

Since ucslint is very Univention centric, many of its tests return false positives for software packages by
other parties. Therefore many tests need to be disables. For that a file debian/ucslint.overrides can
be created with list of modules and test, which should be ignored. Without specifying the optional filename,
line number and column number, the test is globally disabled for all files.

14.3. Function Libraries
The source package univention-lib provides two binary packages shell-univention-lib and python-univen-
tion-lib, which contain common library functions usable in shell or Python programs.

14.3.1. shell-univention-lib

This package provides several libraries in /usr/share/univention-lib/, which can be used in shell
scripts.

/usr/share/univention-lib/admember.sh
This file contains some helpers to test for and to manage hosts in AD member mode.

/usr/share/univention-lib/base.sh
This file contains some helpers to create log files, handle unjoin scripts (see Section 3.5) or query the
network configuration.

/usr/share/univention-lib/ldap.sh
This file contains some helpers to query data from LDAP, register and unregister service entries, LDAP
schema and LDAP ACL extensions.

/usr/share/univention-lib/samba.sh
This file contains a helper to check is Samba4 is used.

/usr/share/univention-lib/ucr.sh
This file contains some helpers to handle bool'ean Univention Configuration Registry variables and han-
dle UCR files on package removal.

/usr/share/univention-lib/umc.sh
This file contains some helpers to handle UMC (see Chapter 7) related tasks.

/usr/share/univention-lib/all.sh
This is a convenient library, which just includes all libraries mentioned above.

14.3.2. python-univention-lib

This package provides several Python libraries located in the module univention.lib.

univention.lib.admember
This module contains functions to test for and to manage hosts in AD member mode.

univention.lib.atjobs

This module contains functions to handle at-jobs.

univention.lib.error
This module provides the function formatTraceback, which returns the full stack trace for an ex-
ception.

univention.lib.fstab
This module provides some functions for handling the file /etc/fstab.

https://www.univention.com/feedback/?manual=misc:lib
https://www.univention.com/feedback/?manual=misc:lib:sh
https://www.univention.com/feedback/?manual=misc:lib:python

Login Access Control

134

/usr/share/pyshared/univention/lib/getMailFromMailOrUid.py { uid |
email }

This program returns the distinguished name of the user, which either matches the user identifier or email
address given to the command as an argument.

univention.lib.i18n
This module provides some classes to handle texts and their translations.

univention.lib.ldap_extension
This module provides some helper functions internally used to register LDAP extension as described in
Section 9.10.1.

univention.lib.listenerSharePath
This module provides some helper functions internally used by the Directory Listener module handling
file shares.

univention.lib.locking
This module provides some functions to implement mutual exclusion using file objects as locking objects.

univention.lib.misc
This module provides miscellaneous functions to query the set of configured LDAP servers, localized
domain user names, and other functions.

univention.lib.package_manager
This module provides some wrappers for dpkg and APT, which add functions for progress reporting.

univention.lib.s4
This module provides some well known SIDs and RIDs.

univention.lib.shell
This module provides two functions for escaping shell command line arguments and creating at jobs.

univention.lib.ucrLogrotate
This module provides some helper functions internally used for parsing the Univention Configuration
Registry variables related to logrotate(8).

univention.lib.ucs
This module provides the class UCS_Version to more easily handle UCS version strings.

univention.lib.umc_connection
This module provides the class UMCConnection to handle connections to remote UMC servers.

univention.lib.umc_module
This module provides some functions for handling icons.

univention.lib.urllib2_ssl
This module provides a pack-port of urllib2 from Python-3.3, which implements proper certificate check-
ing.

14.4. Login Access Control
Access control to services can be configured for individual services by setting certain Univention Config-
uration Registry variables. Setting auth/SERVICE/restrict to true enables access control for that
service. This will include the file /etc/security/access-SERVICE.conf, which contains the list
of allowed users and groups permitted to login to the service. Users and groups can be added to that file by
setting auth/SERVICE/user/USER and auth/SERVICE/group/GROUP to true respectively.

https://www.univention.com/feedback/?manual=misc:acl

Network Packet Filter

135

14.5. Network Packet Filter
Firewall rules are setup by univention-firewall and can be configured through Univention Configuration Reg-
istry or by providing additional UCR templates.

14.5.1. Filter rules by Univention Configuration Registry

Besides predefined service definitions, Univention Firewall also allows the implementation of pack-
age filter rules via Univention Configuration Registry. These rules are included in /etc/securi-
ty/packetfilter.d/ via a Univention Configuration Registry module.

Filter rules can be provided via packages or can be configured locally by the administrator. Local rules have
a higher priority and overwrite rules provided by packages.

