@ univention

be open.

Univention Developer Reference

Manual for developers

www.univention.de

@ univention

be open.

Alle Rechte vorbehalten./ All rights reserved.
The mentioned brand names and registered trademarks are owned by the respective legal ownersin each case.

Linux® isaregistered trademark of Linus Torvalds.

www.univention.de

@ univention

be open.

Table of Contents

011V] (o I PP UPPTRPTRUPPN 9
1. Packaging SOFtWEAIEveniieei et e e e e e e e e e e 11
00 g 11 oo [0 1o o PP UP PP 11
O o = 1 o 13N 11
1.3. Example: Re-building an UCS packagecccuiiuieiiiei it e e e e 11
1.4. Example: Creating anew UCS PaCKageu.ivuivineiieieeiee e et e s e e e e e e e eaaas 12
IS (U] oI = o101 1 (o Y PP 17
1.6. Building packages through the openSUSE Build Servicecocovvviiiiiiiiciiicieceeceee 18
2. Univention Config REGISIIYiunii e e e e e e e e e ees 19
228 I O £ o L PSP 19
2.1.1. Using UCR from shell ... 19
2.1.2. Using UCR from PythOnooueii e 20
2.2. CoNfiguIration filES ... eu e 22
2.2.1. debi an/ package. uni vention-config-regi stryccooviiiiiiiineinnnnnn. 22
2 I T T = PP 23
2212 MUl T i@ i 24
A R S o I o) SN 25
B T S o To | U1 = P 25
2.2.2.debi an/ package. uni venti on-confi g-regi stry-vari ables 26
2.2.3. debi an/ package. uni venti on-confi g-regi stry-categories 26
2.2.4.debi an/ package. uni venti on-confi g-regi stry-services 27
2.3. UCR Template filesconffil es/path/to/file ..., 28
A = 10 o BT 1o = 1 o P 29
AT = 11 10 = 30
251 Minimal File &XampPleoouniiiiii e 30
2.5.2. MUILITIIE €XaMPIE ... 31
25,3, SEIVICES . ittt 33
G o1 BN o 1 o PP PP 37
G 0 N o = o o £ 37
AN o 1 I = U PP UPP RPN 37
GG T (0 0 o 1 g o T o 1 e 1 o= 38
G YV 1 1o I o1 = o £ 38
3.4.1. BaSIC JOIN SCHPL @XAMPIE ...cvniieii e e e e e e e eans 38
3.4.2. JOIN SCHPL €XIT COUBS ...uiviiiiie it e e e e e e eans 40
3.4.3. JOIN SCHPL HOFaMES ..oe i 41
3.4.3.1. UNIVENTION-JOIN .iuuiiiie e e e e e e e e e e e et e e ean e eeanaees 41
3.4.3.2. shell-univention-lib ... 42
3.5, WItING UNJOIN SIS .. eeetie ettt sttt ettt et e ettt e e et e e e eebe e eeees 45
4. Lightweight Directory Access Protocol (LDAP) iNUCS ... 49
R T PPN 49
4.2. Packaging LDAP Schema EXIENSIONSuiiiiiiiiiiiiiieeeeii ettt 49
4.3. Packaging LDAP ACL EXIENSIONSuuuiiiiiiiiaeiiii ettt e et e e et e eeeni e e 50
R Y e o = £ PSP 52
4.4.1. PaSSNOIT ChANGEeeetieieii ettt et ettt e et e e ena e eenaas 52
5. UNIvention Dir€CLOry LiSIENETouuu ittt ettt ettt e e 55
5.1. Structure of Listener MOQUIESoouuiiiiiii e 55
5.2. Listener Tasks and EXAMPIEScouuiiiiiiiii et 58
5.2.1. BASIC EXAMPIE ...t 58
5.2.2. RENAME @GN0 IMOVE ... e e e aees 59
5.2.3. Full Example with Packagingiiiiiiiiiiiii e 60
5.2.4. A Little Bit more Object Orientedoveiiiiii i 64
5.3. TEChNICal DELAIIS ... e e e 67
3
www.univention.de

@ univention

be open.
5.3.1. User-ID and CredentialSiiiiiiieiieii ettt 67
B5.3.2. INEMNEI CBCNE ... e 67
53.21.univention-directory-listener-ctrlooocccoiinniiiiiinniniinnnn. 68
53.22. univention-directory-listener-dunp ...c...cocccoiinniiiiiinniiiinnnnnn. 68
53.23. univention-directory-listener-verifyccooooiniiiiiinnniiinnnn. 68
53.24.get _Notifier i d. PY oo 68
5.3.3. INENal WOIKING ...evviieeiii e 68
6. Univention Directory Manager (UDM)co.uuiiiiiiiiieii ettt 71
L 20 W [1o o (8o (1o o RO PSPPSR 71
6.2. Packaging Extended ALtDULESiiiiiiicii e 72
B.2. 1. SEECHON TGS ..uieiiiii et 76
6.2.1.1. StAIC SEIECHIONSeiiiiii et 7
6.2.1.2. DYNAMIC SEIECHIONScvvviiieiii e 7
B.2.2. KNOWN ISSUES ...ttt ettt ettt ettt ettt e e e et e e e et e e e e et e e e e et s 78
6.2.3. EXIENEH OPLIONSvieeeeiie ettt ettt e e 78
6.2.4. Extended Attribute HOOKSooovuiiiiiii e 80
B.3. UDM MOUUIES ...ttt et ettt e e et e e et e e et e e e aaa e e eeaans 81
B.4. UDM SYNEBX ...uierieitie ettt ettt ettt et et et e e e 8l
6.4.1. UDM SyNtaX OVEITIOEeeeieiieeiii ettt ettt e e e e eeees 83
6.4.2. UDM LDAP SEAICK ...ttt 83
6.5. Packaging UDM HOOKScouuuiiiiiiiie ittt eeeaes 87
6.6. Packaging UDM EXtension MOGUIEScccuuuiiiiiiiieeiii e 88
6.7. Packaging UDM Syntax EXIENSIONviiiiiiiieiiiii et 90
7. Univention Management Console (UMOC)coouuiiiiiiiieiii et 93
T L ATCRITECIUIE ... ettt e et e e et e e e et e e e et s 93
7.2. ASyNChronoUS FramEWOTKc..uuiiiiiiiii i 94
7.3. ProtoCOl UMOCP 2.0 ...ttt et e et e e e eab e e e eab e eees 95
7.3 L DAA FIOW .ot 95
7.3.2. AULNENTICALTIONieeii et e e e e e eaaans 95
7.3.3. MESSA0E TONMMELve et ettt e e e e e b e e e 95
7.3.3.1. MESSAgE NEATES ...coeviiieeii e 95
7.3.3.2. MESSA0E BOTY ...covviiiiiii e 96
T34, EXAMPIES ...t 96
7.4. Protocol HTTP fOr UMOC ...eui et 97
TAL EXAMPIES ... 97
7.5, UMGC FIlBS it et e e ettt e e et e aee 98
7.5.1. debi an/ package. Unt- MDAUl €Scooouiiiiiiiiiiii 98
7.5.2. UMC Module Declaration Fileoiiiiiiiiiiiiie e 99
7.6. LOCaAl SYStemM MOUUIEcoeeiiei et 99
T.6. 1. PYLNON AP oo 99
7.6.2. UMC module APl (Python and JavaSCript)oveeievinneieiiineeiiie e 99
7.6.2. 1. XML defiNitioncooevuiiiiiicc e 100
7.6.2.2. Python MOCUIEcooouniiii e 101
7.6.2.3. UMC SIOre AP ..o 103
7.6.3. PaCKAGING - eeeeiiet et 104
7.7. DOMEAIN LDAP MOGUIE ...t 107
7.8. DiSabling @ MOTUIE i e 107
8. WD SEIVICES ...ttt et 109
8.1. EXtending the OVEIVIEW PBOEcvuniiiiiii ettt ettt e e 109
L Y ol I O 1= PSP PPPI 111
10. Integration Of external FEPOSITONTES ivuuei i eeeees 113
10.1. Integration of repository components via Univention Management Console 113
10.2. Integration of repository components via Univention Configuration Registry 114
11, TranSlaling UCSoui ittt e ettt e et e e et et e e e e e bt e e e eetb e e eebaaeaees 115
www.univention.de

@ univention

be open.
11.1. Univention Management Console translalionsSvveveiiiiieeiiiieeeii e 115
11.2.2. Install NEEAEA tO0ISuieei e 115
11.1.2. Obtain a current checkout of the UCS GIT repoSitoryovvevevvnieeeniineeeennnn. 115
11.1.3. Create a new tranglation Packageveveiiuieeiii e e 115
11.1.4. Edit trangdation fillESoveuii i 116
11.1.5. Update the trandation Packagecc.uuiiiiiiiiiiiii e 116
11.1.6. Build the trangation Packageuuieiiiiiieiiii e 117
12, UNIVENLION UPGBLELeitiii ettt ettt e et e e e e et r e e e ebaneeeebaeeeeees 119
12.1. SEPArate FEPOSITOMIEScieeee ettt ettt ettt et e e e e e e e e e et e e e enanns 119
12,2, UPAELEr SIS ..eeeteieee ettt et e et e e et e e et e e e eba s 119
12.2.1. Digita@l SIQNBEUIE ...eeveieeeei ettt e et eaaas 120
12.3. Release update WalKtNroUghcooouiiiiiii e 120
13. Sngle Sgn-On: Integrating a service provider into UCSc.uiiiiiiiiiiiiiiiieec e 121
13.1. Register new Service provider VIa UMcooouuiiiiiiiiiiiii e e 121
13.2. Get information required by the Service providerooeviiiiiiiiiiiin e 121
13.3. Add direct 10gin [ink tO UCS-OVENVIBW PAOEcevvvneeiiiiieeeii et 122
R o= = 123
T I - 7= 0 7= = 123
O O 0 o 1 PP 123
14.0.2. MYSQL .ottt 123
I TS T 1o | SRR 123
I T g Tox o o T T o = == P 125
14.3.2. shell-univention-liD ... 125
14.3.2. python-univention-libccooooiiii e 126
14.4. LOgIN ACCESS COMLIO ..uiiteiiii e e e e e e e e e e e e e e e e e e et e e st e e et e e et eaannaees 127
14.5. NetWOrk Packet FIITENoiiieiiiiieii e et e e e e eees 127
14.5.1. Filter rules by Univention Configuration REQISLIYccceevvviiiiiiiiiieiiiieiieeeiees 127
14.5.2. Local filter rulesviai pt abl es commandsccccceviviiiiiiiiiiicii e, 128
14.5.3. Testing Univention Firewall SEttingScccuviiiiiiiiiiiiie e, 129
y N =10 o = oo 11 P 131
B. DEDIAN PACKAGING ©.uevtneiiiieii et e et e e e e e e e e et e e et e e e e e et e et e et e e et e et e et r et e raaaaaan 133
B.1. Prerequisites and Preparationcoceueeeeueieieieeei e ee e e e e e e e e e e e e e e 133
B.2. AN IMBKE ooeiii e 133
B.3. Debian CONtrol fIlESoieeeiiee e 134
B.3.1. debian/CONLIOluuiiiiiiieiii e 137
B.3.2. debian/Copyrightoiiiii e 140
B.3.3. debian/ChangelOgouiiviieii i e 141
B.3.4 dEDIANITUIES ... e 141
B.3.5. debian/preingt, debian/prerm, debian/postinst, debian/postrmccccoveviiieinnn, 143
2 3 T 1 o 1 oo 144
B.5. FUIher r€a0iNg ... coovniiiiii e 144
2] ol F 0T ="] Y 145
g0 (= OO PN 147
5

www.univention.de

@ univention

be open.

List of Examples

A L UL SN o Lo G = PSPPSR 19
A U E = X o U o o = 19
G R U L X o) B =T U o3 o U (= P 20
24, USE Of UCT UNS BT ittt ettt et e e e et e et e e et e et e e e e ean s 20
25.Use Of UCT Sl | o e e 20
2.6. Reading a Univention Configuration Registry variable in Pythonccoooiviiiiinin, 21
2.7. Reading boolean Univention Configuration Registry variablesin Pythonccooeivien. 21
2.8. Changing Univention Configuration Registry variablesin Pythoncc.coooiiiiiiniinen, 21
2.9. Setting and unsetting Univention Configuration Registry variablesin Python 21
3.1. Service registration iN JOIN SCIPLiuei e e e e e e e e e et e e e aneeanns 43
3.2. Service unregistration iN UNjOIN SCHPLiueiee e e e e e e e e e ees 43
3.3. Check for unused Service in UNJOIN SCIPLuvueiie e e e e e et e e eanns 43
3.4. EXtension registration iN JOIN SCIPEuie e e e e e e e et e e e e eeans 45
3.5. Schema unregistration iN UNjOIN SCHPLocuii e e e e e e et e eaaas 45
4.1. Schema registration iN JOIN SCIPLie e e e e e e e e e e e anaeanees 50
4.2. LDAP ACL registration in JOIN SCIPL ...c.u.ieeiie e e e e e e e e e e e e e e e e et e eaaaannas 52
4.3. Server password Change eXampPleoiiiii 53
6.1. Extended Attribute for custom LDAP SChEMAcoeuniiiiiii e 75
6.2. Dynamic selection list for Extended AttribDULEScooviiiiiii i 77
LSRG T 1= 10 (<o I o1 o o 79
8 N 110 g1 o= o I =01 == S 97
7.2, SEAICKH TOF USEI'S ...ttt ettt et et e et et e e et e e et e e et e e e e e eanaaes 97
7.3. AUNENLICALION FEOUESEueteii et e ettt e e e e e e et e e e e e et e et e ea e en e e e e e e e eaneennaes 97
T4, SBAICI TOF USEIS ..ot ettt e et et et e e e 97
7.5. UMC module category eXamPlESceeiiii e 101
14.7. Local FIrBWEIl TUIE ...t ettt e eees 128
14.2. Using nrmap for firewall port teSNGovviieiiie e 129

7

www.univention.de

Foreword

This developer guide provides information to extend Univention Corporate Server. It it targeted at third party
vendors who intend to provide applications for the Univention App Center and for power users who wish to
deploy locally built or modified software.

Feedback is very welcome! Please either file abug (see Appendix A) or send an e-mail to <f eedback @u-
ni vention. de>.

mailto:feedback@univention.de
mailto:feedback@univention.de

@ univention

be open.
Introduction

Chapter 1. Packaging software

OO 1 011 oo 0 1 o o PP 11
D = o= = 1 o)L PP 11
1.3. Example: Re-building an UCS PaCKAgEcuvuniiiiiiiiee ettt 11
1.4, Example: Creating @ NEW UCS PACKBOEueviiriieiiii ettt e et eeees 12
1.5, SELUP FEPOSITONY ...eevtieeeeit ettt ettt e et e ettt e e e e et e e e ettt e e e eatt e e e eatn e e e eetaaaeee 17
1.6. Building packages through the openSUSE Build SErVICec.uvviiiiiiiiiiiii e 18

This chapter describes how software for UCS is packaged. For more details on packaging software in the
Debian format, see Appendix B

1.1. Introduction Feedback {)

UCS is based on the Debian distribution, which is using the deb format to package software. The program
dpkg is used for handling a set of packages. On installation packages are unpacked and configured, while
on un-installation packages are de-configured and the files belonging to the packages are removed from the
system. On top of that the apt-tools provide a software repository, which allows software to be downloaded
from central file servers. Package files provide an index of all packages contained in the repository, which
is used to resolve dependencies between packages. while dpkg works on a set of packages given on the
command line, apt - get builds that set of packages and their dependencies before invoking dpkg on this
set. apt - get isacommand linetool, whichisfully described in its manual page apt-get(8). A more modern
version with atext based user interfaceisapt i t ude, whilesynapt i ¢ provides agraphical frontend.

On UCS systemsthe administrator is not supposed to use thesetoolsdirectly. Instead all software maintenance
can be done through the UM C, which maps the reguests to invocations of the commands given above.

1.2. Preparations Feedback ()

This chapter describes some simple examples using existing packages as examples. For downloading and
building them, some packages must be installed on the system used as a development system. git is used to
checkout the sourcefilesbel onging to the packages. build-essential must beinstalled for building the package.
devscripts provides some useful tools for maintaining packages.

This can be achieved by running the following command:

sudo apt-get install git build-essential devscripts

1.3. Example: Re-building an UCS package Feedback ()
Source code: doc/devel oper-reference/packaging/testdeb/

Procedure 1.1. Checking out and building a UCS package
1. (Optional) Create the top level working directory

nkdi r wor k
cd wor k/

2. Either fetch the latest source code from the GIT version control system or download the source code of
the currently packaged version.

https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/devel oper-ref erence/ packaging/testdeb/

_) 11
www.univention.de

https://www.univention.com/feedback/?manual=pkg:introduction
https://www.univention.com/feedback/?manual=pkg:preparation
https://www.univention.com/feedback/?manual=pkg:rebuild
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/packaging/testdeb/
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/packaging/testdeb/

@ univention

be open.
Example: Creating a new UCS package

e Checkout example package from GIT version control system

git checkout https://github.com univention/univention-corporate-
server.git
cd uni venti on- cor por at e- server/ base/ uni venti on-ssh

* Fetch the source code from the Univention Repository server
a. Enable unmaintained and source repository once

sudo ucr set repository/online/unnmaintai ned=yes \
reposi tory/online/ sources=yes
sudo apt-get update

b. Fetch source code

apt - get source univention-ssh
cd uni vention-ssh-*/

3. (Optional) Increment the version number of package to define a newer package
debchange --local work 'Private package rebuild'

4. Instal the required build dependencies
sudo apt-get build-dep .

5. Build the binary package
dpkg- bui | dpackage -uc -us -b -rfakeroot

6. Locally install the new binary package

sudo dpkg -i ../univention-ssh * *. deb

1.4. Example: Creating a new UCS package Fecaback{)

Thefollowing example providesawalk-through for packaging aPython script calledt est deb. py. It creates
afilet est deb- DATE-ti ne inthe/t np/ directory.