All Univention Configuration Registry settings for filter rules are entered in the following format:

Local filter rule
security/packetfilter/protocol/port(s)/address=policy

Package filter rule
security/packetfilter/package/package/protocol/port(s)/address=policy

The following values need to be filled in:

package (only for packaged rules)
The name of the package providing the rule.

protocol
Can be either tcp for server services using the Transmission Control Protocol or udp for services using
the stateless User Datagram Protocol.

port,
min-port:max-port

Ports can be defined either as a single number between 1 and 65535 or as a range separated by a colon:
min-port:max-port

address
This can be either ipv4 for all IPv4 addresses, ipv6 for all IPv6 addresses, all for both IPv4 and IPv6
addresses, or any explicitly specified IPv4 or IPv6 address.

policy
If a rule is registered as DROP, then packets to this port will be silently discarded; REJECT can be used
to send back an ICMP message port unreachable instead. Using ACCEPT explicitly allows such
packets. (IPtables rules are executed until one rule applies; thus, if a package is accepted by a rule which
is discarded by a later rule, then the rule for discarding the package does not become valid).

Filter rules can optionally be described by setting additional Univention Configuration Registry variables. For
each rule and language, an additional variable suffixed by “/language” can be used to add a descriptive text.

Some examples:

Example 14.1. Local firewall rule

security/packetfilter/tcp/2000/all=DROP
security/packetfilter/tcp/2000/all/en=Drop all packets to TCP port 2000
security/packetfilter/udp/500:600/all=ACCEPT
security/packetfilter/udp/500:600/all/en=Accept UDP port 500 to 600

https://www.univention.com/feedback/?manual=misc:nacl
https://www.univention.com/feedback/?manual=misc:nacl:ucr

Local filter rules via iptables commands

136

All package rules can be globally disabled by setting the Univention Configuration Registry variable secu-
rity/packetfilter/use_packages to false..

14.5.2. Local filter rules via iptables commands

Besides the existing possibilities for settings via Univention Configuration Registry, there is also the possibili-
ty of integrating user-defined enhanced configurations in /etc/security/packetfilter.d/, e.g. for
realizing a firewall or Network Address Translation. The enhancements should be realized in the form of shell
scripts which execute the corresponding iptables for IPv4 and ip6table for IPv6 calls. For packages
this is best done through using a Univention Configuration Registry template as described in Section 2.2.1.1.

Full documentation for IPTables can be found at http://www.netfilter.org/.

14.5.3. Testing Univention Firewall settings

Package filter settings should always be thoroughly tested. The network scanner nmap, which is integrated
in Univention Corporate Server as a standard feature, can be used for testing the status of individual ports.

Since Nmap requires elevated privileges in the network stack, it should be started as root user. A TCP port
can be tested with the following command: nmap HOSTNAME -p PORT(s)

A UDP port can be tested with the following command: nmap HOSTNAME -sU -p PORT(s)

Example 14.2. Using nmap for firewall port testing

nmap 192.168.1.100 -p 400
nmap 192.168.1.110 -sU -p 400-500

https://www.univention.com/feedback/?manual=misc:nacl:ipt
http://www.netfilter.org/
https://www.univention.com/feedback/?manual=misc:nacl:test

Appendix A. Bug reporting
UCS is neither error free nor feature complete. Issues are tracked using Bugzilla at https://
forge.univention.org/bugzilla/.

Create an account.

Search for existing entries before opening new reports.

Include the version info: ucr search --brief ^version/.

Provide enough information to help us reproduce the bug.

Search http://sdb.univention.de/

Search http://wiki.univention.de/

Search http://forum.univention.de/ and ask for help. In addition to our support team many of our partners
are also present there. Your questions might also help other users while you may profit from issues already
solved for other users.

https://forge.univention.org/bugzilla/
https://forge.univention.org/bugzilla/
http://sdb.univention.de/
http://wiki.univention.de/
http://forum.univention.de/

Appendix B. Debian packaging
This chapter describes how software for Univention Corporate Server is packaged in the Debian format. It
allows proper dependency handling and guarantees proper tracking of file ownership. Customers can package
their own internal software or use the package mechanism to distribute configuration files consistently to
different machines.

Software is packaged as a source package, from which one or more binary packages can be created. This is
useful to create different packages from the same source package. For example the Samba source package
creates multiple binary packages: one containing the file server, one containing the client commands to access
the server, and several other packages containing documentation, libraries, and common files shared between
those packages, The directory should be named package_name-version.

B.1. Prerequisites and preparation
Some packages are required for creating and building packages.

build-essential
This meta package depends on several other packages like compilers and tools to extract and build source
packages. Packages must not declare an explicit dependency on this and its dependent packages.

devscripts
This package contains additional scripts to modify source package files like for example de-
bian/changelog.

dh-make
This program helps to create an initial debian/ directory, which can be used as a starting point for
packaging new software.

These packages must be installed on the development system. If not, missing packages can be installed on the
command line using univention-install or through UMC, which is described in the [ucs-handbuch].

B.2. dh_make
dh_make is a tool, which helps creating the initial debian/ directory. It is interactive by default and asks
several questions about the package to be created.

Type of package: single binary, indep binary, multiple binary, library,
 kernel module, kernel patch?
[s/i/m/l/k/n]

s, single binary
A single architecture specific binary package is created from the source package. This is for software
which needs to be compiled individually for different CPU architectures like i386 and amd64.

i, indep binary
A single architecture-independent binary package is created from the source package. This is for software
which runs unmodified on all CPU architectures.

m, multiple binary
Multiple binary package are created from the source package, which can be both architecture independent
and dependent.

l, library
Two or more binary packages are created for a compiled library package. The runtime package consists
of the shared object file, which is required for running programs using that library. The development

https://www.univention.com/feedback/?manual=deb:prerequisites
https://www.univention.com/feedback/?manual=deb:dhmake

Debian control files

package contains the header files and other files, which are only needed when compiling and linking
programs on a development system.

k, kernel module
A single kernel-dependent binary package is created from the source package. Kernel modules need to
be compiled for each kernel flavor. dkms should probably be used instead. This type of packages is not
described in this manual.

n, kernel patch
A single kernel-independent package is created from the source package, which contains a patch to be
applied against an unpacked Linux kernel source tree. dkms should probably be used instead. This type
of packages is not described in this manual.

In Debian a package normally consists of an upstream software archive, which is provided by a third party like
the Samba team. This collection is extended by a Debian specific second TAR archive or a patch file, which
adds the debian/ directory and might also modify upstream files for better integration into a Debian system.

When a source package is built, dpkg-source(1) separates the files belonging to the packaging process from
files belonging to the upstream package. For this to work, dpkg-source needs the original source either
provided as a TAR archive or a separate directory containing the unpacked source. If neither of these is found
and --native is not given, dh_make prints the following warning:

Could not find my-package_1.0.orig.tar.gz
Either specify an alternate file to use with -f,
or add --createorig to create one.

The warning from dh_make states that no pristine upstream archive was found, which prohibits the cre-
ation of the Debian specific patch, since the Debian packaging tools have no way to separate upstream files
from files specific to Debian packaging. The option --createorig can be passed to dh_make to create
a .orig.tar.gz archive before creating the debian/ directory, if such separation is required.

B.3. Debian control files
The control files in the debian/ directory control the package creation process. The following sections
provide a short description of these files. A more detailed description is available in the [Debian FAQ].

Several files will have the .ex suffix, which mark them as examples. To activate these files, they must be
renamed by stripping this suffix. Otherwise the files should be deleted to not clutter up the directory by unused
files. In case a file was deleted and needs to be restored, the original templates can be found in the /usr/
share/debhelper/dh_make/debian/ directory.

The debian/ directory contains some global configuration files, which can be put into two categories: The
files changelog, control, copyright, rules are required and control the build process of all binary
packages. Most other files are optional and only affect a single binary package. Their filename is prefixed
with the name of the binary package, 1

The following files are required:

changelog
Changes related to packaging, not the upstream package. See Section B.3.3 below for more information.

compat
The Debhelper tools support different compatibility levels. For UCS-3.x the file must contain a single
line with the value 7. See debhelper(7) for more details.

1 If only a single binary package is build from the source package, this prefix can be skipped, but it is good practice to always use the prefix.

https://www.univention.com/feedback/?manual=deb:debian

Debian control files

control
Contains control information about the source and all its binary packages. This mostly includes package
name and dependency informations. See Section B.3.1 below for more information.

copyright
This file contains the copyright and license information for all files contained in the package. See Sec-
tion B.3.2 below for more information.

rules
This is a Makefile style file, which controls the package build process. See Section B.3.4 below for more
information.

source/format
This file configures how dpkg-source(1) separates the files belonging to the packaging process from files
belonging to the upstream package. Historically the Debian source format 1.0 shipped packages as a
TAR file containing the upstream source plus one patch file, which contained all files of the debian/
sub-directory in addition to all changes to upstream files.

The new format 3.0 (quilt) replaces the patch file with a second TAR archive containing the de-
bian/ directory. Changes to upstream files are no longer applied as one giant patch, but split into logical
changes and applied using a built-in quilt(1).

For simple packages, where there is no distinction between upstream and the packaging entity, the 3.0
(native) format can be used instead, were all files including the debian/ directory are contained
in a single TAR file.

The following files are optional and should be deleted if unused, which helps other developers to concentrate
on only the files relevant to the packaging process:

README.Debian
Notes regarding package specific changes and differences to default options, for example compiler op-
tions. Will be installed into /usr/share/doc/package_name/README.Debian.

package.cron.d
Cron tab entries to be installed. See dh_installcron(1) for more details.

package.dirs
List of extra directories to be created. See dh_installdirs(1) for more details. 2

package.install
List of files and directories to be copied into the package. This is normally used to partition all files
to be installed into separate packages, but can also be used to install arbitrary files into packages. See
dh_install(1) for more details.

package.docs
List of documentation files to be installed in /usr/share/doc/package/. See dh_installdocs(1)
for more details.

package.emacsen-install,
package.emacsen-remove,
package.emacsen-startup

Emacs specific files to be installed below /usr/share/emacs-common/package/. See
dh_installemacsen(1) for more details.

package.doc-base*
Control files to install and register extended HTML and PDF documentation. See dh_installdocs(1) for
more details.