A directory needs to be crated for each source package, which hosts all other files and sub-directories.

nkdir testdeb-0.1
cd testdeb-0.1

Thefilet est deb. py, which isthe program to be installed, will be put into that directory.
#! [usr/ bi n/ env python

Exanpl e for creating UCS packages.

i mport tinme

now = tinme.localtine()

filenane = '/tnp/testdeb-9%"' %tine.strftinme(' W%Pd%M, now)
tnpfile = open(filenane, 'a')

tnpfile.close()

12 _)
www.univention.de

https://www.univention.com/feedback/?manual=pkg:new

@ univention

be open.
Example: Creating a new UCS package

In addition to the files to beinstalled some meta-data needs to be created in thedebi an/ sub-directory. This
directory contains several files, which are needed to build a Debian package. The files and their format will
be described in the following sections.

To create an initial debi an/ directory with all template files, invoke the dh_make(8) command provided
by the package dh-make:

dh_make --native --single --email user @xanpl e.com

Here severa options are given to create the files for a source package, which contains al filesin one archive
and only creates one binary package at the end of the build process. More details are given in Section B.2.

The program will output the following information:

Mai nt ai ner nane : John Doe

Emai | - Addr ess . user @xanpl e. com

Dat e . Thu, 28 Feb 2013 08:11: 30 +0100
Package Nane . testdeb

Ver si on : 0.1

Li cense . bl ank

Type of Package : Single
Ht <enter> to confirm

The package nametestdeb and version “0.1” were determined from the name of thedirectory t est deb- 0. 1,
the maintainer name and address were gathered from the UNIX account information.

After pressing the enter key some warning message will be shown:;

Currently there is no top |level Makefile. This nmay require additional
tuni ng. Done. Please edit the files in the debian/ subdirectory now.
You shoul d al so check that the testdeb Makefiles install into $DESTD R
and not in /

Sincethisexampleiscreated from scratch, themissing Makef i | e isnormal and thiswarning can beignored.
Instead of writing aMakefiletoinstall thesingle executable, dh_i nst al | will beused |ater toinstall thefile.

Since the command completed successfully, severa files were created in the debi an/ directory. Most of
them are template files, which are unused in this example. To improve understandability they are deleted:

rm debi an/ *. ex debi an/ *. EX
rm debi an/ READVE* debi an/ doc

Theremaining files are required and control the build process of al binary packages. Most of them don't need
to be modified for this example, but others must be completed using an editor.

debi an/ contr ol

The file contains general information about the source and binary packages. It needs to be modified to
include a description and contain the right build dependencies:

Source: testdeb

Secti on: univention

Priority: optional

Mai nt ai ner: John Doe <user @xanpl e. con>
Bui | d- Depends: debhel per (>= 7)

St andar ds- Version: 3.7.2

Package: testdeb
Architecture: all

13
www.univention.de

@ univention

be open.
Example: Creating a new UCS package

Depends: ${m sc: Depends}

Description: An exanpl e package for the devel oper guide

Thi s purpose of this package is to describe the structure of a
Debi an

packages. It al so docunents

the structure of a Debi an/ Uni venti on package
installati on process.

content of packages

format and function of control files

o T

For nore informati on about UCS, refer to:
htt p: //ww. uni venti on. de/

debi an/ rul es

Thisfile has a Makefile syntax and controls the package build process. Because there is no special han-
dling needed in this example, the default file can be used unmodified.

#! [usr/ bi n/ make -f

%
dh $@

Note that tabulators must be used for indention in thisfile.
debi an/ t est deb. i nstal |

To compensate the missing Makef i | e, dh_install(1) isused to install the executable. dh_i nst al | is
indirectly called by dh fromthedebi an/ r ul es file. Toinstall the programinto/ usr/ bi n/ , thefile
needs to be created manually containing the following single line:

t est deb. py usr/ bin/
Note that the path is not absolute but relative.
debi an/t est deb. posti nst

Since for this example the program should be invoked automatically during package installation, thisfile
needs to be crated. In addition to just invoking the program shipped with the package itself, it also shows
how Univention Configuration Registry variables can be set (see Section 2.1.1):

#!' /[bi n/sh
set -e

case "$1" in
confi gure)
i nvoke sanpl e program
t est deb. py
Set UCR variable if previously unset
ucr set repository/online/server?https://updates. software-
uni venti on. de/
Force UCR variabl e on upgrade from previ ous package only
i f dpkg --conpare-versions "$2" [t-nl 0.1-2
t hen
ucr set timeserverl=tinme.fu-berlin.de
fi

14 _)
www.univention.de

@ univention

be open.
Example: Creating a new UCS package

abort - upgr ade| abort - r enove| abort - deconf i gure)

*)
echo "postinst called with unknown argunent \ $1'" >&2
exit 1

esac
#DEBHEL PER#

exit O
debi an/ changel og

Thefile is used to keep track of changes done to the packaging. For this example the file should look
likethis:

testdeb (0.1-1) unstabl e; urgency=l ow
* |Initial Release.

-- John Doe <user @xanpl e.con> Mbn, 21 Mar 2013 13:46: 39 +0100
debi an/ copyri ght

Thisfileis used to collect copyright related information. It is critical for Debian only, which need this
information to guarantee that the package is freely redistributable. For this example the file remains
unchanged.

Thecopyri ght andchangel og fileareinstalledtothe/ usr/ shar e/ doc/ t est deb/ directory
on the target system.

debi an/ conpat ,
debi an/ sour ce/ f or mat

Thesefilescontrol someinternal aspectsof the package build process. They can beignored for the moment
and are further described in Section B.3.

Now the package is ready and can be built by invoking the following command:
dpkg- bui | dpackage -us -uc
The command should then produce the following output:

dpkg- bui | dpackage: source package testdeb
dpkg- bui | dpackage: source version 0.1-1
dpkg- bui | dpackage: source changed by John Doe <user @xanpl e. con®
dpkg- bui | dpackage: host architecture and64
dpkg-source --before-build testdeb
f aker oot debi an/rul es cl ean
dh cl ean
dh_testdir
dh_aut o_cl ean
dh_cl ean
dpkg-source -b testdeb
dpkg-source: Information: Quellformat »3.0 (native)« wird verwendet
dpkg-source: Information: testdeb wird in testdeb 0.1-1.tar.gz gebaut
dpkg-source: Information: testdeb wird in testdeb_0.1-1.dsc gebaut

_) 15
www.univention.de

Example: Creating a new UCS package

debi an/rul es build
dh build
dh_testdir
dh_aut o_configure
dh_auto_build
dh_aut o_t est
f aker oot debi an/rul es bi nary
dh bi nary
dh_testroot
dh_prep
dh_installdirs
dh_auto_install
dh_install
dh_instal |l docs
dh_i nst al | changel ogs
dh_i nst al | exanpl es
dh_i nstal | man
dh_i nstal | cat al ogs
dh_installcron
dh_i nst al | debconf
dh_instal |l emacsen
dh_installifupdown
dh_installinfo
dh_pysupport
dh_pysupport :
i nstead. Mgration guide:
dh_installinit
dh_i nstal | nrenu
dh_instal |l m ne
dh_i nst al | nodul es
dh_i nstal |l | ogcheck
dh_installl ogrotate
dh_instal | pam
dh_install ppp
dh_i nstal | udev
dh_i nstal | wn
dh_install xfonts
dh_instal |l gsettings
dh_bugfil es
dh_ucf
dh_lintian
dh_gconf
dh_i cons
dh_perll
dh_usrl ocal
dh_li nk
dh_conpress
dh_fi xperns
dh_install deb
dh_gencontr ol
dh_nd5suns
dh_bui | ddeb
dpkg-deb: buil di ng package "testdeb’

@ univention

be open.

This programis deprecated, you should use dh_pyt hon2
http://deb.li/dhs2p

in ../testdeb 0.1-1 all.deb'.

dpkg- genchanges -b >../testdeb_0.1-1 and64. changes

16

www.univention.de

@ univention

be open.
Setup repository

dpkg- genchanges: bi nary-only upl oad - not including any source code
dpkg-source --after-build testdeb

dpkg- bui | dpackage: full upload; Debian-native package (full source is
i ncl uded)

The binary packagefilet est deb_0. 1-1_al | . deb isstored in the parent directory. When it isinstalled
manually usingdpkg -i ../testdeb_0. 1-2_al | . deb asroot, thePythonscriptisinstalled as/ usr /
bi n/t est deb. py. It is automatically invoked by the post i nt script, so afile named / t np/ t est -
deb- dat e- t i me has been created, too.

Congratulations! Y ou've successfully built your first own Debian package.

1.5. Setup repository Fecaback {)

Until now the binary package is only available locally, thus for installation it needs to be copied manually to
each host and must be installed manually using dpkg - i . If the package required additional dependencies,
the installation process will abort, since packages are not downloaded by dpkg, but by apt . To support
automatic installation and dependency resol ution, the package must be put into an apt repository, which needs
to be made available through ht t p or some other mechanism.

For this example the repository is created below / var / www/ r eposi t or y/ , which is exported by default
on al UCS systems, where apache? is installed. Below that directory several other sub-directories and files
must be created to be compatible with the UCS Updater. Thefollowing example commands create arepository
for UCS version 4.1 with the component namet est conp:

WAV BASE="/ var / ww/ r eposi t ory/ 4. 1/ mai nt ai ned/ conponent "
TESTCOWP="t est conp/ al | "
install -n¥55 -d "$WWV BASE/ $TESTCOVP"
install -nb644 -t "$WNWV BASE/ $TESTCOW" *. deb
(cd "$WAWV BASE"' &&
rm-f "$TESTCOWP/ Packages"* &&
apt - f t parchi ve packages "$TESTCOW"' > "Packages" &&
gzip -9 < "Packages" > "S$TESTCOW/ Packages. gz" &&
mv " Packages" "$TESTCOWP/ Packages")

This repository can be included on any UCS system by appending the following line to / et ¢/ apt/
sources. | i st,assumingthe FQDN of the host providing therepository isnamedr eposi t ory. ser v-
er:

deb http://repository. server/repository/ 4.1/ maintai ned/ conponent
testconp/all/

Note

It isimportant that the directory, from werethe apt - f t par chi ve command isinvoked, matches
the first string given in the sour ces. | i st file after the deb prefix. The URL together with the
suffix t est conp/ al | / not only specifies the location of the Packages file, but is also used as
the base URL for al packages listed in the Packages file.

Instead of editing the sour ces. | i st file directly, the repository can also be included as a component,
which can be configured by setting several UCR variables. As UCR variables can also be configured through
UDM poalicies, this simplifies the task of installing packages from such a repository on may hosts. For the
repository above the following variables need to be set:

ucr set \
reposi t ory/ onl i ne/ conponent / t est conp=yes \

17
www.univention.de

https://www.univention.com/feedback/?manual=pkt:repository

18

@ univention

be open.
Building packages through the openSUSE Build Service

reposi t ory/ onl i ne/ conponent / t est conp/ server =reposi tory. server \
reposi t ory/ onl i ne/ conponent / t est conp/ pr efi x=r epository

1.6. Building packages through the openSUSE Build Feedback{)
Service

The openSUSE Build Service (OBS) is aframework to generate packages for a wide range of distributions.
Additional information can be found at https://build.opensuse.org/. If OBS s already used to build packages
for other distributions, it can also be used for Univention Corporate Server builds. The build target for UCS 4.1

is caled Univention UCS4.1. Note that OBS doesn't handle the integration steps described in later chapters
(e.g. the use of Univention Configuration Registry templates).

www.univention.de

https://www.univention.com/feedback/?manual=pkg:obs
https://build.opensuse.org/

@ univention

be open.
Using UCR

Chapter 2. Univention Config Registry

2.0 USING UCR L.ttt ettt oo o2 e et ettt e e e e e e e e e ettt e e e e e e e e eaab e e e 19
2.1.1. USing UCR from ShEll ...ooeee e 19
2.1.2. USing UCR from PYLNONuiiiiiiiei e e 20

2.2, CoNfIQUIALION TIIES ...t ettt et e et eeeas 22
2.2.1. debi an/ package. uni venti on-config-regi Stryccocccoveiiiiiiiiniiiiiineeeennn, 22

b T T N TSRS 23
b WV U O T = TR 24
S S o g o S ST TSUPPTSU PP 25
b Y o To [| =SSR 25
2.2.2. debi an/ package. uni venti on-config-registry-variables 26
2.2.3. debi an/ package. uni venti on-config-regi stry-categories 26
2.2.4. debi an/ package. uni venti on-config-regi stry-servicescccceeeneees 27

2.3. UCR Template filesconffil es/path/t o/ fil e .., 28

2.4, BUI TNEEOIELHONieeee ettt ettt e et e et e et e e e et 29

2.5, EXBIMPIES et 30
251 Minimal File eXamPIeouuiiiiii e e 30
2.5.2. MUILITIlE @XAMPIE ..ee e 31
25,3, SEIVICES ittt 33

The Univention Config Registry (UCR) is a local mechanism, which is used on all UCS system roles to
consistently configure all services and applications. It consists of a database, were the currently configured
values are stored, and a mechanism to trigger certain actions, when values are changed. This is mostly used
to create configuration files from templates by filling in the configured values. In addition to using ssimple
place holders its also possible to use Python code for more advanced templates or to call external programs
when values are changed. UCR values can al so be configured through an UDM policy in Univention directory
service (LDAP), which allows values to be set consistently for multiple hosts of a domain.

2.1. Using UCR

Univention Configuration Registry provides two interfaces, which allows easy access from shell scripts and
Python programs.

2.1.1. Using UCR from shell

uni venti on-confi g-regi stry (anditsaliasucr) can beinvoked directly from shell. The most com-
monly used functions are:

ucr set[key=val ue]|[keyal ue]...

Set Univention Configuration Registry variable key to the given val ue. Using = forces an assignment,
while ? only setsthe valueif the variable is unset.

Example2.1. Useof ucr set

ucr set print/papersize?ad \
vari abl e/ nane=val ue

ucr getkey

Return the current value of the Univention Configuration Registry variable key.

Example 2.2. Useof ucr get

case "$(ucr get systemrole)" in

_) 19
www.univention.de

Feedback Q

Feedback Q

https://www.univention.com/feedback/?manual=ucr:usage
https://www.univention.com/feedback/?manual=ucr:usage:shell

@ univention

be open.
Using UCR from Python

domai ncontrol | er _*)
echo "Running on a UCS Donain Controller"

esac

For variables containing boolean values the shell-library-functioni s_ucr _true key from/ usr/
shar e/ uni vention-1i b/ ucr. sh should be used. It returns O (success) for the values"1", "yes’,
"on", "true”, "enable", "enabled”, 1 for the negated values 0", "no", "off", "false", "disable", "disabled".
For all other valuesit returns avalue of 2 to indicate inappropriate usage.

Example2.3. Useof i s_ucr _true

/usr/share/univention-lib/ucr.sh
if is_ucr_true repository/online/unmaintained
t hen
echo "Unmai ntai ned is enabl ed"
fi

ucr unsetkey ...

Unset the Univention Configuration Registry variable key.

Example 2.4. Useof ucr unset
ucr unset print/papersize vari abl e/ namre
ucr shdl [key ..]

Export some or al Univention Configuration Registry variablesin ashell compatible manner as environ-
ment variables. All shell-incompatible charactersin variable names are substituted by underscores ().

Example 2.5. Useof ucr shel |

eval "$(ucr shell)"
case "$server _role" in
domai ncontrol | er _*)
echo "Running on a UCS Domai n Controller serving $l dap_base"

esac

It is often easier to export al variables once and than reference the values through shell variables.

Warning

Be careful with shell quoting, since several Univention Configuration Registry variables contain
shell meta characters. Useeval "$(ucr shell)".

Note

ucr isinstalled as/ usr/ sbi n/ ucr, which is not on the search path $PATH of normal users.
Changing variables requiresroot accessto/ et ¢/ uni vent i on/ base. conf , but reading works
for normal userstoo, if / usr/ shi n/ ucr isinvoked directly.

2.1.2. Using UCR from Python Feedback {2}

UCR also provides a Python binding, which can be used from any Python program. An instance of uni ven-
tion.config_registry. ConfigRegi stry needsto be crated first. After loading the current data-
base state with | oad() the values can be accessed by using the instance like a Python dictionary:

20 _)
www.univention.de

https://www.univention.com/feedback/?manual=ucr:usage:python

@ univention

be open.
Using UCR from Python

Example 2.6. Reading a Univention Configuration Registry variable in Python

from uni vention.config_registry inport ConfigRegistry
ucr = ConfigRegistry()

ucr. | oad()
print ucr['variabl e/ nane']
print ucr.get('variable/nanme', '<not set>')

For variables containing boolean values the methodsi s_true() andi s_fal se() should be used. The
former returns Tr ue for the values "1", "yes', "on", "true", "enable", "enabled", while the later one returns
Tr ue for the negated values"0", "no", "off", "false", "disable", "disabled". Both methods accept an optional
argument def aul t , which isreturned as-is when the variable is not set.