2 May other dh_ tools automatically create directories themselves, so in most cases this file is unneeded.

debian/control

package.init.d,
package.default

Start-/stop script to manage a system daemon or service. See dh_installinit(1) for more details.

package.manpage.1,
package.manpage.sgml

Manual page for programs, library functions or file formats, either directly in troff or SGML. See
dh_installman(1) for more details.

package.menu
Control file to register programs with the Debian menu system. See dh_installmenu(1) for more details.

watch
Control file to specify the download location of this upstream package. This can be used to check for new
software versions. See uscan(1) for more details.

package.preinst,
package.postinst,
package.prerm,
package.postrm

Scripts to be executed before and after package installation and removal. See Section B.3.5 below for
more information.

package.maintscript
Control file to simplify the handling of conffiles. See dpkg-maintscript-helper(1) and dh_installdeb(1)
for more information.

Other debhelper programs use additional files, which are described in the respective manual pages.

B.3.1. debian/control
The control file contains information about the packages and their dependencies, which is needed by dpkg.
The initial control file created by dh_make looks like this:

Source: testdeb
Section: unknown
Priority: optional
Maintainer: John Doe <user@example.com>
Build-Depends: debhelper (>= 5.0.0)
Standards-Version: 3.7.2

Package: testdeb
Architecture: any
Depends: ${shlibs:Depends}, ${misc:Depends}
Description: <insert up to 60 chars description>
<insert long description, indented with spaces>

The first block beginning with Source describes the source package:

Source
The name of the source package. Must be consistent with the directory name of the package and the
information in the changelog file.

Section3

A category name, which is used to group packages. There are many predefined categories like libs,
editors, mail, but any other string can be used to define a custom group.

3 http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections

https://www.univention.com/feedback/?manual=deb:control
http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections

debian/control

Priority4

Defines the priority of the package. This information is only used by some tools to create installation
DVD. More important packages are put on earlier CD, while less important packages are put on later CD.

essential
Packages are installed by default and dpkg prevents the user from easily removing it.

required
Packages which are necessary for the proper functioning of the system. The package is part of the
base installation.

important
Important programs, including those which one would expect to find on any Unix-like system. The
package is part of the base installation.

standard
These packages provide a reasonably small but not too limited character-mode system.

optional
Package is not installed by default. This level is recommended for most packages.

extra
This contains all packages that conflict with some other packages.

Maintainer
The name and email address of a person or group responsible for the packaging.

Build-Depends,
Build-Depends-Indep

A list of packages which are required for building the package.

Standards-version
Specifies the Debian Packaging Standards version, which this package is conforming to. This is not used
by UCS, but required by Debian.

All further blocks beginning with Package describes a binary package. For each binary package one block
is required.

Package
The name of the binary package. The name must only consist of lower case letters, digits and dashes. If
only a single binary package is build from a source package, the name is usually the same as the source
package name.

Architecture
Basically there are two types of packages: Architecture dependent packages must be build for each archi-
tecture like i386 and amd64, since binaries created on one architecture do not run on other architectures.
A list of architectures can be explicitly given, or any can be used, which is then automatically replaced
by the architecture of the system where the package is built.

Architecture independent packages only need to be built once, but can be installed on all architectures.
Examples are documentation, scripts and graphics files. They are declared using all in the architecture
field.

Description
The first line should contain a short description of up to 60 characters, which should describe the purpose
of the package sufficiently. A longer description can be given after that, where each line is indented by a
single space. An empty line can be inserted by putting a single dot after the leading space.

4 http://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities

http://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities
http://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities

debian/control

Most packages are not self-contained but need other packages for proper function. Debian supports different
kinds of dependencies.

Depends
A essential dependency on some other packages, which must be already installed and configured before
this package is configured.

Recommends
A strong dependency on some other packets, which should normally be co-installed with this package,
but can be removed. This is useful for additional software like plug-ins, which extends the functionality
of this package, but is not strictly required.

Suggests
A soft dependency on some other packages, which are not installed by default. This is useful for additional
software like large add-on packages and documentation, which extends the functionality of this package,
but is not strictly required.

Pre-Depends
A strong dependency on some other package, which must be fully operational even before this package is
unpacked. This kind of dependency should be used very sparsely. It's mostly only required for software
called from the .preinst script.

Conflicts
A negative dependency, which prevents the package to be installed while the other package is already
installed. This should be used for packages, which contain the same files or use the same resources, for
example TCP port numbers.

Provides
This package declares, that it provides the functionality of some other package and can be considered as
a replacement for that package.

Replaces
A declaration, that this package overwrites the files contained in some other package. This deactivates
the check normally done by dpkg to prevent packages from overwriting files belonging to some other
package.