Example2.7. Reading boolean Univention Configuration Registry variablesin Python

if ucr.is_true('repository/online/unnmaintained):

print "unmaintained is explicitly enabl ed"

if ucr.is _true('repository/online/unmaintained , True):
print "unmaintained is enabl ed"

if ucr.is_fal se('repository/online/unmaintained):

print "unmaintained is explicitly disabl ed"

if ucr.is false('repository/online/unmaintained , True):
print "unmaintained is disabled"

Modifying variables requires a different approach. The function ucr _updat e() should be used to set and
unset variables.

Example 2.8. Changing Univention Configuration Registry variablesin Python

from uni vention.config registry.frontend i nport ucr_update
ucr _updat e(ucr, {

'foo': 'bar',
"baz': '42',
"bar': None,
})

Thefunctionucr _updat e() requiresaninstanceof Conf i gRegi st ry asitsfirst argument. The method
is guaranteed to be atomic and internally uses file locking to prevent race conditions.

The second argument must be a Python dictionary mapping UCR variable namesto their new value. Thevalue
must be either a string or None, which is used to unset the variable.

Asan dternative the old functionshandl er _set () and handl er _unset () can still be used to set and
unset variables. Both functions expect an array of strings with the same syntax as used with the command
linetool ucr . Asthefunctionshandl er _set () andhandl er _unset () don't automatically update any
instance of Conf i gRegi stry, the method | oad() has to be caled manually afterwards to reflect the
updated values.

Example 2.9. Setting and unsetting Univention Configuration Registry variables in

Python

from univention.config registry inport handl er_set, handl er_unset
handl er _set ([' foo=bar', 'baz?42'])

handl er _unset (['foo', 'bar'])

21
www.univention.de

@ univention

be open.
Configuration files

2.2. Configuration files Feedback{)

Packages can use the UCR functionality to create customized configuration files themselves. UCR diverts
files shipped by Debian packages and replaces them by generated files. If variables are changed, the affected
files are committed, which regenerated their content. This diversion is persistent and even outlives updates,
so they are not overwritten by configuration files of new packages.

For this, packages need to ship additiona files:
conffiles/path/to/file

Thistemplate file is used to create the target file. There exist two variants: A singe file template consists
of only asinglefile, from which thetarget fileiscreated, whileamulti file template can consist of multiple
filefragments, which are concatenated to form thetarget file. See Section 2.3 below for moreinformation.

debi an/ package. uni vention-config-registry

This mandatory information file describes the each templatefile. It specifies the type of the template and
lists the UCR variable names, which shall trigger the regeneration of the target file. See Section 2.2.1
below for more information.

debi an/ package. uni venti on-confi g-regi stry-vari abl es

This optional file can add descriptions to UCR variables, which should describe the use of the variable,
its default and allowed values. See Section 2.2.2 below for more information.

debi an/ package. uni venti on-confi g-regi stry-categories

Thisoptional file can add additional categoriesto group UCR variables. See Section 2.2.3 below for more
information.

debi an/ package. uni venti on-confi g-regi stry-services
This optional fileis used to define long running services. See Section 2.2.4 below for more information.

In addition to these files code needs to be inserted into the package maintainer scripts (see Section B.3.5),
which registers and unregisters these files. This is done by calling uni venti on-i nstall -con-
fig-registry fromdebi an/ r ul es during the package build bi nary phase. The command is part of
the univention-config-dev package, which needs to be added as a Bui | d- Depends build dependency of
the source packagein debi an/ cont r ol .

2.2.1. debi an/ package. uni venti on-config-registry Feedback {)

Thisfile describes all template filesin the package. Thefileis processed and copied by uni vent i on-i n-
stal |l -config-registryinto/ etc/univention/tenplates/info/ whenthepackageisbuilt.

It can consist of multiple sections, where sections are separated by one blank line. Each section consists
of multiple key-value-pairs separated by a colon followed by one blank. A typical entry has the following
structure:

Type: <type>

[MultifilelFile]: <filename>

[Subfile: <fragnent-filenanme>]
Vari abl es: <vari abl e1>

Ty pe specifiesthe type of the template, which the following sections describe in more detail.

22 _)
www.univention.de

https://www.univention.com/feedback/?manual=ucr:conf
https://www.univention.com/feedback/?manual=ucr:info

@ univention

be open.
debi an/ package. uni venti on-config-registry

2211.File

A singlefiletemplateis specified astypef i | e. It definesatemplate, werethe target fileis created from only
asingle source file. A typical entry hat the following structure:

Type: file

File: <fil enane>

Vari abl es: <vari abl el>
User: <owner>

G oup: <group>

Mode: <fil e- node>

Prei nst: <nodul e>
Posti nst: <nodul e>

The following keys can be used:
Fi | e (required)

Specifiesboth the target and source file name, which areidentical . The source file containing the templ ate
must be put below theconf fi | es/ directory. Thefile can contain any textual content and is processed
as described in Section 2.3.

Thetemplatefileisinstalledto/ et ¢/ uni venti on/ tenpl ates/fil es/.
Vari abl es (optional)

This key can be given multiple times and specifies the name of UCR variables, which trigger the file
commit process. Thisis normally only required for templates using @ @Python code regions. Variables
used in @@sections do not need to be listed explicitly, sinceucr extracts them automatically.

The variable name is actually a Python regular expression, which can be used to match, for example, all
variable names starting with a common prefix.

User (optional),
G oup (optional),
Mode (optional)

These specify the symbolic name of the user, group and octal file permissions for the created target file.
If no values are explicitly provided, thenr oot : r oot isused by default and the file mode is inherited
from the source template.

Pr ei nst (optiona),
Post i nst (optional)

These specify the name of a Python module located in / et ¢/ uni venti on/ t enpl at es/ nod-
ul es/, which is called before and after the target file is re-created. The module must implement the
following two functions:

def preinst(config registry, changes):
pass

def postinst(config registry, changes):
pass

Each function receives two arguments: The first argument confi g_regi stry is areference to an
instance of Conf i gRegi st ry. Thesecond argument changes isadictionary of 2-tuples, which maps
the names of al changed variablesto (ol d- val ue, new val ue).

_) 23
www.univention.de

Feedback Q

https://www.univention.com/feedback/?manual=ucr:file

@ univention

be open.

debi an/ package. uni venti on-config-registry

uni vention-install-config-registry instals the module file to /etc/univen-
tion/tenpl at es/ nodul es/ .

If ascript/ et ¢/ uni venti on/tenpl ates/scripts/full-path-to-fil eexists, itwill becaled
after the file is committed. The script is called with the argument post i nst . It receives the list of changed
variables as documented in Section 2.2.1.3.

2212 Miltifile FeedbackQ

24

A multi filetemplate is specified onceastypenul ti f i | e, which describes the target file name. In addition
to that multiple sections of type subf i | e are used to describe source file fragments, which are concatenated
to form the final target file. A typical multifile has the following structure:

Type: multifile

Multifile: <target-fil ename>
User: <owner>

G oup: <group>

Mode: <fil e- nbde>

Prei nst: <nodul e>

Posti nst: <nodul e>

Vari abl es: <vari abl el>

Type: subfile

Multifile: <target-fil ename>
Subfile: <fragnent-fil ename>
Vari abl es: <vari abl el>

The following keys can be used:
Mul tifil e (required)

This specifies the target file name. It is aso used to link the nul ti fi | e entry to its corresponding
subfi | e entries.

Subfi | e (required)

The source file containing the template fragment must be put below the conf fi | es/ directory in the
Debian source package. The file can contain any textual content and is processed as described in Sec-
tion 2.3. Thetemplatefileisinstalledto/ et ¢/ uni venti on/ tenpl ates/fil es/.

Common best practiceisto start the filename with two digitsto allow consistent sorting and to put thefile
in the directory named like the target filename suffixed by . d, thatisconffil es/target-fil e-
nane. d/ 00f ragnment - fi | enane.

Vari abl es (optional)

Variables can be declared in both thenul ti fi | e and subfi | e sections. The variables from al sec-
tions trigger the commit of the target file. Until UCS-2.4 only therrul ti fi | e section was used, since
UCS-3.0thesubf i | e section should be preferred (if needed).

User (optional),

Gr oup (optional),
Mode (optional),

Pr ei nst (optiona),
Post i nst (optional)

Same asaboveforfi |l e.

www.univention.de

https://www.univention.com/feedback/?manual=ucr:multifile

@ univention

be open.
debi an/ package. uni venti on-config-registry

The same script hook as above for f i | e isalso supported.
2.2.1.3. Scri pt

A script template allows an external program to be called when specific UCR variables are changed. A typical
script entry has the following structure:

Type: script

Script: <fil ename>
Vari abl es: <vari abl e1>
The following keys can be used:
Scri pt (required)

Specifies the filename of an executable, which is installed to /etc/univention/tem
pl ates/scripts/.

The script is called with the argument gener at e. It receives the list of changed variables on standard
input. For each changed variable a line containing the name of the variable, the old value, and the new
value separated by @/4Qis sent.

Vari abl es (required)
Specifies the UCR variable names, which should trigger the script.
2.2.1.4. Modul e

A module template allows a Python module to be run when specific UCR variables are changed. A typical
module entry has the following structure:

Type: nodul e
Modul e: <fil enane>
Vari abl es: <vari abl el>

The following keys can be used:
Modul e (required)

Specifies the filename of a Python module, which is installed to /et c/ uni vention/tem
pl at es/ nodul es/ .

The module must implement the following function:

def handl er(config_registry, changes):
pass

The function receives two arguments: The first argument conf i g_r egi st ry isareference to an in-
stance of Conf i gRegi st ry. The second argument changes isadictionary of 2-tuples, which maps
the names of all changed variablesto (ol d- val ue, new val ue).

uni vention-install-config-registry installsthemoduleto/ et c/ uni venti on/tem
pl at es/ nodul es/ .

Vari abl es (required)

Specifies the UCR variable names, which should trigger the module.

_) 25
www.univention.de

https://www.univention.com/feedback/?manual=ucr:script
https://www.univention.com/feedback/?manual=ucr:module

@ univention

be open.
debi an/ package. uni venti on-confi g-reg-
i stry-vari abl es
2.2.2. debi an/ package. uni venti on-confi g-regi stry-vari- redakf)

abl es

For UCR variables adescription should be registered. This description is shown in the Univention Config Reg-
istry module of the UMC as amouse-over. It can aso be queried by runningucr i nfo vari abl e/ nane
on the command line.

The description is provided on a per-package basis as a file, which uses the ini-style format. The file is
processed and copied by uni venti on-install-config-registry-info into/etc/univen-
tion/registry.info/variables/. The command uni vention-install-config-reg-
i stry-infoisinvokedindirectly by uni venti on-install-config-registry,whichshouldbe
caledinstead from debi an/ r ul es.

For each variable a section of the following structure is defined:

[<vari abl e/ name>]

Descri pti on[en] =<descri pti on>

Descri pti on[<l anguage>] =<descri pti on>
Type=<type>

ReadOnl y=<yes| no>

Cat egori es=<category, ...>

[vari abl e/ nane] (required)

For each variable description one section needs to be created. The name of the section must match the
variable name.

To describe multiple variableswith acommon prefix and/or suffix, the regular expression . * can be used
to match any sequence of characters. Thisis the only supported regular expression!

Descri ption[|l anguage] (required)

A descriptive text for the variable. It should mention the valid and default values. The description can be
given in multiple languages, using the two-letter-code following [| SO639].

Type (required)

The syntax type for the value. Thisisunused in UCS-3.1, but future versions might use thisfor validating
theinput. Valid valuesinclude st r for strings, bool for boolean values, and i nt for integers.

ReadOnl y (optional)

This declares a variable as read-only and prohibits changing the value through UMC. The restriction is
not applied when using the command line tool ucr . Valid values are t r ue for read-only and f al se,
which is the default.

Cat egor i es (required)

A list of categories, separated by comma. Thisis used to group related UCR variables. New categories
don't need to be declared explicitly, but it is recommended to do so following Section 2.2.3.

2.2.3. debi an/ package. uni venti on-confi g-regi stry-cate- remf)
gori es

UCR variables can be grouped into categories, which can help administrators to find related settings. Cate-
gories are referenced from . uni venti on-confi g-regi stry-vari abl es files (see Section 2.2.2).

26 _)
www.univention.de

https://www.univention.com/feedback/?manual=ucr:variables
https://www.univention.com/feedback/?manual=ucr:categories

@ univention

be open.

debi an/ package. uni venti on-confi g-reg-
i stry-services

They are created on-the-fly, but can be described further by explicitly defining them in a . uni ven-
tion-config-registry-categories file

The description is provided on a per-package basis as a file, which uses the ini-style format. The file is
processed and copied by uni venti on-install-config-registry-infointo/etc/univen-
tion/registry.info/categories/. The command uni vention-install-config-reg-
i stry-infoisinvokedindirectly by uni venti on-install-config-registry,whichshouldbe
caledinstead from debi an/ r ul es.

For each category a section of the following structure is defined:

[<cat egor y- nane>]

name[en] =<name>

nane[<l anguage>] =<t r ansl at ed- nane>
i con=<fil e-name>

[cat egory- nane]
For each category description one section needs to be created.
nane[| anguage] (required)

A descriptive text for the category. The description can be given in multiple languages, using the two-
letter-code following [1SO639].

i con (required)

Thefile name of aniconin either the Portable Network Graphics (PNG) format or Graphics I nterchange
Format (GIF). Thisis unused in UCS-3.1, but future versions might display this icon for variables in
this category.

2.2.4. debi an/ package. uni venti on-confi g-regi stry-ser- Feedback{ D}
vi ces

Long running services should be registered with UCR and UMC. This enables administrators to control these
daemons using the UM C module System services.

The description is provided on a per-package basis as a file, which uses the ini-style format. The file is
processed and copied by uni vention-install-service-infointo/etc/univention/ser-
vi ce.info/services/. The command uni vention-install-service-info isinvoked in-
directly by uni venti on-i nstal | -confi g-regi stry, which should be called instead from de-
bi an/ rul es.

For each service a section of the following structure is defined:

[<servi ce- nane>]

descri pti on[<l anguage>] =<descri pti on>
start _type=<servi ce- nanme>/ aut ost art
syst enmd=<ser vi ce- nane>. servi ce

i con=<service/icon_nanme>

pr ogr ans=<execut abl e>

[servi ce- nane]

For each daemon one section needs to be created. The service-name should match the name of the init-
scriptin/etc/init.d/.

_) 27
www.univention.de

https://www.univention.com/feedback/?manual=ucr:services

@ univention

be open.
UCR Templatefilesconffil es/ path/to/file

descri ption[| anguage] (required)

A descriptive text for the service. The description can be given in multiple languages, using the two-
letter-code following [1SO639].

start _type (required)

Specifies the name of the UCR variable, which controlsif the service should be started automatically. It
isrecommended to usethe shell library / usr/ shar e/ uni venti on-config-registry/init-

aut ost art. | i btoevauatethesetting fromtheinit-script of theservice. If thevariableissettof al se
or no, the service should never be started. If the variable is set to manual | y, the service should not be
started automatically, but invoking the init-script directly with st ar t should still start the service.

syst end (optional)

A comma separated list of systemd service names, which are enabled/disabled/masked when
start _type isused. Thisdefaultsto the name of the service plusthe suffix . ser vi ce.

pr ogr ans (required)

A comma separated list of commands, which must be running to qualify the service as running. Each
command name is checked against / pr oc/ */ cmdl i ne. To check the processes for additional argu-
ments, the command can also consist of additional shell-escaped arguments.

i con (optional)

The file name of an icon in either Portable Network Graphics (PNG) format or Graphics Interchange
Format (GIF) format. Thisisunused in UCS-3.1, but future versions might display theicon for the service.

2.3. UCR Template files conffil es/path/to/file Fecaback{)

For each file, which should be written, one or more template files need beto created below theconf fi | es/
directory. For asingle-File template (see Section 2.2.1.1), the filename must match the filename given in the
Fi | e: stanzaof thefile entry itself. For a Multifile template (see Section 2.2.1.2), the filename must match
thefilename givenintheFi | e: stanzaof the subfile entries.

Each template file is normally a text file, where certain sections get substituted by computed values during
the file commit. Each section starts and ends with a special marker. UCR currently supports the following
kinds of markers:

@ @variable reference

Sections enclosed in @/@are simple references to Univention Configuration Registry variable. The sec-
tionisreplaced inline by the current value of the variable. If the variableis unset, an empty string is used.

ucr scansall fil esand subfi | eson registration. All Univention Configuration Registry variables
used in @@are automatically extracted and registered for triggering the template mechanism. They don't
need to be explicitly enumerated with Var i abl es: -statementsin thefiledebi an/ package. uni -
vention-config-registry.

©@ @Python code

Sections enclosed in @ @contain Python code. Everything printed to STDOUT by these sectionsisin-
serted into the generated file. The Python code can access the conf i gRegi st ry?* variable, which is

1 Historically Univention Configuration Registry was named “Univention Base Config”. For backward compatibility the alias baseConf i g is still
provided. It should not be used anymore and will be removed in afuture version of UCS.

28 _)
www.univention.de

https://www.univention.com/feedback/?manual=ucr:conffiles

@ univention

be open.
Build integration

an aready loaded instance of Conf i gRegi st ry. Each section is evaluated separately, so no state is
kept between different Python sections.

All Univention Configuration Registry variablesused ina @ @Python section must be manually matched
by aVari abl es: statement in the debi an/ package. uni venti on-confi g-regi stry file.
Otherwise the file is not updated on changes of the UCR variable.

@@ICRWARNI NG=%PREFI X@4@
@@ICRWARNI NG_ASCI | =%°REFI X@4@

This variant of the variable reference inserts awarning text, which looks like this:

Warning: This file is auto-generated and m ght be overwitten by

uni venti on-confi g-registry.

Pl ease edit the following file(s) instead:

Warnung: Diese Datei wurde automati sch generiert und kann durch

uni venti on-confi g-regi stry Uberschri eben werden.

Bitte bearbeiten Sie an Stelle dessen die fol gende(n)
Dat ei (en):

#

/etc/univention/tenplates/files/etc/hosts. d/ 00-base

/etc/univention/tenplates/files/etc/hosts.d/20-static

/etc/univention/tenplates/files/etc/hosts. d/90-ipv6defaults

#

It should be inserted once at the top to prevent the user from editing the generated file. For single File
templates, it should be on the top of the template file itself. For Multifile templates, it should only be
on the top the first subfile.

Everything between the equal sign and the closing @«@defines the PREFI X, which is inserted at the
beginning of each line of the warning text. For shell scripts, thisshould be# , but other files use different
charactersto start acomment. For files, which don't allow comments, the header should be skipped.

Warning

Severd file formats require the file to start with some magic data. For example shell scripts
must start with a hash-bang (#!) and XML files must start with <?xm ver si on="1. 0"
encodi ng="UTF- 8" ?> (if used). Make sure to put the warning after these headers!

The UCRWARNI NG_ASCI | variant only emits 7-bit ASCII characters, which can be used for files, which
are not 8 bit clean or unicode aware.

2.4. Build integration Feedback{)

During packagebuildtimeuni vent i on-i nstal | - confi g-regi st ry needsto becalled. Thisshould
be done by overridingthedh_aut o_i nstal | _target indebi an/ rul es:

override _dh_auto_install:
uni vention-install-config-registry
dh_aut o_install

This invocation copies the referenced files to the right location in the binary package staging
area debi an/ package/ et ¢/ uni vention/. Internaly uni vention-install-config-reg-
i stry-infoandunivention-install-service-info areinvoked, which should not be called
explicitly anymore. The calls also insert code into the files debi an/ package. pr ei nst . debhel per,
debi an/ package. posti nst. debhel per and debi an/ package. pr er m debhel per toregis

_) 29
www.univention.de

https://www.univention.com/feedback/?manual=ucr:build

@ univention

be open.
Examples

ter and un-register the templates. Therefore it's important that customized maintainer scripts use the #DEB-
HEL PER# marker, so that the generated code gets inserted into the corresponding pr ei nst, posti nst
and pr er mfiles of the generated binary package.

Theinvocation also addsunivention-configtom sc: Depends to ensurethat the packageisavailableduring
package configuration time. Therefore it'simportant that ${ m sc: Depends} isused inthe Depends line
of the package sectioninthe debi an/ cont r ol file.

Package:
Depends: ..., ${m sc: Depends},

25 Examples Feedback {)}

This sections contains several simple examples for the use of Univention Configuration Registry. The com-
plete source of these examples is available separately. The download location is given in each example be-
low. Since amost al Univention Corporate Server packages use UCR, their source code provides additional
examples.

2.5.1. Minimal File example Feedback {)

Thisexample provides atemplatefor / et ¢/ paper si ze, which is used to configure the default paper size.
A Univention Configuration Registry variablepr i nt / paper si ze isregistered, which can be used to con-
figure the papersize.

Source code: doc/devel oper-reference/ucr/papersi zelt
conffil es/etc/ papersize

The template file only contains one line. Please note that this file does not start with the “UCR-
WARNING”, since the file must only contain the paper size and no comments.

@@@pr i nt / paper si ze @

debi an/ paper si ze. uni venti on-confi g-regi stry

The file defines the templates and is processed by uni venti on-i nstal |l -config-registry
during the package build and afterwards by uni vent i on- confi g-r egi st r y during normal usage.

Type: file
File: etc/papersize

debi an/ paper si ze. uni venti on-confi g-regi stry-vari abl es
The file describes the newly defined Univention Configuration Registry variable.
[print/ papersize]
Descri pti on[en] =speci fy preferred paper size [a4]
Descri pti on[de] =Legt di e bevor zugt e Papi ergr e fest [a4d]
Type=str
Cat egor i es=ser Vi ce- cups
debi an/ paper si ze. post i nst

Sets the Univention Configuration Registry variable to a default value after package installation.

1 https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/devel oper-reference/ucr/papersize/

30 _)
www.univention.de

https://www.univention.com/feedback/?manual=ucr:example
https://www.univention.com/feedback/?manual=ucr:example:minimal
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/ucr/papersize/
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/ucr/papersize/

@ univention

be open.
Multifile example

#!/ bin/ sh
#DEBHEL PER#
ucr set print/papersize?a4d

exit O
debi an/ rul es

Invokeuni vention-instal |l -confi g-regi stry during package build to install the filesto the
appropriate location. It also creates the required commands for the maintainer scripts (see Section B.3.5)
to register and unregister the templates during package installation and removal.

#! [usr/ bi n/ rake -f

override _dh_auto_install:
dh_aut o_install
uni vention-install-config-registry

%
dh $@

Note that tabulators must be used for indention in this Makefile-typefile.

debi an/ contr ol

The automatically generated dependency on univention-config is inserted by uni venti on-i n-
stall -config-regi stry viadebi an/ papersi ze. subst vars.

Sour ce: papersize
Section: univention
Priority: optional
Mai nt ai ner: Univenti on GrbH <packages@ni venti on. de>
Bui | d- Depends: debhel per (>= 7),
uni venti on-confi g- dev,
St andar ds- Version: 3.7.2

Package: papersize

Architecture: all

Depends: ${m sc: Depends}

Description: An exanpl e package to configure the papersize
Thi s purpose of this package is to show how Uni vention Config
Regi stry is used.

For nore informati on about UCS, refer to:
htt p: // ww. uni venti on. de/

2.5.2. Multifile example Feedback £}

This example provides templates for / et ¢/ host s. al | owand / et ¢/ host s. deny, which is used to
control access to system services. See hosts_access(5) for more details.

Source code: doc/devel oper-reference/ucr/ hosts/*

1 https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/devel oper-reference/ucr/hosts/

_) 31
www.univention.de

https://www.univention.com/feedback/?manual=ucr:example:multifile
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/ucr/hosts/
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/ucr/hosts/

@ univention

be open.
Multifile example

conffiles/etc/hosts. all ow. d/ O0Oheader,
conffiles/etc/hosts. deny. d/ O0Oheader

The first file fragment of the file. It starts with @4AQJCRWARNI NG=# @@ which is replaced by the
warning text and alist of all subfiles.

@HAJCRWARNI NG=# @@

/etc/hosts.allow list of hosts that are allowed to access the
system

See the manual pages hosts_access(5) and
hosts_options(5).

conffiles/etc/hosts. all ow. d/ 50dynani c,
conffiles/etc/hosts. deny. d/ 50dynani c

A second file fragment, which uses Python code to insert access control entries configured through the
Univention Configuration Registry variableshost s/ al | ow/ and host s/ deny/ .

@@
for key, value in sorted(configRegistry.itenms()):
if key.startswith(' hosts/allow '):

print val ue

@@
debi an/ host s. uni venti on-confi g-registry
Thefile defines the templates and is processed by uni venti on-i nstal | -confi g-registry.

Type: nmultifile
Multifile: etc/hosts.all ow

Type: subfile
Multifile: etc/hosts.all ow
Subfile: etc/hosts. al |l ow. d/ 00Oheader

Type: subfile

Mul tifile: etc/hosts.allow

Subfile: etc/hosts.allow d/50dynam c
Vari abl es: ~hosts/allow .*

Type: multifile
Multifile: etc/hosts.deny

Type: subfile
Multifile: etc/hosts.deny
Subfile: etc/hosts. deny.d/ 00header

Type: subfile

Multifile: etc/hosts.deny

Subfile: etc/hosts. deny.d/50dynamn c
Vari abl es: ~hosts/deny/.*

debi an/ host s. uni venti on-confi g-regi stry-vari abl es

The file describes the newly defined Univention Configuration Registry variables.

32 _)
www.univention.de

@ univention

be open.
Services

[hosts/all ow . *]

Descri ption[en] =An perni ssive access control entry for system
services, e.g. "ALL: LOCAL"

Descri ption[de] =Ei ne erl aubende Zugri ffsregel fir Systendi enste, z.B.
"ALL: LOCAL".

Type=str

Cat egor i es=servi ce- net

[host s/ deny/ . *]

Descri ption[en] =An denyi ng access control entry for system services,
e.g. "ALL: ALL".

Descri ption[de] =Ei ne verbi et ende Zugriffsregel fir Systendienste,
z.B. "ALL: ALL".

Type=str

Cat egor i es=servi ce- net

2.5.3. Services

This example provides atemplate to control the at d service through an Univention Configuration Registry
variableat d/ aut ost art .

Source code: doc/devel oper-reference/ucr/servi celt

conffiles/etc/init.d/atd
Thetemplatereplacestheoriginal filewith aversion, which checksthe Univention Configuration Registry
variable at d/ aut ost art before starting the at daemon. Please note that the “UCRWARNING” is
put after the hash-bash line.
#!' [/ bin/sh

@@ICRMARNI NG=# @@
BEG N INIT I NFO

Provi des: atd

Required-Start: $syslog $tine $renvte fs

Requi r ed- St op: $syslog $tine $renvte fs

Default-Start: 2345

Defaul t - St op: 016

Short-Description: Deferred execution schedul er

Description: Debian init script for the atd deferred
executions

schedul er

END I NI T | NFO

pidfile: /var/run/atd. pid

#

Author: Ryan Murray <rnurray@lebi an. org>
#

PATH=/ bi n: /usr/ bi n: /sbi n:/usr/sbin
DAEMON=/ usr/ sbi n/ at d
Pl DFI LE=/ var/run/ atd. pi d

test -x SDAEMON || exit O

1 https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/devel oper-reference/ucr/service/

_) 33
www.univention.de

Feedback Q

https://www.univention.com/feedback/?manual=ucr:example:service
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/ucr/service/
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/ucr/service/

@ univention

be open.
Services
/1ib/lsb/init-functions
case "$1" in
start)
check ucr autostart setting
| AL="/usr/share/ uni vention-config-registry/init-autostart.|ib"
if [-f "$IAL"]; then
"$l AL"
check _autostart atd atd/autostart
fi
| og_daenon_nsg "Starting deferred execution scheduler" "atd"
start _daenon -p $PI DFI LE $DAEMON
| og_end _nsg $?
st op)
| og_daenon_nsg " Stoppi ng deferred execution schedul er" "atd"
killproc -p $PI DFI LE $DAEMON
| og_end _nsg $?
force-rel oad| restart)
$0 stop
$0 start
st at us)
status_of proc -p $PIDFI LE $DAEMON atd && exit 0 || exit $?
*)
echo "Usage: $0 {start|stop|restart]|force-reload|status}"”
exit 1
esac
exit O
Notetheinclusionof i nit-autostart.|i banduseof check_autostart.
debi an/ servi ce. univention-config-registry
The file defines the templates.
Type: file
File: etc/init.d/atd
Mode: 755
Vari abl es: atd/autostart
Note the additional Mode statement to mark the file as executable.
debi an/ servi ce. uni venti on-confi g-regi stry-vari abl es
The file adds a description for the Univention Configuration Registry variable at d/ aut ost art .
[atd/autostart]
Description[en] =Automatically start the AT daenon on system startup
[yes]
Descri ption[de] =Aut omati scher Start des AT-Di enstes bei m Systenstart
[yes]

www.univention.de

@ univention

be open.
Services

Type=bool
Cat egor i es=servi ce- at

debi an/ servi ce. posti nst
Set the Univention Configuration Registry variable to automatically start the at d on new installations.

#!/ bin/ sh
#DEBHEL PER#
ucr set atd/autostart?yes

exit O
debi an/ contr ol

univention-base-files must be added manually as an additional dependency, sinceit is used from within
the shell code.

Sour ce: service
Section: univention
Priority: optional
Mai nt ai ner: Uni venti on GrbH <packages@ni venti on. de>
Bui | d- Depends: debhel per (>= 7),
uni venti on-confi g- dev,
St andar ds- Version: 3.7.2

Package: service

Architecture: all

Depends: ${m sc: Depends},
uni venti on- base-fil es,

Descri pti on: An exanpl e package to configure services
Thi s purpose of this package is to show how Uni vention Config
Regi stry is used.

For nore i nformati on about UCS, refer to:
http://ww. uni venti on. de/

_) 35
www.univention.de

36

@ univention

be open.
Join scripts

Chapter 3. Domain Join

0 00 N o = o o 37
N o 1 I = U TP PT PP PP 37
GG T (0 0 1 g Vo T o g e] o= 38
B0 TV 1 1 o I o1 = £ 38
3.4.1. BaSIC JOIN SCIHPL @XAMPIE ...eeicit e e e e e e e e e e e anas 38

O N o o] o= oo - 40
G TN o1 IR o] o o = === 41
3431 UNIVENTTION-JOIN L.ttt e e e e e et eeeae e e eennes 41

3.4.3.2. shell-univention-lib ... 42

3.5, WIING UNJOIN SCIIES .. eetti ettt ettt ettt ettt e ettt e e ettt e et et e e ennbneeeenenaeeeee 45

An UCS system isnormally joined into adomain. This establishes atrust relation between the different hosts,
which enables users to access services provided by any host of the domain.

Joining a system into a domain requires write permission to create and modify entries in the Univention
directory service (LDAP). Local r oot permission onthejoining host isnot sufficient to get write accessto the
domainwide LDAP service. Instead valid LDAP credential s must be entered interactively by the administrator
doing the join.

3.1. Join scripts Feedback ()

Packages requiring write access to the Univention directory service can provide so called join scripts. They
areinstalledinto/ usr /1 i b/ uni venti on-i nstal | /. Thename of each join script isnormally derived
from the name of the binary package containing it. It is prefixed with a two-digit number, which is used
to order the scripts lexicographically. The filename either endsin . i nst or . ui nst, which distinguishes
between join script and unjoin script (see Section 3.5). The file must have the executable permission bits set.

3.2. Join status Feedback{)

For each join script aversion number is tracked. Thisis used to skip re-executing join scripts, which already
have been executed. This is mostly a performance optimization, but is also used to find join scripts which
need to be run.

Thetext file/ var/ uni venti on-j oi n/ st at us is used to keep track of the state of all join scripts. For
each successful run of ajoin script aline is appended to that file. That record consists of three space separated
entries:

$scri pt _name v$versi on successf ul

1. Thefirst entry contains the name of the join script without the two-digit prefix and without the . i nst
suffix, usually corresponding to the package name.

2. The second entry contains a version number prefixed by av. It is used to keep track of the latest version
of the join script, which has been run successfully. Thisis used to identify, which join scripts need to be
executed and which can be skipped, because they were already executed in the past.

3. The third column contains the word successful.

If anew version of the join script is invoked, it just appends a new record with a higher version number at
the end of thefile.

_) 37
www.univention.de

https://www.univention.com/feedback/?manual=chap:scripts
https://www.univention.com/feedback/?manual=join:status

@ univention

be open.
Running join scripts

3.3. Running join scripts Fecaback{)

There exist three commands related to running join scripts:
uni vention-join

When uni vent i on-j oi n isinvoked, a machine account is created. The distinguished name (dn) of
that entry is stored locally in the Univention Configuration Registry variable!| dap/ host dn. A random
password is generated, which is stored in thefile/ et ¢/ machi ne. secret .

Afterthat thefile/ var / uni venti on-j oi n/ st at us isclearedand all join scriptslocatedin/ usr /
i b/univention-install/ areexecutedinlexicographical order.

uni vention-run-join-scripts

Thiscommandissimilar touni vent i on-j oi n, but skipsthefirst step of creating amachine account.
Only those join scripts are executed, whose current version is not yet registered in / var / uni ven-
tion-join/status.

uni venti on- check-j oi n-stat us

This command only checks for join scriptsin/ usr/1i b/ uni venti on-instal |/, whoseversion
isnot yet registered in/ var / uni vent i on-j oi n/ st at us.

When packages are installed, it depends on the server role, if join scripts are invoked automatically from
the post i nst Debian maintainer script or not. This only happens on master and backup domain controller
system roles, where the local r oot user has access to the file containing the LDAP credentials. On all other
system roles the join scripts need to be run manually by invoking uni venti on-run-j oi n-scripts
or doing so through UMC.

3.4. Writing join scripts Feedback{)

Similar to the Debian maintai ner scripts (see Section B.3.5) they should beidem-potent: They should transform
the system from any state into the state required by the package, that is:

o They should create newly introduced objects in the Univention directory service
o They should not fail if the object already exists

> They should be careful about modifying objects, which might have been modified by the administrator in
the past

Join scripts may be called from multiple system roles and different versions. Therefore it is important that
these scripts do not destroy or remove data still used by other systems!

3.4.1. Basic join script example Feedback {2}

Thisexampleprovidesatemplatefor writing join scripts. The packageis called join-template and just contains
ajoin and an unjoin script. They demonstrate some commonly used functions.