Breaks
A negative dependency, which requests the other package to be upgraded before this package can be in-
stalled. This is a lesser form of Conflicts. Breaks is almost always used with a version specification
in the form Breaks: package (<< version): This forces package to be upgraded to a version
greater than version before this package is installed.

In addition to literal package names, debhelper supports a substitution mechanism: Several helper scripts are
capable of automatically detecting dependencies, which are stored in variables.

${shlibs:Depends}
dh_shlibdeps automatically determines the shared library used by the programs and libraries of the
package and stores the package names providing them in this variable.

${python:Depends}
dh_python detects similar dependencies for Python modules.

${misc:Depends}
Several Debhelper commands automatically add additional dependencies, which are stored in this vari-
able.

debian/copyright

In addition to specifying a single package as a dependency, multiple packages can be separated by using the
pipe symbol (|). At least one of those packages must be installed to satisfy the dependency. If none of them
is installed, the first package is chosen as the default.

A package name can be followed by a version constraint enclosed in parenthesis. The following operators
are valid:

<<
is less than

<=
is less than or equal to

=
is equal to

>=
is greater than or equal to

>>
is greater than

An Example:

Depends: libexample1 (>= ${binary:Version}),
 exim4 | mail-transport-agent,
 ${shlibs:Depends}, ${misc:Depends}
Conflicts: libgg0, libggi1
Recommends: libncurses5 (>> 5.3)
Suggests: libgii0-target-x (= 1:0.8.5-2)
Replaces: vim-python (<< 6.0), vim-tcl (<= 6.0)
Provides: www-browser, news-reader

B.3.2. debian/copyright

The copyright file contains copyright and license information. For a downloaded source package it should
include the download location and names of upstream authors.

This package was debianized by John Doe <max@example.com> on
Mon, 21 Mar 2009 13:46:39 +0100.

It was downloaded from <fill in ftp site>

Copyright:
Upstream Author(s): <put author(s) name and email here>

License:
<Must follow here>

The file does not require any specific format. Debian now recommends to use a machine-readable format, but
this is not required for UCS. The format is described in http://dep.debian.net/deps/dep5/ at looks like this:

Format: http://www.debian.org/doc/packaging-manuals/copyright-
format/1.0/
Upstream-Name: Univention GmbH
Upstream-Contact: <package@univention.de>
Source: https://docs.software-univention.de/

https://www.univention.com/feedback/?manual=deb:copyright
http://dep.debian.net/deps/dep5/

debian/changelog

Files: *
Copyright: 2013-2015 Univention GmbH
License: AGPL

B.3.3. debian/changelog

The changelog file documents the changes applied to this Debian package. The initial file created by
dh_make only contains a single entry and looks like this:

testdeb (0.1-1) unstable; urgency=low

 * Initial Release.

 -- John Doe <user@example.com> Mon, 21 Mar 2013 13:46:39 +0100

For each new package release a new entry must be prepended before all previous entries. The version number
needs to be incremented and a descriptive text should be added to describe the change.

The command debchange from the devscripts package can be used for editing the changelog file. For
example the following command adds a new version:

dch -i

After that the changelog file should look like this:

testdeb (0.1-2) unstable; urgency=low

 * Add more details.

 -- John Doe <user@example.com> Mon, 21 Mar 2013 17:55:47 +0100

testdeb (0.1-1) unstable; urgency=low

 * Initial Release.

 -- John Doe <user@example.com> Mon, 21 Mar 2013 13:46:39 +0100

The date and time stamp must follow the format described in RFC 28224. debchange automatically inserts
and updates the current date. Alternatively date -R can be used on the command line to create the correct
format.

For UCS it is best practice to mention the bug ID of the UCS bug tracker (see Appendix A) to reference
additional details of the bug fixed. Other parties are encouraged to devise similar comments, e.g. URLs to
other bug tracking systems.

B.3.4. debian/rules

The file rules describes the commands needed to build the package. It must use the Make syntax [make].
It consists of several rules, which have the following structure:

target: dependencies
 command
 ...

4 http://tools.ietf.org/html/rfc2822

https://www.univention.com/feedback/?manual=deb:changelog
http://tools.ietf.org/html/rfc2822
https://www.univention.com/feedback/?manual=deb:rules
http://tools.ietf.org/html/rfc2822

debian/rules

Each rule starts with the target name, which can be a file name or symbolic name. Debian requires the following
targets:

clean
This rule must remove all temporary files created during package built and must return the state of all
files back to the same state as when the package is freshly extracted.

build,
build-arch,
build-indep

These rules should configure the package and build either all, all architecture dependent or all architecture
independent files. These rules are called without root permissions.

binary,
binary-arch,
binary-indep

These rules should install the package into a temporary staging area. By default this is the directory
debian/tmp/ below the source package root directory. From there files are distributed to individual
packages, which are created as the result of these rules. These rules are called with root permissions.

Each command line must be indented with one tabulator character. Each command is executed in a separate
shell, but long command lines can be split over consecutive lines by terminating each line with a backslash (\).