Source code: doc/devel oper-referenceljoin/join-template/
50j oi n-tenpl ate. i nst

The join script in UCS packages is typically located in the package root directory. It has the following
base structure:

https://github.com/univenti on/univention-corporate-server/tree/4.2-0/doc/devel oper-reference/j oin/join-templ ate/

38 _)
www.univention.de

https://www.univention.com/feedback/?manual=join:run
https://www.univention.com/feedback/?manual=join:write
https://www.univention.com/feedback/?manual=join:minimal
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/join/join-template/
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/join/join-template/

@ univention

be open.
Basic join script example

#!/ bin/ sh
VERSI ON=1

[usr/ shar e/ uni vention-join/joinscripthelper.lib
joinscript _init

SERVI CE=" My Ser vi ce"
eval "$(ucr shell)"

. lusr/share/univention-Ilib/ldap.sh
ucs_addServi ceToLocal host "$SERVICE' "$@

udm "conput ers/ $server_rol e" nodify "$@ \
--dn "$l dap_host dn" \
--set reinstall=0 || die

create contai ner for extended attributes to be placed in
udm contai ner/cn create "$@ \
--ignore_exists \
--position "cn=custom attributes, cn=uni vention, $l dap_base" \
--set nanme="nyservice" || die

sonme extended attri butes woul d be added here

j oi nscript_save_current_version
exit O

Please note the essential argument " $@ when udmis invoked, which passes on the required LDAP
credentials described in Section 4.4.

debi an/join-tenplate.install

The scriptsneed to beinstalled into/ usr /1 i b/ uni venti on-i nstal | /, whichisachieved by the
following lines:

50j oi n-tenpl ate.inst usr/lib/univention-install/
50j oi n-t enpl at e-uni nstal | . ui nst usr/Ilib/univention-uninstall/

Note that this package also installs an unjoin script.
debi an/j oi n-t enpl at e. posti nst

The join script should be invoked automatically on master and backup domain controller systems. On
all other system roles an administrator must run the join script manually through uni vent i on- r un-
join-scripts.

#!/ bin/ sh
#DEBHEL PER#

if ["$1" = "configure"]

t hen
ui nst=/usr/lib/univention-install/50join-tenplate-uninstall.uinst
[-e "$uinst"] && rm "$ui nst"

fi

_) 39
www.univention.de

@ univention

be open.
Join script exit codes

[usr/share/uni vention-1i b/ base. sh
call _joinscript 50jo0in-tenplate.inst

exit O
debi an/ cont r ol

The package uses two shell libraries, which are described in more detail in Section 3.4.3. Both packages
providing them must be added as additional runtime dependencies.

The unjoin functions were added to UCS 3.1-0 only as erratum update 81%. Because of this the minimum
versions must be specified explicitly.

Source: join-tenplate

Secti on: univention

Priority: optional

Mai nt ai ner: Uni venti on GrbH <packages@ni venti on. de>
Bui | d- Depends: debhel per (>= 7)

St andar ds- Version: 3.7.2

Package: join-tenplate
Architecture: all
Depends: univention-join (>= 5.0.20-1),
shel | -univention-lib (>= 2.0.17-1),
${ m sc: Depends}
Descri ption: An exanpl e package for join scripts
Thi s purpose of this package is to show how
Uni vention Join scripts are used.

For nore i nformati on about UCS, refer to:
htt p: //ww. uni venti on. de/

3.4.2. Join script exit codes Feedback L))

Join scripts must return the following exit codes:

0
The join script was successful and completed al tasks to join the software package on the system into
the domain. All required entries in the Univention directory service were created or do already exist as
expected.
The script will be marked as successfully run. As a conseguence the join script will not be called again
in this version.

1
The script did not complete and some task to fully join the system into the domain are still pending.
Some entries could not be created in LDAP or exist in a state, which is incompatible with this version
of the package.
The script needs to be run again after fixing the problem, either manually or automatically.

2

Some internal functions were called incorrectly. For example the credentials were wrong.

1 https://errata.software-univention.de/ucs/3.1/80.html

40 _)
www.univention.de

https://errata.software-univention.de/ucs/3.1/80.html
https://www.univention.com/feedback/?manual=join:exitcode
https://errata.software-univention.de/ucs/3.1/80.html

@ univention

be open.
Join script libraries

The script needs to be run again.

3.4.3. Join script libraries
There exist two shell libraries, which provide functions which help in writing join scripts:
3.4.3.1. univention-join

The package contains the shell library /usr/share/univention-join/join-
scri pt hel per. |i b. It providesfunctions related to updating the join statusfile.

joinscript_init

This function parses the status file and exits the shell script, if arecord isfound with aversion greater or
equal to value of the environment variable VERSI ON. The name of thejoin script is derived from $0.

joinscript_save_current_version

This function appends a new record to the end of the status file using the version number stored in the
environment variable VERSI ON.

j oi nscript_check_any_versi on_execut ed

This function returns success (0), if any previous version of the join scripts was successfully executed.
Otherwiseit returns afailure (1).

joinscript_check_specific_version_execut ed version

This function returns success (0), if the specified version ver si on of the join scripts was successfully
executed. Otherwiseit returns afailure (1).

j oi nscript_check_version_in_range_execut ed min max

This function returns success (0), if any successfully run version of the join script falls within the range
m n..max, inclusively. Otherwise it returns afailure (1).

joinscript_extern_init join-script

The check commands mentioned above can al so be used in other shell programs, which arenot join scripts.
There the name of the join script to be checked must be explicitly given. Instead of callingj oi nscri p-
t _i ni t, thisfunction requires an additional argument specifying the name of thej oi n- scri pt.

joinscript_renove script fromstatus fil ename

Removes the given join script from the join script status file / var / uni vent i on-j oi n/ st at us.
Thenane should be the basename of thejoinscript without the prefixed digitsand the suffix . i nst . Soif
thejoinscript/ var /| i b/ uni venti on-i nstal | /50j oi n-tenpl at e. i nst shall be removed,
one has to execute j oi nscri pt_renove_script _fromstatus file join-tenplate.
Primarily used in unjoin scripts.
die

A convenience function to exit the join script with an error code. Used to guarantee that LDAP modifi-
cations were successful: some_udm create_call || die

These functions use the following environment variables:

VERSI ON

Thisvariable must be set beforej oi nscri pt _i ni t isinvoked. It specifiesthe version number of the
join script and is used twice:

_) 41
www.univention.de

https://www.univention.com/feedback/?manual=join:libraries
https://www.univention.com/feedback/?manual=join:libraries:join

@ univention

be open.
Join script libraries

1. It defines the current version of the join script.

2. If that version isalready recorded in the statusfile, thejoin script qualifies as having been run success-
fully and the re-execution is prevented. Otherwise the join status is incomplete and the script needs
to be invoked again.

The version number should be incremented for a new version of the package, when the join script needs
to perform additional modificationsin LDAP compared to any previous packaged version.

The version number must be a positive integer. The variable assignment in the join script must be on its
own line. It may optionally quote the version number with single quotes (*) or double quotes ("). The
following assignment are valid:

VERS| ON=1
VERS| ON=' 2
VERS| ON=" 3"

JS_LAST_EXECUTED VERSI ON

Thisvariableisinitialized by j oi nscri pt _i ni t with the latest version found in the join status file.
If no version of the join script was ever executed and thus no record exists, the variable isset to 0. The
join script can use thisinformation to decide what to do on an upgrade.

3.4.3.2. shell-univention-lib Feedback)

The package contains the shell library / usr / shar e/ uni venti on-1i b/ base. sh. Since package ver-
son>= 2. 0. 17-1 it provides the following functions:

call _joinscri pt [--binddn bi nd- dn --bindpwd bi nd- passwor d] [XX] oi n-scri p-
t.inst]

This calls the join script called XXj oi n-scri pt.inst from the directory / usr/Ii b/ uni ven-
tion-install/.Theoptional LDAP credentialsbi nd- dn and bi nd- passwor d are passed on as-
is.

call _joinscript_on_dcrmaster [--binddn bi nd-dn --bindpwd bi nd- passwor d]
[XXj oi n-script.inst]

Similar to cal | _j oi nscri pt, but also checks the system role and only executes the script on the
master domain controller.

renove_j oi nscri pt_st at us [nane]

Removes the given join script nane from the join script status file / var / uni vent i on-j oi n/
st at us. Note that this command does the same asj oi nscri pt_renove_script_from sta-
tus_fil e provided by univention-join (see Section 3.4.3.1).

call _unjoinscript [--binddn bind-dn --bindpwd bi nd-password] [XXun-
join-script.uinst]

Calls the given unjoin script unj oi n-scri pt on master and backup domain controller systems. The
filename must berelativetothedirectory / usr/1i b/ uni venti on-i nstal | /. Theoptional LDAP
credentials bi nd- dn and bi nd- passwor d are passed on as-is. Afterwards the unjoin script is auto-
matically deleted.

del et e_unj oi nscri pt [XXunj oi n-scri pt. ui nst]

Deletes the given unjoin script XXunj oi n- scri pt. ui nst if it does not belong to any package. The
file name must be relative to the directory / usr/ I i b/ uni venti on-install/.

42 _)
www.univention.de

https://www.univention.com/feedback/?manual=join:libraries:shell

@ univention

be open.
Join script libraries

stop_udmcli _server

When uni vent i on-di rect ory- manager is used the first time a server is started automatically
that caches someinformation about the available modules. When changing some of thisinformation (e.g.
when adding or removing extended attributes) the server should be stopped manually.

The package also containsthe shell library / usr / shar e/ uni venti on-1i b/ | dap. sh. It providescon-
venience functions to query the Univention directory service and modify objects. For (un)join scripts the fol-
lowing functions might be important:

ucs_addSer vi ceToLocal host servi cenane [--binddn bi nd- dn --bindpwd bi nd-
passwor d]

Registers the additional service ser vi cenamne in the LDAP object representing the local host. The
optional LDAP credentialsbi nd- dn and bi nd- passwor d are passed on as-is.

Example 3.1. Serviceregistration in join script
ucs_addServi ceToLocal host "MServi ce" "$@

ucs_renoveServi ceFronLocal host servi cenanme [--binddn bi nd- dn --bindpwd
bi nd- passwor d]

Removes the service ser vi cenane from the LDAP object representing the local host, effectively
reverting an ucs_addSer vi ceToLocal host cal. The optional LDAP credentials bi nd- dn and
bi nd- passwor d are passed on as-is.

Example 3.2. Service unregistration in unjoin script
ucs_renoveServi ceFroniocal host "M/Service" "$@

ucs_i sServiceUnused servi cenane [--binddn bi nd- dn --bindpwd bi nd- pass-
wor d]

Returns 0 if no LDAP host object exists where the service ser vi cenane isregistered with.

Example 3.3. Check for unused servicein unjoin script

if ucs_isServiceUnused "M/Service" "$@
t hen

uni nstal |l _ny_service
fi

ucs_regi st er LDAPExt ensi on [--binddn bi nd- dn { --bindpwd bi nd- password | --
bindpwdfilef i | enamne }]

{{ --schemafil ename | --acl fil enamne | --udm_syntax f i | ename | --udm_hook fi | e-
nane ...}

| --udm_module f i | enane [--messagecatalog f i | enane...] [--umcregistration f i | enane]
[--iconfil enane...] }

[--packagename packagenane] [--packageversion packagever si on] [--ucsversionstart
ucsver si on] [--ucsversionend ucsver si on]

The shell functionucs_r egi st er LDAPExt ensi on from the Univention shell function library (see
Section 14.3) can be used to register several extension in LDAP. This shell function offers several modes:

--schemafil enane. schema

Register one or more LDAP schema extension (see Section 4.2)

_) 43
www.univention.de

@ univention

be open.
Join script libraries

--acl fil enane. acl

Register one or more LDAP access control list (see Section 4.3)
--udm syntax fil enane. py

Register one or more UDM syntax extension (see Section 6.4)
--udm _hook fi |l enane. py

Register one or more UDM hook (see Section 6.2.4)
--udm nodul e fil enane. py

Register asingle UDM module (see Section 6.3)

The modes can be combined. If more than one mode is used in one call of the function, the modes are
always processed in the order as listed above. Each of these options expects a filename as an required
argument.

The following options can be given multiple times, but only after the option - - udm _nodul e:
- -messagecat al og prefi x/| anguage. no

The option can be used to supply message trandation files in GNU message catalog format. The
language must be a valid language tag, i.e. must correspond to a subdirectory of / usr/ shar e/
| ocal e/ .

--unctregistrationfil enane. xm

The option can be used to supply an UMC registration file (see Section 7.5.2) to make the UDM
modul e accessible via Univention Management Console (UMC).

--iconfil enane
The option can be used to supply icon files (png or j peg, in 16x16 or 50x50, or svgz).

Called from a joinscript, the function automatically determines some required parameters, like the app
identifier plus Debian package name and version, required for the creation of the corresponding object.
After creation of the object the function waits up to 3 minutes for the master domain controller to signal
availability of the new extension and reports successor failure. For UDM extensionsit additionally checks
that the corresponding file has been made available in the local filesystem. Failure conditions may occur
e.g. in casethe new LDAP schemaextension collideswith the schemacurrently active. Themaster domain
controller only activates anew LDAP schema or ACL extension if the configuration check succeeded.

Note

The corresponding UDM modules are documented in Chapter 4 and Chapter 6.

Before calling the shell function the shell variable UNI VENTI ON_APP_| DENTI FI ER should be set to
the versioned app identifier (and exported to the environment of subprocesses). The shell function will
then register the specified app identifier with the extension object to indicate that the extension object is
required as long as this app isinstalled anywhere in the UCS domain.

Theoptions- - packagenane and- - packagever si on should usually not be used, asthese parame-
ters are determined automatically. To prevent accidental downgrades the function ucs_r egi st er L-
DAPEXxt ensi on (aswell asthe corresponding UDM modul€) only execute modifications of an existing
object if the Debian package version is not older than the previous one.

www.univention.de

@ univention

be open.
Writing unjoin scripts

ucs_regi st er LDAPEXt ensi on supports two additional options to specify a valid range of UCS
versions, where an extension should be activated. The options are - - ucsversi onstart and - -

ucsver si onend. The version check isonly performed whenever the extension object is modified. By
calling this function from a joinscript, it will automatically update the Debian package version number
stored in the object, triggering a re-evaluation of the specified UCS version range. The extension is ac-
tivated up to and excluding the UCS version specified by - - ucsver si onend. Thisvalidity rangeis
not applied to LDAP schema extensions, since they must not be undefined as long as there are objects
in the LDAP directory which make use of it.

Example 3.4. Extension registration in join script

export UN VENTI ON_APP_I| DENTI FI ER="appl D- appVer si on" ## exanpl e
[usr/share/ uni vention-1ib/ldap.sh

ucs_regi st er LDAPEXt ensi on "$@ \
--schema / pat h/t o/ appschenaext ensi on. schena \
--acl /path/to/appacl ext ension.acl \
--udm synt ax /pat h/to/ appudnsynt ax. py

ucs_regi st er LDAPEXt ensi on "$@ \
--udm nmodul e / pat h/ t o/ appudmmodul e. py \
--messagecatal og /path/to/de. m \
--messagecatal og /path/to/eo.m \
--uncregi stration /path/to/ modul e-object. xm \
--icon /path/to/ nodul ei con16x16. png \
--icon /path/to/ modul ei con50x50. png

ucs_unr egi st er LDAPEXt ensi on [--binddn bi nd- dn { --bindpwd bi nd- passwor d |
--bindpwdfilefi | enane }]

{ --schema obj ect nane | --acl obj ect nane | --udm_syntax obj ect nane | --udm_hook
obj ect name | --udm_module obj ect nane ...}

Thereisacorresponding ucs_unr egi st er LDAPExt ensi on function, which can be used to unreg-
ister extension objects. This only works if no App is registered any longer for the object. It must not be
called unless it has been verified that no object in LDAP still requires this schema extension. For this
reason it should generally not be called in unjoin scripts.

Example 3.5. Schema unregistration in unjoin script

/usr/share/ univention-1ib/ldap.sh
ucs_unr egi st er LDAPExt ensi on "$@ --schena appschenmext ensi on

3.5. Writing unjoin scripts Fecaback{)

On package removal packages should clean up the datain Univention directory service. Removing datafrom
LDAP also requires appropriate credentials, while removing a package only requireslocal r oot privileges.
Therefore UCS provides support for so-called unjoin scripts. In most cases it reverts the changes of a corre-
sponding join script.

Warning
A domain isadistributed system. Just because one local system no longer wants to store some infor-

mation in Univention directory service does not mean that the data should be deleted. There might
still be other systems in the domain which still require the data.

_) 45
www.univention.de

https://www.univention.com/feedback/?manual=join:unjoin

@ univention

be open.
Writing unjoin scripts

Therefore “the first system to come” should setup the data, while only “the last system to go” may
clean up the data.

Just like join scripts an unjoin script is prefixed with a two-digit number for lexicographical ordering. To
reverse the order of the unjoin scriptsin comparison to the corresponding join scripts, the number of the unjoin
script should be 100 minus the number of the corresponding join script. The suffix of an unjoin script is -
uni nst al | . ui nst andit should beinstalledin/ usr/1i b/ uni vention-uninstall/.

On package removal the unjoin script would be deleted as well, while the Univention directory service might
still contain data managed by the package. Therefore the script must be copied from thereto / usr/1i b/
uni vention-instal |/ inthepr er mmaintainer script.

Example: The package univention-fetchmail provides both ajoin script / usr/ 1i b/ uni venti on-i n-
stal | /91uni venti on-fetchmail .inst andthe corresponding unjoin script as/ usr/ | i b/ uni -
venti on-uni nstall/09uni vention-fetchmail -uninstall.uinst.

Asof UCS3.1.inst and. ui nst arenot distinguishable in the UMC Join module by the user. Therefore
it is important to use the - uni nst al | suffix to give users avisua hint. Internally join scripts are always
executed before unjoin scripts and then ordered lexicographically by their prefix.

To decide if an unjoin script is the last instance and should remove the data from LDAP, a service can be
registered for each host where the package isinstalled.

For example the package univention-fetchmail uses ucs_addSer vi ceFr onlLocal host " Fet ch-
mai | " "$@ inthejoinscripttoregisteranducs_r enmoveSer vi ceFronlLocal host " Fet chnai | "
"$@ in the unjoin script to unregister a service for the host. The data is removed from LDAP when in the
unjoinscriptucs_i sServi ceUnused "Fetchmai |l " "$@ returns 0. Asaside effect adding the ser-
viceaso alowsusing thisinformation to find and list those servers currently providing the Fetchmail service.