Each rule describes a dependency between the target and its dependencies. make considers a target to be out-
of-date, when a file with that name target does not exists or when the file is older than one of the files it
depends on. In that case make invokes the given commands to re-create the target.

In addition to file names also any other word can be used for target names and in dependencies. This is most
often used to define “phony” targets, which can be given on the command line invocation to trigger some
tasks. The above mentioned clean, build and binary targets are examples for that kind of targets.

dh_make only creates a template for the rules file. The initial content looks like this:

#!/usr/bin/make -f
-*- makefile -*-
Sample debian/rules that uses debhelper.
This file was originally written by Joey Hess and Craig Small.
As a special exception, when this file is copied by dh-make into a
dh-make output file, you may use that output file without restriction.
This special exception was added by Craig Small in version 0.37 of dh-
make.

Uncomment this to turn on verbose mode.
#export DH_VERBOSE=1

%:
 dh $@

Since UCS-3.0 the debian/rules file is greatly simplified by using the dh sequencer. It is a wrapper
around all the different debhelper tools, which are automatically called in the right order.

Tip

To exactly see which commands are executed when dpkg-buildpackage builds a package, in-
voke dh target --no-act by hand, for example dh binary --no-act lists all commands
to configure, build, install and create the package.

debian/preinst, debian/prerm, debian/postinst, de-
bian/postrm

In most cases it's sufficient to just provide additional configuration files for the individual debhelper com-
mands as described in Section B.3. If this is not sufficient, any debhelper command can be individually over-
ridden by adding an override target to the rules file. For example the following snippet disables the auto-
matic detection of the build system used to build the package and passes additional options:

override_dh_auto_configure:
 ./setup --prefix=/usr --with-option-foo

Without that explicit override dh_auto_configure would be called, which normally automatically de-
tects several build systems like cmake, setup.py, autoconf and others. For these dh also passes the right op-
tions to configure the default prefix /usr and use the right compiler flags.

After configuration the package is built and installed to the temporary staging area in debian/tmp/. From
there dh_install partitions individual files and directories to binary packages. This is controlled through
the debian/package.install files.

This file can also be used for simple packages, where no build system is used. If a path given in the de-
bian/package.install file is not found below debian/tmp/, the path is interpreted as relative to
the source package root directory. This mechanism is sufficient to install simple files, but fails when files
must be renamed or file permissions must be modified.

B.3.5. debian/preinst, debian/prerm, debian/postinst, debian/postrm

In addition to distributing only files packages can also be used to run arbitrary commands on installation,
upgrades or removal. This is handled by the four “Maintainer scripts”, which are called before and after files
are unpacked or removed:

debian/package.preinst
called before files are unpacked.

debian/package.postinst
called after files are unpacked. Mostly used to (re-)start services after package installation or upgrades.

debian/package.prerm
called before files are removed. Mostly used to stop services before a package is removed or upgraded.

debian/package.postrm
called after files have been removed.

The scripts themselves must be shell scripts, which should contain a #DEBHELPER# marker, where the shell
script fragments created by the dh_ programs are inserted. Each script is invoked with several parameters,
from which the script can determine, if the package is freshly installed, upgraded from a previous version, or
removed. The exact arguments are described in the template files generated by dh_make.

The maintainer scripts can be called multiple times, especially when errors occur. Because of that the scripts
should be idempotent, that is they should be written to “achieve a consistent state” instead of blindly doing the
same sequence of commands again and again. A bad example would be to append some lines to a file on each
invocation. The right approach would be to add a check, if that line was already added and only do it otherwise.

Warning

It is important that these scripts handle error conditions properly: Maintainer scripts should terminate
with exit 0 on success and exit 1 on fail, if things go catastrophically wrong.

On the other hand an exit code unequal to zero usually aborts any package installation, upgrade or
removal process. This prevents any automatic package maintenance and usually requires manual

https://www.univention.com/feedback/?manual=deb:scripts

Building

intervention of a human administrator. Therefore it is essential that maintainer scripts handle error
conditions properly and are able to recover an inconsistent state.

B.4. Building
Before the first build is started, remove all unused files from the debian/ directory. This simplifies main-
tenance of the package and helps other maintainers to concentrate on only the relevant differences from stan-
dard packages.

The build process is started by invoking the following command:

dpkg-buildpackage -us -uc

The options -us and -uc disable the PGP signing process of the source and changes files. This is only
needed for Debian packages, were all files must be cryptographically signed to be uploaded to the Debian
infrastructure.

Additionally the option -b can be added to restrict the build process to only build the binary packages. Oth-
erwise a source package will also be created.

B.5. Further reading
• [Debian FAQ]

• [Debian Guide]

• [Debian Policy]

• [Debian Reference]

https://www.univention.com/feedback/?manual=deb:build
https://www.univention.com/feedback/?manual=deb:links

Bibliography
[ucs-handbuch] Univention GmbH. 2015. Univention Corporate Server - Manual for users and administrators. https://

docs.software-univention.de/manual-4.1.html.