50j oi n-t enpl at e-uni nstal | . ui nst
This unjoin script reverts the changes of the join script from Section 3.4.1.

#! / bi n/ sh

VERSION i s needed for sone tools to recognize that as a join script
VERSI| ON=1
/usr/share/ uni venti on-j oi n/joi nscripthel per.lib
joinscript_init
SERVI CE=" MySer vi ce"
eval "$(ucr shell)"

/usr/share/ uni vention-1ib/ldap.sh

ucs_renoveServi ceFronliocal host "$SERVICE' "$@ || die
i f ucs_isServiceUnused "$SERVI CE" "$@
t hen

was | ast server to inplenent service. now the data

may be renoved

uni venti on-di rect ory- manager contai ner/cn renove "$@ --dn \
"cn=myservi ce, cn=cust om attri but es, cn=uni venti on, $l dap_base" || die

Term nate UDM server to force nodul e rel oad
[usr/share/uni vention-1i b/ base. sh
stop_udm cli _server

46 _)
www.univention.de

@ univention

be open.
Writing unjoin scripts

fi

do NOT call "joinscript_save current_version"

otherwise an entry will be appended to /var/univeni on-j oi n/status
instead the join script needs to be renoved fromthe status file
joinscript_renove script fromstatus file join-tenplate

exit O
debi an/join-tenpl ate. prerm
The unjoin script has to be copied to the join script directory before it gets removed:
#!1/ bi n/ sh
#DEBHEL PER#

if ["$1" = "renove"]

t hen

cp /usr/lib/univention-uninstall/50join-tenplate-uninstall.uinst \
fusr/lib/univention-install/

fi

exit O
debi an/join-tenpl ate. postrm

The unjoin script should be invoked automatically on master and backup domain controller systems after
the package is removed. On all other system roles an administrator must run the join script manually
through uni venti on-run-j oi n-scri pts.

#! [/ bi n/ sh
#DEBHEL PER#

if ["$1" = "renove"]
t hen
/usr/share/univention-lib/all.sh
call _unjoinscript 50join-tenplate-uninstall. uinst
fi

exit O

debi an/j oi n-t enpl at e. posti nst

In case the package isinstalled again and the unjoin script still exists, because it was never executed, the
unjoin script must be removed:

#! [/ bi n/ sh
#DEBHEL PER#

if ["$1" = "configure"]

t hen
ui nst=/usr/1ib/univention-install/50join-tenplate-uninstall.uinst
[-e "$uinst"] & & rm "$ui nst"

_) 47
www.univention.de

univention

be open.
Writing unjoin scripts
fi

[usr/share/uni vention-1i b/ base. sh
call _joinscript 50jo0in-tenplate.inst

exit O

48))
www.univention.de

@ univention

be open.
General

Chapter 4. Lightweight Directory Access
Protocol (LDAP) in UCS

A1 GENEEL ...t 49
4.2. Packaging LDAP SChema EXIENSIONSocuuiiiiiieiie e et e e een s 49
4.3. Packaging LDAP ACL EXIENSIONSuuitiiiiiieiii et et e e et e e et e aea e eees 50
A4, LDAP SECTELS . etutieee ettt ettt oo e ettt e e e e et et b a e e e e e e e e e e et b e e e e 52

4.4.0. PasSNVOI CRANGEuieieiii ettt e e et et e et e e et e e et e et e e aaeeenaaes 52

41 General FeedbackQ

An LDAP server provides authenticated and controlled access to directory objects over the network. LDAP
objects consist of a collection of attributes which conform to so called LDAP schemata. An in depth docu-
mentation of LDAP is beyond the scope of this document, other sources cover this topic exhaustively, e.g.
http://www.zytrax.com/books/Idap/ or the man pages (slapd.conf(5), slapd.access(5)).

At least it should be noted that OpenL DAP offers two fundamentally different tool sets for direct access or
modification of LDAP data: The sl ap* commands (sl apcat , etc.) are very low level, operating directly
on the LDAP backend data and should only be used in rare cases, usually with the LDAP server not running.
Thel dap* commands (I dapsear ch, etc.) on the other hand are the proper way to perform LDAP opera
tions from the command line and their functionality can equivalently be used from all major programming
languages.

On top of the raw LDAP layer, the Univention Directory Manager offers an object model on a higher level,
featuring advanced object semantics (see Chapter 6). That is the level that usually appropriate for app devel-
opers, which should be considered before venturing down to the level of direct LDAP operations. On the
other hand, for the development of new UDM extensions it is important to understand some of the essential
concepts of LDAP asused in UCS.

One essentia trait of LDAP as used in UCS, is the strict enforcement of LDAP schemata. An LDAP server
refusesto start if an unknown LDAP attribute is referenced either in the configuration or in the backend data.
This makes it critically important to install schemata on all systems. To simplify this task UCS features a
builtin mechanism for automatic schemareplication to all UCS hosted LDAP serversin the UCS domain (see
Chapter 5). The schemareplication mechanismistriggered by installation of anew schema extension package
on the UCS master. For redundancy it is strongly recommended to install schema extension packages also on
the UCS backup systems. This way, a UCS backup can replace a UCS master in case the master needs to be
replaced for some reason. To simplify these tasks even further, UCS offers methods to register new LDAP
schemata and associated LDAP ACLs from any UCS system.

4.2. Packaging LDAP Schema Extensions Feedback{)

For some purposes, e.g. for app installation, it is convenient to be able to register anew LDAP schema exten-
sion from any system in the UCS domain. For this purpose, the schema extension can be stored as a special
type of UDM object. The module responsible for this type of objectsis called set ti ngs/ | dapschena.
Asthese objects are replicated throughout the UCS domain, the master domain controller and backup domain
controller systems listen for modifications of these objects and integrate them into the local LDAP schema
directory. As noted above, this simplifies the task of keeping the schema on the backup domain controller
systems up to date with that on the master domain controller.

The commands to create the LDAP schema extension objects in UDM may be put into any join script (see
Chapter 3). A LDAP schema extension object is created by using the UDM command lineinterfaceuni ven-
tion-directory-manager oritsaiasudm LDAP schema extension objects can be stored anywhere

_) 49
www.univention.de

https://www.univention.com/feedback/?manual=ldap:general
http://www.zytrax.com/books/ldap/
https://www.univention.com/feedback/?manual=settings:ldapschema

@ univention

be open.
Packaging LDAP ACL Extensions

in the LDAP directory, but the recommended location would be cn=l dapschena, cn=uni venti on,
below the LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good
ideato add the- - i gnor e_exi st s option, which suppresses the error exit code in case the object already
existsin LDAP.

The UDM moduleset t i ngs/ | dapschena requires several parameters.
narme (required)
Name of the schema extension.
dat a (required)
The actual schema datain bzip2 and base64 encoded format.
fil enane (required)

Thefile name the schema should be written to on master domain controller and backup domain controller.
The file name must not contain any path elements.

package (required)
Name of the Debian package which creates the object.
packagever si on (required)

Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appi dentifi er (optional)

Theidentifier of the app which creates the object. Thisisimportant to indicate that the object is required
aslong asthe app isinstalled anywhere in the UCS domain. Defaultsto st r i ng.

acti ve (internal)

A boolean flag used internally by the master domain controller to signal availability of the schema ex-
tension (default: FALSE).

Since many of these parameters are determined automatically by the ucs_r egi st er LDAPExt ensi on
shell library function, it is recommended to use the shell library function to create these objects (see Sec-
tion 3.4.3.2).

Example 4.1. Schemaregistration in join script

export UNI VENTI ON_APP_I DENTI FI ER="appl D- appVer si on" ## exanpl e
[usr/share/univention-Ilib/ldap.sh

ucs_regi st er LDAPEXt ensi on "$@ \
--schema / pat h/t o/ appschenaext ensi on. schena

4.3. Packaging LDAP ACL Extensions Fecaback{)

For some purposes, e.g. for app installation, it is convenient to be able to register anew LDAP ACL extension
from any system in the UCS domain. For this purpose, the UCR template for an ACL extension can be stored
asaspecia type of UDM object. The module responsible for thistype of objectsiscaledset t i ngs/ | da-

pacl . As these objects are replicated throughout the UCS domain, the master domain controller, backup
domain controller and slave domain controller systems listen for modifications on these objects and integrate

50 _)
www.univention.de

https://www.univention.com/feedback/?manual=settings:ldapacl

@ univention

be open.
Packaging LDAP ACL Extensions

theminto thelocal LDAP ACL UCR template directory. This simplifies the task of keeping the LDAP ACLs
on the backup domain controller systems up to date with those on the master domain controller.

The commands to create the LDAP ACL extension abjects in UDM may be put into any join script (see
Chapter 3). A LDAP ACL extension object is created by using the UDM command line interface uni ven-

tion-directory-manager oritsaliasudm LDAP ACL extension objects can be stored anywhere in
the LDAP directory, but the recommended location would becn=Il dapacl , cn=uni vent i on, below the
LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good idea to
add the - - i gnor e_exi st s option, which suppresses the error exit code in case the object already exists
in LDAP.

The UDM moduleset t i ngs/ | dapacl requires severa parameters:
nane (required)

Name of the ACL extension.
dat a (required)

The actual ACL UCR template datain bzip2 and base64 encoded format.
fil enane (required)

The file name the ACL UCR template data should be written to on master domain controller, backup
domain controller and slave domain controller. The file name must not contain any path elements.

package (required)
Name of the Debian package which creates the object.
packagever si on (required)

Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appi denti fi er (optional)

Theidentifier of the app which creates the object. Thisisimportant to indicate that the object is required
aslong asthe app isinstalled anywhere in the UCS domain. Defaultsto st ri ng.

ucsver si onst art (optional)

Minimal required UCS version. The UCR template for the ACL is only activated by systems with a
version higher than or equal to this.

ucsver si onend (optional)

Maximal required UCS version. The UCR template for the ACL is only activated by systems with a
version lower or equal than this. To specify validity for the whole 4.1-x release range avalue like 4.1-99
may be used.

acti ve (interna)

A boolean flag used internally by the master domain controller to signal availability of the ACL extension
on the master domain controller (default: FALSE).

Since many of these parameters are determined automatically by the ucs_r egi st er LDAPExt ensi on
shell library function, it is recommended to use the shell library function to create these objects (see Sec-
tion 3.4.3.2).

_) 51
www.univention.de

@ univention

be open.
LDAP secrets

Example 4.2. LDAP ACL registration in join script

export UNI VENTI ON_APP_I DENTI FI ER="appl| D- appVer si on" ## exanpl e
[usr/ share/ univention-1ib/ldap.sh

ucs_regi st er LDAPExt ensi on "$@ \
--acl /path/to/appacl ext ensi on. acl

4.4. LDAP secrets Feedback {)

The credentials for different UCS domain accounts are stored in plain-text files on some UCS systems. The
filesare named / et ¢/ *. secr et . They are owned by the user r oot and allow read-access for different
groups.

/etc/ | dap. secret forcn=admi n, $l dap_base

This account has full write accessto all LDAP entries. The file is only available on master and backup
domain controller systems and is owned by the group DC Backup Host s.

/ et ¢/ machi ne. secret for $l dap_host dn

Each host usesitsaccount to get at least read-accessto L DAP. Domain controllersin the container cn=d-
¢, cn=conput er s, $l dap_base get additional rightsto accessLDAP attributes. Thefileisavailable
on al joined system roles and is readable only by thelocal r oot user and group.

During package installation, only the maintainer scripts (see Section B.3.5) on master and backup domain
controller can use their r oot permission to directly read / et ¢/ | dap. secr et . Thus only on those roles
the join scripts get automatically executed when the package is installed. On all other system roles, the join
scripts need to be executed manually. This can either be done through the UMC Join module or through the
command linetool uni venti on-run-j oi n-scri pts. Both methods require appropriate credentials.

4.4.1. Password change Feedback £}

To reconfirm the trust relation between UCS systems, computers need to regularly change the password as-
sociated with the machine account. This is controlled through the Univention Configuration Registry vari-
ableser ver/ passwor d/ change. For UCSserversthisisevaluated by thescript/ usr/ | i b/ uni ven-
tion-server/server_password_change, whichisinvoked nightly at 01:00 by cron(8). The inter-
val is controlled through a second Univention Configuration Registry variable ser ver / passwor d/ i n-
t er val , which defaultsto 21 days.

The password is stored in the plain text file / et ¢/ machi ne. secr et . Many long running services read
these credentials only on startup, which breaks when the password is changed while they are still running.
Therefore UCS provides amechanism to invoke arbitrary commands, when the machine password is changed.
This can be used for example to restart specific services.

Hook scripts should be placed in the directory / usr/1i b/ uni venti on-server/server_pass-
wor d_change. d/ . The name must consist of only digits, upper and lower ASCII characters, hyphens and
underscores. They file must be executable and is called via run-parts(8). It receives one argument, which is
used to distinguish three phases:

Procedure4.1. Server password change procedure

1. Each script will be called with the argument pr echange before the password is changed. If any script
terminates with an exit status unequal zero, the change is aborted.

52 _)
www.univention.de

https://www.univention.com/feedback/?manual=join:secret
https://www.univention.com/feedback/?manual=join:secret:change

@ univention

be open.
Password change

2. A new password is generated locally using makepasswd(1). It is changed in the Univention directory
serviceviaUDM and stored in/ et ¢/ machi ne. secr et . Theold passwordisloggedin/ et c/ ma-
chi ne. secret. ol d.

If anything goes wrong in this step, the change is aborted and the changes need to be rolled back.
3. All hook scripts are called again.

e If the password change was successful, post change gets passed to the hook scripts. This should
complete any change prepared in the pr echange phase.

e If the password change failed for any reason, al hook scripts are called with the argument
nochange. This should undo any action already donein the pr echange phase.

Example 4.3. Server password change example
Install thisfileto/ usr/ | i b/ uni venti on-server/server_password_change. d/.

#!/ bin/ sh

case "$1" in

pr echange)

nothing to do before the password i s changed
exit O

nochange)

nothing to do after a fail ed password change
exit O

post change)
restart daenon after password was changed
i nvoke-rc.d ny-daenon restart

esac

init-scripts should only be invoked indirectly through invoke-rc.d(8). Thisis required for chr oot environ-
ments and allows the policy layer to control starting and stopping in certain special situations like during an
system upgrade.

_) 53
www.univention.de

@ univention

be open.
Structure of Listener Modules

Chapter 5. Univention Directory Listener

5.1. Structure of LiStener MOTUIESoouuiiiiiii it eeens 55
5.2. Listener Tasks and EXAMPIES ... 58
5.2.1. BASIC EXAMPIE ... e 58
5.2.2. RENAME @N0 IMOVEouiiiiiiii ettt et 59
5.2.3. Full Example With PaCKagingc.uoeiuuiiiiiiii e 60
5.2.4. A Little Bit more Object Orientedco.uiiiiiiiiiiie e 64

5.3. TECNICE DELAIIScceveeieeit et 67
5.3.1. User-ID and CredentialSooveuriiiiiiiiieeee e 67
5.3.2. INEMNEl CBCNE ... 67
5321 univention-directory-listener-ctrl ... 68

5322 . univention-directory-listener-dunpcccoccooiiiiiiiiiiiiiiniiiiineees 68

5323. univention-directory-listener-verify ... 68
5.3.24.get _Notifier i d. PY oo 68

5.3.3. INtErNal WOPKING ... e et e e e e 68

Replication of the directory datawithin aUCS domain is provided by the Univention Directory Listener/No-
tifier mechanism:

> The Univention Directory Listener service runson al UCS systems.

> On the master domain controller (and possibly existing backup domain controller systems) the Univention
Directory Notifier service monitors changes in the LDAP directory and makes the selected changes avail-
able to the Univention Directory Listener services on al UCS systems joined into the domain.

The active Univention Directory Listener instancesin the domain connect to a Univention Directory Notifier
service. If an LDAP change is performed on the master domain controller (all other LDAP servers in the
domain are read-only), this is registered by the Univention Directory Notifier and reported to the listener
instances.

Each Univention Directory Listener instance hosts a range of Univention Directory Listener modules. These
modules are shipped by the installed applications; the print server package includes, for example, listener
modules which generate the CUPS configuration.

Univention Directory Listener modules can be used to communicate domain changes to services which are
not LDAP-aware. The print server CUPS is an example of this: The printer definitions are not read from the
LDAP, but instead from the file/ et ¢/ cups/ pri nt ers. conf . Now, if aprinter is saved in the printer
management of the Univention Management Console, it is stored in the LDAP directory. This change is
detected by the Univention Directory Listener module cups-printers and an entry gets added to, modified in
or deleted from/ et ¢/ cups/ pri nt er s. conf based on the modification in the LDAP directory.

5.1. Structure of Listener Modules Feedback)

By default the Listener loads all modules from the directory / usr/ | i b/ uni venti on-direct o-
ry-1istener/system . Other directories can be specified using the option - mwhen starting the uni -
venti on-directory-1istener daemon.