[make] Free Software Foundation. 2010. The GNU Make manual1.

[ISO639] International Organization for Standardization. 2002. ISO 639-1: Alpha-2 code2.

[Debian FAQ] Debian. 2012. The Debian GNU/Linux FAQ - Basics of the Debian package management system3.

[Debian Guide] Debian. 2013. Debian New Maintainers' Guide4.

[Debian Policy] Debian. 2012. Debian Policy Manual5.

[Debian Reference] Debian. 2012. Debian Developer's Reference6.

1 http://www.gnu.org/software/make/manual/
2 http://www.loc.gov/standards/iso639-2/
3 http://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics
4 http://www.debian.org/doc/devel-manuals#maint-guide
5 http://www.debian.org/doc/debian-policy/
6 http://www.debian.org/doc/manuals/developers-reference/

https://docs.software-univention.de/manual-4.1.html
https://docs.software-univention.de/manual-4.1.html
http://www.gnu.org/software/make/manual/
http://www.loc.gov/standards/iso639-2/
http://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics
http://www.debian.org/doc/devel-manuals#maint-guide
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/developers-reference/
http://www.gnu.org/software/make/manual/
http://www.loc.gov/standards/iso639-2/
http://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics
http://www.debian.org/doc/devel-manuals#maint-guide
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/developers-reference/

Index
A
Apache (see Web Services)
App center, 107

B
Bug (see Bugzilla)
Bugzilla, 137

C
Config Registry, 19

Categories, 26
Configuration files, 22
Descriptions, 25
Examples, 29

Multifile, 31
Services, 32
Single File, 29

Repository, 17
Services, 27
Template

Module, 25
Multi file, 24
Script, 25
Single file, 23

Template file, 28
Custom Attributes (see Extended Attributes)

D
Database, 131

MySQL, 131
PostgreSQL, 131

Directory Listener, 53
Cache, 65
Credentials, 65
Debug, 65
Example module, 56
modrdn, 57
Notifier ID, 66
Verify, 66

Directory Manager, 69
Custom Modules, 79
Extended Attributes (see Extended Attributes)
Hook extension, 41
Hooks

Packaging, 84
LDAP search, 81
Module extension, 41
Syntax extension, 41
Syntax override, 80

Domain join, 35

Domain credentials, 50
Machine credential change, 50

Join script (see Join script)
Join status, 35
Running, 35

E
Example

Config Registry, 29
Extended Attributes, 70

Hooks, 77
Options, 76
Selection list, 74

J
Join (see Domain join)
Join script

Exit codes, 38
Helpers (see Library)
Library, 38
Return codes (see Exit codes)
Writing, 36

L
LDAP

Access control list extension, 41
Schema extension, 41

Listener (see Directory Listener)
Localisation (see Translation)

M
Management Console, 89

Files, 94
Module

Disable, 103
LDAP, 102
System, 95

umc-modules, 94
XML, 95

P
Package

binary-, 139
source-, 139

Packaging, 11
Build dependencies, 139
Checking for errors, 131
Debian, 139
Library functions, 133
Modifying existing package, 11
New package, 12
Package repository, 17

postup (see Updater)

preup (see Updater)

R
Registry (see Config Registry)
Repository (see Packaging)

S
Server password change (see Domain join)
Single Sign-On

SAML, 129
SSO (see Single Sign-On)

T
Translation, 123

U
UCR (see Config Registry)
UDM (see Directory Manager)
UMC (see Management Console)
Univention Directory Listener (see Directory Listener)
Univention Directory Manager (see Directory Manager)
Univention Management Console (see Management Con-
sole)
Update (see Updater)
Updater

Repositories, 127
Scripts, 127
System update, 127

Upgrade (see Updater)

W
Web Services, 105

	Univention Developer Reference
	Table of Contents
	Foreword
	Chapter 1. Packaging software
	1.1. Introduction
	1.2. Preparations
	1.3. Example: Re-building an UCS package
	1.4. Example: Creating a new UCS package
	1.5. Setup repository
	1.6. Building packages through the openSUSE Build Service

	Chapter 2. Univention Config Registry
	2.1. Using UCR
	2.1.1. Using UCR from shell
	2.1.2. Using UCR from Python

	2.2. Configuration files
	2.2.1. debian/package.univention-config-registry
	2.2.1.1. File
	2.2.1.2. Multifile
	2.2.1.3. Script
	2.2.1.4. Module

	2.2.2. debian/package.univention-config-registry-variables
	2.2.3. debian/package.univention-config-registry-categories
	2.2.4. debian/package.univention-config-registry-services

	2.3. UCR Template files conffiles/path/to/file
	2.4. Build integration
	2.5. Examples
	2.5.1. Minimal File example
	2.5.2. Multifile example
	2.5.3. Services

	Chapter 3. Domain Join
	3.1. Join scripts
	3.2. Join status
	3.3. Running join scripts
	3.4. Writing join scripts
	3.4.1. Basic join script example
	3.4.2. Join script exit codes
	3.4.3. Join script libraries
	3.4.3.1. univention-join
	3.4.3.2. shell-univention-lib