Each listener module must declare several string constants. They are required by the Univention Directory
Listener to handle each module. They should be defined at the beginning of the module.

nane = "nodul e _nane"

_) 55
www.univention.de

https://www.univention.com/feedback/?manual=listener:handler

@ univention

be open.
Structure of Listener Modules

description = "Mdul e description"
filter = "(objectd ass=*)"
attribute = ["objectd ass"]

nodrdn = "1"

namne (required)

This name is used to uniquely identify the module. This should match with the filename containing this
listener module without the . py suffix. The name is used to keep track of the module state in / var /
i b/univention-directory-1listener/handlers/.

descri pti on (required)
A short description. It is currently unused and displayed nowhere.
filter (required)

Definesa LDAP filter which is used to match the objects the listener isinterested in. Thisfilter issimilar
to the LDAP search filter as defined in RFC 2254, but more restricted:

o itiscasesendtive
o it only supports equal matches

Note

Thenamefi | t er hasthe drawback that it shadows the Python built-in functionfil ter (),
but its use has historical reasons. If that function is required for implementing the listener mod-
ule, an alias-reference may be defined before overwriting the name or it may be explicitly ac-
cessed viathe Python __ bui | tin__ module.

attri but es (optional)

A Pythonlist of LDAP attribute nameswhich further narrows down the condition under which thelistener
module gets called. By default the moduleis called on al attribute changes of objects matching thefilter.
If thelist is specified, the module is only invoked when at |east one of the listed attributes is changed.

nodr dn (optional)

Setting this variable to the string 1 changes the signature of the function handl er () . It receives an
additional 4th argument, which specifies the LDAP operation triggering the change.

In addition to the static strings a module must implement several functions. They are called in different situ-
ations of the live-cycle of the module.

def initialize(): pass

def handl er(dn, new, old[, command='']): pass
def clean(): pass

def prerun(): pass

def postrun(): pass

def setdata(key, value): pass

handl er (dn, old, new, command='") (required)

This function is called for each change matching thefi | ter and attri but es as declared in the
header of the module. The distinguished name (dn) of the object is supplied as the first argument dn.

http://tools.ietf.org/html/rfc2254

56 _)
www.univention.de

http://tools.ietf.org/html/rfc2254
http://tools.ietf.org/html/rfc2254

@ univention

be open.
Structure of Listener Modules

Depending on the type of modification, ol d and new may each independently either be None or refer-
ence a Python dictionary of lists. Each list represents one of the multi-valued attributes of the object. The
Univention Directory Listener uses alocal cache to store the values of each object as it has seen most
recently. Thiscacheisused to supply thevaluesfor ol d, whilethevaluesin newarethoseretrieved from
that LDAP directory service which is running on the same server as the Univention Directory Notifier
(master domain controller or backup domain controller serversin the domain).

If and only if theglobal nodr dn setting isenabled, comrand ispassed asafourth argument. It containsa
singleletter, whichindicatesthe type of modification. This can be used to distinguish an modrdn operation
from a del ete operation followed by a create operation.

m(modify)

Signals amodify operation, where an existing object is changed. ol d contains a copy of the previ-
ously cached values and new contains the new values as retrieved from the LDAP directory service.

a (add)
Signals the addition of anew object. ol d isNone and new contains the values of the added object.
d (delete)

Signals the removal of a previously existing object. ol d contains a copy of the previously cached
values, while newis None.

r (rename: modification of distinguished name vianodr dn)

Signals a change in the distinguished name, which may be caused by renaming a object or moving
the object from one container into another. The module is called with this command instead of the
delete command, so that modules can recognize this special case and avoid deletion of local data
associated with the object. The module will be called again with the add command just after the
modrdn command, whereit should processthe rename or move operation. Each moduleisresponsible
for keeping track of the rename-case by internally storing the previous distinguished name during
the modrdn phase of this two phased operation.

n (new or schema change)
This command can signal two changes:
o If dniscn=Subschenm, it signals that a schema change occurred.

o All other cases signal theinitialization of anew object, which should be handled just like anormal
add operation.

initialize() (optional),
cl ean() (optional)

The functioni ni tialize() iscaled once when the Univention Directory Listener loads the mod-
ule for the first time. This is recorded persistently in the file/ var/ | i b/ uni venti on-di r ect o-
ry-1istener/ nane, where nane equals the value from the header.

If for whatever reason the listener module should be reset and re-run for all matching objects, the state can
be reset by running the command uni venti on-di rectory-1listener-ctrl resync narme.
Inthat casethefunctioni ni ti al i ze() will becalled again.

The function cl ean() isonly called when the Univention Directory Listener isinitialized for the first
time or isforced to “re-initialize from scratch” using the - g or - i option. The function should purge all
previously generated files and return the module into a clean state.

_) 57
www.univention.de

@ univention

be open.
Listener Tasks and Examples

prerun() (optiona),
postrun() (optiona)

For optimization the Univention Directory Listener does not keep open an LDAP connection all time.
Instead the connection is opened once at the beginning of a change and closed only if no new change
arrives within 15 seconds. The opening is signaled by the invocation of the function pr er un() andthe
closing by post run() .

The function post run() is most often used to restart services, as restarting a service takes some time
and makes the service unavailable during that time. It's best practice to use the handl er () only to
process the stream of changes, set UCR variables or generate new configuration files. Restarting associ-
ated services should be delayed to the post r un() function.

Warning

The function post run() isonly caled, when no change happens for 15 seconds. Thisis not
on a per-module basis, but globally. In an ever changing system, where the stream of changes
never pauses for 15 seconds, the functions may never be caled!

set dat a(key, val ue) (optiona)

This function is called up to four times by the Univention Directory Listener main process to pass con-
figuration datainto the modules. The following key s are supplied in the following order:

basedn
The base distinguished name the Univention Directory Listener is using.
bi nddn

Thedistinguished namethe Univention Directory Listener isusing to authenticatetothe LDAP server
(viasi npl e bi nd).

bi ndpw
The password the Univention Directory Listener is using to authenticate to the LDAP server.
| dapserver

The hostname of the LDAP server the Univention Directory Listener is currently reading from.
Note
It's strongly recommended to avoid initiating LDAP modifications from alistener module. This

potentially creates acomplex modification dynamic, considering that amodule may run on sev-
eral systemsin parallel at their own timing.

5.2. Listener Tasks and Examples Feedback{)

All changestrigger acall to the function handl e() . For simplicity and readability it is advisable to del egate
the different change types to different sub-functions.

5.2.1. Basic Example Feedback {2}

The following boilerplate code del egates each change type to a separate function. It does not handle renames
and moves explicitly, but only as the removal of the object at the old dn and the following addition at the
new dn.

58 _)
www.univention.de

https://www.univention.com/feedback/?manual=listener:example
https://www.univention.com/feedback/?manual=listener:example:simple

@ univention

be open.

Rename and Move

Source code: doc/devel oper-reference/listener/simple.py

def handl er(dn, new, old):
if new and not ol d:
handl er _add(dn, new)
elif new and ol d:
handl er _nodi fy(dn, old, new)
elif not new and ol d:
handl er _renove(dn, ol d)
el se:
pass # ignore

def handl er _add(dn, new):
"""Handl e addition of object."""
pass # replace this

def handl er _nodify(dn, old, new):
"""Handl e nodification of object."""
pass # replace this

def handl er _renove(dn, ol d):
"""Handl e renoval of object."""
pass # replace this

5.2.2. Rename and Move

In case rename and move actions should be handled separately, the following code may be used:

Source code: doc/devel oper-reference/listener/modrdn.py

o

nodr dn

_del ay = None

def handl er(dn, new, old, comrand):
gl obal _del ay

i f _del ay:

old dn, old = _delay

_delay = None

if "a" == conmand and old['entryUU D] == new'entryUU D]:
handl er _nmove(ol d_dn, old, dn, new)
return

handl er _renove(ol d_dn, ol d)

if "n" == command and "cn=Subschema" == dn:
handl er _schema(ol d, new)

elif new and not ol d:
handl er _add(dn, new)

elif new and ol d:

https://github.com/univenti on/univention-corporate-server/bl ob/4.2-0/doc/devel oper-reference/listener/simple.py
https://github.com/univenti on/univention-corporate-server/bl ob/4.2-0/doc/devel oper-reference/li stener/modrdn.py

www.univention.de

59

Feedback Q

https://github.com/univention/univention-corporate-server/blob/4.2-0/doc/developer-reference/listener/simple.py
https://www.univention.com/feedback/?manual=listener:example:modrdn
https://github.com/univention/univention-corporate-server/blob/4.2-0/doc/developer-reference/listener/modrdn.py
https://github.com/univention/univention-corporate-server/blob/4.2-0/doc/developer-reference/listener/simple.py
https://github.com/univention/univention-corporate-server/blob/4.2-0/doc/developer-reference/listener/modrdn.py

@ univention

be open.

Full Example with Packaging

handl er _nodi fy(dn, ol d, new)
elif not new and ol d:

if "r" == comand:
_delay = (dn, old)
el se:
handl er _renove(dn, ol d)
el se:

pass # ignore, reserved for future use

def handl er _nove(ol d_dn, old, new dn, dn):
"""Handl e renane or nove of object."""
pass # replace this

def handl er _schema(ol d, new):
"""Handl e change in LDAP schema."""
pass # replace this

Warning

Please be aware that tracking the two subsequent calls for nodr dn in memory might cause dupli-
cates, in case the Univention Directory Listener isterminated while such an operation is performed.
If thisiscritical, the state should be stored persistently into atemporary file.

5.2.3. Full Example with Packaging Feedback {2}

The following example shows a listener module, which logs all changes to users into the file / r oot /
User Li st.txt.

Source code: doc/devel oper-reference/listener/printusers/

Exanple for a |listener nodul e, which | ogs changes to users.

__package = "" # workaround for PEP 366
i mport |istener

i mport os

i mport errno

i mport univention.debug as ud

fromcoll ections inmport namedtupl e

nane = 'printusers'
description = '"print all nanes/users/uidNunbers into a file'
filter = """\
(&
(1
(&

(obj ect d ass=posi xAccount)
(obj ect d ass=shadowAccount)
)
(obj ect d ass=uni venti onMai |)
(obj ect d ass=sanbaSamAccount)
(obj ect d ass=si npl eSecurityCbj ect)

https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/devel oper-reference/listener/printusers/

www.univention.de

https://www.univention.com/feedback/?manual=listener:example:user
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/listener/printusers/
https://github.com/univention/univention-corporate-server/tree/4.2-0/doc/developer-reference/listener/printusers/

@ univention

be open.
Full Example with Packaging
(obj ect d ass=i net Or gPer son)

)

(! (obj ect d ass=uni venti onHost))
(! (ui dNunber =0))
(' (

ui d=*$))
)""".transl ate(None, '\t\n\r')
attributes = ['uid', 'uidNunber', 'cn']
_Rec = nanedtuple('Rec', ' '.join(attributes))

USER LI ST = '/root/UserlList.txt'

def handl er(dn, new, old):

Wite all changes into a text file.
This function is called on each change.

i f new and ol d:

_handl e_change(dn, new, ol d)
elif new and not ol d:

_handl e_add(dn, new)

elif old and not new:

_handl e_renove(dn, ol d)

def _handl e_change(dn, new, ol d):
Cal | ed when an object is nodified.

o _rec _rec(old)

n_rec _rec(new

ud. debug(ud. LI STENER, ud.|INFO, 'Edited user "%"' % (0 _rec.uid,))
_witeit(o rec, u edited. Is now ')

_witeit(n_rec, None)

def _handl e_add(dn, new):

Cal | ed when an object is newy created.

n_rec = _rec(new

ud. debug(ud. LI STENER, ud.|NFQO, 'Added user "9%"' % (n_rec.uid,))
witeit(n_rec, u'added')
def _handl e_renove(dn, ol d):

Cal | ed when an previously existing object is renpved.

o rec = rec(old)

ud. debug(ud. LI STENER, ud.|NFQO, 'Renpved user "9%"' % (o _rec.uid,))
_witeit(o_rec, u'renoved')

61
www.univention.de

Full Example with Packaging

def _rec(data):

Retri eve synbolic,

@ univention

be open.

nuneric | D and nane from user data.

return Rec(*(data.get(attr, (None,))[0] for attr in attributes))

cl ass AsRoot (obj ect):

Tenporarily change effective UDto '"root'.

def __enter_ (self):
| i stener. setuid(0)

def _exit_(self,

exc_type, exc_value, traceback):

| i stener. unset ui d()

def witeit(rec, conmment):

Append ConmonNane,

synbol ic and nuneric User-IDentifier, and comment to

file.
nuid = u" *****' if rec.uid in ('root', 'spam) else rec. ui dNunber
indent = '\t' if comment is None else "'

try:
wi th AsRoot ():

with open(USER LI ST, 'a') as out:

print >> out, u
print >> out, u
print >> out, u

i f comrent:
print >> out,
except | CError as
ud. debug(
ud. LI STENER, ud.

'OsNane: "9%"' % (indent, rec.cn)
"OsUser: "9%"' % (indent, rec.uid)
'"sU D "9%"' % (indent, nuid)

u' %%' % (i ndent, conmment,)
ex:

ERRCR,

'"Failed to wite "9%": %' % (USER LI ST, ex))

def initialize():

Remove the log file.
This function is called when the nodule is forcefully reset.

try:
wi th AsRoot ():

os. renove(USER LI ST)

ud. debug(
ud. LI STENER, ud.

I NFO,

'Successfully deleted "9%""' % (USER LI ST,))
except OSError as ex:
i f errno. ENOENT == ex. errno:

62

www.univention.de

@ univention

be open.
Full Example with Packaging

ud. debug(

ud. LI STENER, ud. | NFQ,

"File "%" does not exist, will be created" % (USER LI ST,))
el se:

ud. debug(

ud. LI STENER, ud. WARN,

'"Failed to delete file "%": %' % (USER LI ST, ex))

Some comments on the code:

o Overwriting __package__iscurrently necessary, as the Univention Directory Listener imports the lis-
tener module by its own mechanism, which is incompatible with the mechanism normally used by Python
itself. Be aware, that this might cause problems when using pickle.

o The LDAP filter is specifically chosen to only match user objects, but not computer objects, which have
auid characteristically terminated by a $-sign.

o Theat t ri but e filter further restricts the module to only trigger on changes to the numeric and symbolic
user identifier and the last name of the user.

o Totestthisrunacommandliket ai | -f /root/UserList.txt & Thencreateanew user or modify
the lastname of an existing one to trigger the module.

For packaging the following files are required:
debi an/ printusers.install

Themoduleshould beinstalledintothedirectory / usr/ | i b/ uni venti on-di rectory-1isten-
er/systen .

printusers.py usr/lib/univention-directory-I|istener/systenl
debi an/ pri nt users. posti nst
The Univention Directory Listener must be restarted after package installation and removal:

#! / bin/sh
set -e

case "$1" in
confi gure)
i nvoke-rc.d univention-directory-|listener restart

abort - upgr ade| abort - renove| abort - deconfi gure)

*)
echo "postinst called with unknown argunent \ $1'" >&2
exit 1

esac
#DEBHEL PER#

exit O
debi an/ printusers. postrm

#! /[bin/sh
set -e

_) 63
www.univention.de

@ univention

be open.
A Little Bit more Object Oriented

case "$1" in
renove)
i nvoke-rc.d univention-directory-|istener restart

pur ge| upgr ade| f ai | ed- upgr ade| abort-install | abort-upgrade| di sappear)

*

)

echo "postrmcalled wi th unknown argunment \ $1'" >&2
exit 1

esac
#DEBHEL PER#

exit O

5.2.4. A Little Bit more Object Oriented Feedback £}

For larger modules it might be preferable to use a more object oriented design like the following example,
which logs referential integrity violationsinto afile.