	3.5. Writing unjoin scripts

	Chapter 4. Lightweight Directory Access Protocol (LDAP) in UCS
	4.1. General
	4.2. Packaging LDAP Schema Extensions
	4.3. Packaging LDAP ACL Extensions
	4.4. LDAP secrets
	4.4.1. Password change

	Chapter 5. Univention Directory Listener
	5.1. Structure of Listener Modules
	5.2. Listener Tasks and Examples
	5.2.1. Basic Example
	5.2.2. Rename and Move
	5.2.3. Full Example with Packaging
	5.2.4. A Little Bit more Object Oriented

	5.3. Technical Details
	5.3.1. User-ID and Credentials
	5.3.2. Internal Cache
	5.3.2.1. univention-directory-listener-ctrl
	5.3.2.2. univention-directory-listener-dump
	5.3.2.3. univention-directory-listener-verify
	5.3.2.4. get_notifier_id.py

	5.3.3. Internal working

	Chapter 6. Univention Directory Manager (UDM)
	6.1. Introduction
	6.2. Packaging Extended Attributes
	6.2.1. Selection lists
	6.2.1.1. Static selections
	6.2.1.2. Dynamic selections

	6.2.2. Known issues
	6.2.3. Extended Options
	6.2.4. Extended Attribute Hooks

	6.3. UDM Modules
	6.4. UDM Syntax
	6.4.1. UDM Syntax Override
	6.4.2. UDM LDAP search

	6.5. Packaging UDM Hooks
	6.6. Packaging UDM Extension Modules
	6.7. Packaging UDM Syntax Extension

	Chapter 7. Univention Management Console (UMC)
	7.1. Architecture
	7.2. Asynchronous Framework
	7.3. Protocol UMCP 2.0
	7.3.1. Data flow
	7.3.2. Authentication
	7.3.3. Message format
	7.3.3.1. Message header
	7.3.3.2. Message body

	7.3.4. Examples

	7.4. Protocol HTTP for UMC
	7.4.1. Examples

	7.5. UMC files
	7.5.1. debian/package.umc-modules
	7.5.2. UMC Module Declaration File

	7.6. Local System Module
	7.6.1. Python API
	7.6.2. UMC module API (Python and JavaScript)
	7.6.2.1. XML definition
	7.6.2.1.1. Module definition
	7.6.2.1.2. Category definition

	7.6.2.2. Python module
	7.6.2.3. UMC store API

	7.6.3. Packaging

	7.7. Domain LDAP Module
	7.8. Disabling a Module

	Chapter 8. Web services
	8.1. Extending the overview page

	Chapter 9. App Center
	9.1. Requirements
	9.2. Packaging for the App Center
	9.3. Next steps
	9.4. Application meta file
	9.5. Optional application files
	9.6. Uploading the application
	9.7. Notifications
	9.8. Updates for the application
	9.9. Integrating the Application in UCS
	9.9.1. Automatic integration done by the App Center
	9.9.2. Scope of the vendor

	9.10. Best practices
	9.10.1. Registration of LDAP and UDM Extensions

	Chapter 10. Integration of external repositories
	10.1. Integration of repository components via Univention Management Console
	10.2. Integration of repository components via Univention Configuration Registry

	Chapter 11. Translating UCS
	11.1. Univention Management Console translations
	11.1.1. Install needed tools
	11.1.2. Obtain a current checkout of the UCS Subversion repository
	11.1.3. Create a new translation package
	11.1.4. Edit translation files
	11.1.5. Update the translation package
	11.1.6. Build the translation package

	Chapter 12. Univention Updater
	12.1. Separate repositories
	12.2. Updater scripts
	12.2.1. Digital signature

	12.3. Release update walkthrough

	Chapter 13. Single Sign-On: Integrating a service provider into UCS
	13.1. Register new service provider via udm
	13.2. Get information required by the service provider
	13.3. Add direct login link to ucs-overview page

	Chapter 14. Miscellaneous
	14.1. Databases
	14.1.1. PostgreSQL
	14.1.2. MySQL

	14.2. UCS lint
	14.3. Function Libraries
	14.3.1. shell-univention-lib
	14.3.2. python-univention-lib

	14.4. Login Access Control
	14.5. Network Packet Filter
	14.5.1. Filter rules by Univention Configuration Registry
	14.5.2. Local filter rules via iptables commands
	14.5.3. Testing Univention Firewall settings

	Appendix A. Bug reporting
	Appendix B. Debian packaging
	B.1. Prerequisites and preparation
	B.2. dh_make
	B.3. Debian control files
	B.3.1. debian/control
	B.3.2. debian/copyright
	B.3.3. debian/changelog
	B.3.4. debian/rules
	B.3.5. debian/preinst, debian/prerm, debian/postinst, debian/postrm

	B.4. Building
	B.5. Further reading

	Bibliography
	Index