Source code: doc/devel oper-reference/listener/obj.py

__package = "" # workaround for PEP 366
nane = "refcheck"
description = "Check referential integrity of uniqueMenber rel ations"

filter = "(uni queMenber=*)"
attribute = ["uni queMenber"]

nodrdn = "1"
i mport os
i mport | dap

i mport |istener
i mport univention.debug as ud
frompwd i nport getpwnam

cl ass Local Ldap(object):
PORT = 7389

def __init_ (self):
self.data = {}
sel f.con = None

def setdata(sel f, key, value):
sel f. dat a[key] = val ue

def prerun(self):
try:
sel f.con = | dap. open(sel f.data["| dapserver"], port=self.PORT)
sel f.con. sinpl e_bind s(sel f.data["binddn"], self.data["bindpw'])
except | dap. LDAPError as ex:

https://github.com/univenti on/univention-corporate-server/bl ob/4.2-0/doc/devel oper-reference/li stener/obj .py

www.univention.de

https://www.univention.com/feedback/?manual=listener:example:setdata
https://github.com/univention/univention-corporate-server/blob/4.2-0/doc/developer-reference/listener/obj.py
https://github.com/univention/univention-corporate-server/blob/4.2-0/doc/developer-reference/listener/obj.py

@ univention

be open.

ud. debug(ud. LI STENER, ud. ERROR, str(ex))

def postrun(self):
try:
sel f. con. unbi nd()
sel f.con = None
except | dap. LDAPError as ex:
ud. debug(ud. LI STENER, ud. ERROR, str(ex))

cl ass Local Fil e(object):
USER = "l i stener"
LOG = "/var/ |l og/ uni venti on/ref check. | og"

def initialize(self):
try:
ent = get pwnan(sel f. USER)
wi th AsRoot ():
open(sel f.LOG "wb")
os. chown(sel f. LOG ent.pw uid, -1)
except OSError as ex:
ud. debug(ud. LI STENER, ud. ERROR, str(ex))

def |og(self, nsgQ):
with open(self.LOG 'ab') as |og:
print >> |og, nsg

def clean(self):
try:
wi th AsRoot ():
os. renove(sel f.LOG
except OSError as ex:
ud. debug(ud. LI STENER, ud. ERROR, str(ex))

cl ass AsRoot (obj ect):

Tenporarily change effective UDto '"root'.

def __enter_ (self):
| i stener. setui d(0)

A Little Bit more Object Oriented

def __exit_ (self, exc_type, exc_val ue, traceback):

| i stener. unset ui d()

cl ass ReferentiallntegrityCheck(Local Ldap,
MESSAGES = {
(Fal se, False): "Still invalid: ",

(Fal se, True): "Now valid: ",
(True, False): "Now invalid: ",
(True, True): "Still valid: ",

www.univention.de

Local File):

65

@ univention

be open.
A Little Bit more Object Oriented

}

def __init_(self):
super (Referential I ntegrityCheck, self). init_ ()
sel f. _del ay = None

def handl er(self, dn, new, old, command='"):
if self. delay:
old dn, old = self. _del ay
sel f. _del ay = None

if "a" == command and old['entryUU D] == newW'entryUU D]:
sel f. handl er _nove(ol d_dn, old, dn, new
return

sel f. handl er _renove(ol d_dn, ol d)

if "n" == command and "cn=Subschema" == dn
sel f. handl er _schena()

elif new and not ol d:

sel f. handl er _add(dn, new)

elif new and ol d:

sel f. handl er _nodi fy(dn, old, new)

elif not new and ol d:

if "r" == comand:

sel f. _delay = (dn, old)

el se:

sel f. handl er _renove(dn, ol d)
el se:

pass # ignore, reserved for future use

def handl er _add(sel f, dn, new):
if not self. validate(new):
self.log("New invalid object: " + dn)

def handl er _nodify(self, dn, old, new:

valid = (self. validate(old), self. validate(new))
nsg = sel f. MESSAGES[val i d]

self.log(nsg + dn)

def handl er _renove(self, dn, old):
if not self. validate(old):
self.log("Renmoved invalid: " + dn)

def handl er _nove(sel f, old dn, old, new dn, new):
valid = (self. validate(old), self. validate(new))
nsg = sel f. MESSAGES[val i d]

self.log("% % -> %" % (nmsg, old _dn, new dn))

def handl er _schena(sel f):
sel f.l og(" Schena change")

def _validate(self, data):
try:
for dn in data["uni queMenber"]:
sel f.con. search_ext _s(dn, |dap. SCOPE BASE, attrlist=[], attrsonly=1)

66 _)
www.univention.de

@ univention

be open.
Technical Details

return True
except | dap. NO SUCH OBJECT:
return Fal se
except | dap. LDAPError as ex:
ud. debug(ud. LI STENER, ud. ERROR, str(ex))
return Fal se

_instance = Referential lntegrityCheck()

initialize = _instance.initialize

handl er = _instance. handl er

cl ean = _instance. cl ean

prerun = _instance. prerun

postrun = _instance. postrun

setdata = _instance.setdata
5.3. Technical Details Fecdback{)
5.3.1. User-ID and Credentials Feedback {)

The listener runs with the effective permissions of the user | i st ener . If r oot -privileges are required,
i stener. setuid() canbeused to switch the effective UID. When done, | i st ener. unset ui d()
should be called to drop back tothe | i st ener UID. It'sbest practiceto codethisast r y/f i nal | y clauses
in Python.

5.3.2. Internal Cache Feedback £}

Thedirectory / var /i b/ uni venti on-directory-I|istener/ containsseverd files:
cache/ cache. ndb, cache/ | ock. ndb

Starting with UCS 4.2 the LMDB cache database contains a copy of all objects and their attributes. It
is used to supply the old values supplied through the ol d parameter, when the function handl e() is
called.

The cache is also used to keep track, for which object which module was called. Thisis required when
anew moduleis added, which isinvoked for all aready existing objects when the Univention Directory
Listener isrestarted.

On domain controllers the cache could be replaced by doing aquery to thelocal LDAP server, before the
new values are written into it. But member server do not have alocal LDAP server, so there the cache
is needed. Also note that the cache keeps track of the associated listener modules, which is not available
from the LDAP.

cache. | ock
Starting with UCS 4.2 thisfileis used to detect if alistener opened the cache database.
cache. db, cache. db. | ock

Before UCS 4.2 the BDB cache file contained a copy of all objects and their attributes. With the update
to UCS 4.2 it gets converted into an LMDB database.

notifier_id

Thisfile contains the last notifier 1D read from the Univention Directory Notifier.

_) 67
www.univention.de

https://www.univention.com/feedback/?manual=listener:details
https://www.univention.com/feedback/?manual=listener:details:credentials
https://www.univention.com/feedback/?manual=listener:details:cache

@ univention

be open.
Internal working

handl| er s/

For each module the directory contains a text file consisting of a single number. The name of thefileis
derived from the values of the variable nane as defined in each listener module. The number is to be
interpreted as a bit-field of HANDLER_| NI TI ALI ZED=0x1 and HANDLER READY=0x2. If both bits
areset, itindicatesthat the module was successfully initialized by running thefunctioni ni ti al i ze() .
Otherwise both bits are unset.

The package univention-directory-listener contains several commands useful for controlling and debugging
problems with the Univention Directory Listener. This can be useful for debugging listener cache inconsis-
tencies.

5.3.2.1. univention-directory-listener-ctrl Feedback {-)

The command uni venti on-di rectory-1listener-ctrl resync name canbeusedto reset and
re-initialize amodule. It stops any currently running listener process, removes the state file for the specified
module and starts the listener process again. This forces the functions cl ean() andinitialize() to
be called one after the other.

5.3.2.2. uni vention-directory-1listener-dunp Feedback { D)

Thecommand uni venti on-di rectory-1|i stener-dunp canbeused to dump the cachefile/ var /
i b/univention-directory-Ilistener/cache. db. The Univention Directory Listener must be
stopped first by invokingser vi ce uni vention-directory-1istener stop.Itoutputsthecache
in format compatible to the LDAP Data Interchange Format (LDIF).

5.3.2.3.univention-directory-listener-verify Feedback {_)

The command uni vention-directory-Ilistener-verify can be used to compare the content
of the cachefile/var/|i b/ uni vention-directory-1istener/cache. db to the content of an
LDAP server. The Univention Directory Listener must be stopped first by invoking ser vi ce uni ven-
tion-directory-1listener stop.LDAP credentials must be supplied at the command line. For ex-
ample, the following command would use the machine password:

uni vention-directory-1listener-verify \
-b "$(ucr get |dap/base)" \
-D "$(ucr get |dap/hostdn)" \
-w "$(cat /etc/machi ne.secret)"

5.3.24.get_notifier_id. py Feedback {)

The command / usr/ shar e/ uni vention-directory-listener/get _notifier_id.py can
be used to get the latest ID from the notifier. Thisis done by querying the Univention Directory Notifier run-
ning onthe LDAP server configured through the Univention Configuration Registry variablel dap/ mast er .
The returned value should be equal to the value currently stored inthefile/ var /1 i b/ uni venti on-di -
rectory-listener/notifier_id. Otherwise the Univention Directory Listener might still be pro-
cessing atransaction or it might indicate a problem with the Univention Directory Listener

5.3.3. Internal working Feedback {2}

TheListener/Notifier mechanismisusedtotrigger arbitrary actionswhen changesoccur inthe LDAP directory
service. In addition to the LDAP server sl apd it consists of two other services: The Univention Directory
Notifier service runs next to the LDAP server and broadcasts change information to interested parties. The
Univention Directory Listener service listens for those notifications, downloads the changes and runs listener

68 _)
www.univention.de

https://www.univention.com/feedback/?manual=listener:commands:ctrl
https://www.univention.com/feedback/?manual=listener:commands:dump
https://www.univention.com/feedback/?manual=listener:commands:verify
https://www.univention.com/feedback/?manual=listener:commands:getnid
https://www.univention.com/feedback/?manual=listener:details:internal

@ univention

be open.

Internal working

modules performing arbitrary local actions like storing the data in a local LDAP server for replication or
generating configuration files for non-LDAP-aware local services.

Figureb5.1. Listener/Notifier mechanism

listener/listener
socket

MNotifier

Listener —

UCS Master

notify/transaction
change list

i listener/listener
Socket (Backup)

Listener modulr_e_

printers
.conf

smb.conf

UCS Slave

On startup the listener connects to the notifier and opens a persistent TCP connection. The host can be con-
figured through several Univention Configuration Registry variables:

o Ifnotifier/server isexplicitly set, only that named host is used. In addition the Univention Config-
uration Registry variablenot i fi er/ server/ port canbeused to explicitly configure adifferent TCP

port other then 6669.

> Otherwise on the master domain controller and on all backup domain controllers, only the host named in

| dap/ mast er isused.

o Otherwise on al other system roles a host is chosen randomly from the combined list of namesin | dap/

mast er and| dap/ backup®.

The following steps occur on changes:

Procedureb5.1. Listener/Notifier procedure

1. AnLDAP objectismodified on the master domain controller. Changesinitiated on all other systemroles

are re-directed to the master.

2. The UCS-specific overlay-module t r ans| og appends the DN to the file / var/ | i b/ uni ven-

tion-1dap/listener/listener?

3. The Univention Directory Notifier watches that file, picks up and removes each line it processed. It
assigns the next transaction number and writesit into thefile/ var /I i b/ uni venti on- | dap/ no-
tify/transacti on®, including the DN and change type. For efficient access by transaction ID the

indextransacti on. i ndex isupdated.

4. All listeners get notified of the new transaction.

MThislist of backup domain controllers stored in the Univention Configuration Registry variablel dap/ backup isautomatically updated by thelistener

module| dap_server. py.

“Referred to asF LE_NAME_LI STENER, TRANSACTI ON_FI LE in the source code

SReferred to as FI LE_NAME_TF in the source code

www.univention.de

69

@ univention

be open.
Internal working

5. Eachlistener triggered in thisway queriesthe Notifier for the latest transaction 1D, DN and change type.

6. Each listener opens a connection to the LDAP server running on the UCS system which was used to
query the Notifier. It retrievesthe latest state of the object identified through the DN. If accessis blocked,
for example, by selective replication, the change is handled as a delete operation instead.

7. Theold state of the object is fetched from the local listener cache.

8. For each module it is checked, if either the old or new state of the object matchesthe fi |l t er and
attri but es specified in the corresponding Python variables. If not, the module is skipped.

9. If thefunction pr er un() of module was not called yet, thisis done to signal the start of changes.
10. Thefunctionhandl er () specifiedinthe moduleiscalled, passing inthe DN and the old and new state.

11. The main listener process updates its cache with the new values, including the names of the modules
which successfully handled that object. This guarantees that the module is still called, even when the
filter criteriawould no longer match the object after modification.

12. On abackup domain controller the Univention Directory Listener writes the transaction data to the file
/var/lib/univention-ldap/listener/list ener % to allow the Univention Directory No-
tifier to be cascaded. This is configured internally with the option - o of uni venti on- di r ect o-
ry-1listener andisdonefor load balancing and failover reasons.

13. Thetransaction ID is written into the local file/ var/ 1 i b/ uni venti on-directory-Iisten-
er/notifier_id.

14. After 15 secondsof inactivity thefunction post r un() isinvokedfor all prepared modules. Thissignals
a break in the stream of changes and requests the module to release its resources and/or start pending
operations.

“Referred to asFI LE_NAME_LI STENER, TRANSACTI ON_FI LE in the source code

70 _)
www.univention.de

@ univention

be open.
Introduction
Chapter 6. Univention Directory
Manager (UDM)
L300 I 11T [0 Tox o o 71
6.2. Packaging EXtended AIIDULESiiii e e e 72
Lo IS 1= ot (o] o T 76
6.2.1.1. StAiC SHECHIONS ...euuiiiiiceie e e e e e e 77
6.2.1.2. DYNAMIC SEIECHIONS .. .eevueiiiecii e e e e e e e e e e e e e e et e e e e aaaees 77
B.2.2. KNOWN ISSUES ...evueiiteetieeetee e e e e et e e e e e e e e et e e et e e et e e et e e et e e et e e et e e et e eetn e eanneeannns 78
6.2.3. EXIENAEA OPLiONS .. cevniiiii i e e e e 78
6.2.4. Extended Attribute HOOKScouuiiiiiii e e e e e 80
L3 T T Y 1V oo 1P 81
LT Y Y | G SRRPSR 81
6.4.1. UDM SyntaxX OVEITIAEccuuiiiii e et e e e e e e e e e e e e et e e et e e e eaeaeenaaes 83
6.4.2. UDM LDAP SEAICH ..eeeiiiiiii et e e e e e s e s e e e e e et s e a e e e e eeaannnnnas 83
6.5. PaCkaging UDM HOOKSuiiiiiieiitioe e e e e e e e e e e e e s e e e et e e et e e e e e et aeeaneeanes 87
6.6. Packaging UDM EXtension MOGUIEScvuuniiiieeii e e e e e e e e e e e ean e eeen 88
6.7. Packaging UDM SyntaX EXIENSIONc.uuiiiiieiiiicii e eees e e e e e e e e e e e e e et e s e eaneees 90

The Univention Directory Manager (UDM) isawrapper for LDAP objects. Traditionally LDAP stores objects
asacollection of attributes, which are definesby so called schemata. Modifying entriesis slightly complicated,
as there are no high-level operations to add or remove values from multi-valued attributes, or to keep the
password used by different authentication schemes such as Windows NTLM-hashes, UNIX MD5 hashes, or
Kerberos ticketsin sync.

6.1. Introduction Feedback {)

The command line client udmprovides different modes of operation.
udml[--binddn bi nd- dn --bindpwd bi nd- passwor d] [modul e] [mode] [opt i ons]
Creating object:

udmnodul e create--set pr oper t y=val ue...

eval "$(ucr shell)"
udm cont ai ner/ou create --position "$l dap base" --set name="xxx"

Multiple - - set smay be used to set the values of a multivalued property.
The equivalent LDAP command would look like this:

eval "$(ucr shell)"

| dapadd -D "cn=admi n, $l dap_base" -y /etc/ldap.secret <<_ LD F__
dn: ui d=xxx, $l dap_base

obj ect O ass: organi zati onal Rol e

cn: XXX

_LDF__

List object:
udmnodul e list[--dndn | --filter pr opert y=val ue]
udm contai ner/ou list --filter nanme="xxx"

uni venti on-| dapsearch cn=xxx

_) 71
www.univention.de

https://www.univention.com/feedback/?manual=udm:intro

@ univention

be open.
Packaging Extended Attributes

Modify object:

udmnodul e modify [--dn dn | --filter pr oper t y=val ue] [--set pr opert y=val ue | --
append pr oper t y=val ue |--remove pr oper t y=val ue ..]

udm cont ai ner/ou nodi fy --dn "cn=xxx, $l dap_base" --set nane="xxx"

For multivalued attributes - - append and - - r enbve can be used to add additional values or remove
existing values. - - set overwrites any previous value, but can also be used multiple times to specify
further values. - - set and - - append should not be mixed for any property in one invocation.

Delete object:
udmnodul e remove[--dndn | --filter pr oper t y=val ue]
udm cont ai ner/ ou del ete --dn "cn=xxx, $l dap_base"

If --filter isused, it must match exactly one object. Otherwise udmrefuses to delete any object.

6.2. Packaging Extended Attributes Fecaback {)

Each UDM module provides a set of mappings from LDAP attributes to properties. This set is not complete,
because LDAP abjects can be extended with additional auxiliary objectClasses Extended Attributes can be
used to extend modulesto show additional properties. These properties can be mapped to any already defined
LDAP attribute, but objects can aso be extended by adding additional auxiliary object classes, which can
provide new attributes.

For packing purpose any additional LDAP schema needs to be registered on the master domain controller,
which isreplicated from there to al other Domaincontrollers viathe Listener/Notifier mechanism (see Chap-
ter 5). Thisis best done trough a separate schema package, which should be installed on the master domain
controller and backup domain controller. Since Extended Attributes are declared in LDAP, the commands
to create them can be put into any join script (see Chapter 3). To be convenient, the declaration should be
also included with the schema package, since installing it there does not require the Administrator to provide
additional LDAP credentials.

An Extended Attribute is created by using the UDM command line interface uni vent i on-di r ect o-
ry- manager oritsaliasudm Themoduleiscalledset ti ngs/ ext ended_att ri but e. Extended At-
tributes can be stored anywhere in the LDAP, but the default location would be cn=cust om at tri but -
es, cn=uni vent i on, below the LDAP base. Since the join script creating the attribute may be called on
multiple hosts, it isagood ideato add the- - i gnor e_exi st s option, which suppressesthe error exit code
in case the object already existsin LDAP.

Themoduleset ti ngs/ ext ended_att ri but e requires many parameters. They are described in 7?72?2.
nane (required)
Name of the attribute.
CLI Narre (required)
An alternative name for the command line version of UDM.
short Descri pti on (required)
Default short description.
transl ati onShort Descri pti on (optional, multiple)

Trandlation of short description.

72 _)
www.univention.de

https://www.univention.com/feedback/?manual=udm:ea

@ univention

be open.
Packaging Extended Attributes

| ongDescri pti on (required)
Default long description.
transl ati onLongDescri pti on (optional, multiple)
Trandation of long description.
obj ect ass (required)
The name of an LDAP object class which is added to store this property.
del et eCbj ect Cl ass (optional)
Remove the object class when the property is unset.
| dapMappi ng (required)
The name of the LDAP attribute the property matches to.
synt ax (optional)
A syntax class, which also controls the visual representation in UDM. Defaultsto st ri ng.
def aul t (optional)

The default value is used when a new UDM object is created. It is also used when for an object if the
option is enabled, which only then activates the property.

val ueRequi r ed (optional)
A value must be entered for the property.
mul ti val ue (optional)

Controls if only a singe value or multiple values can be entered. This must be in sync with the SI N-
GLE- VALUE setting of the attribute in the LDAP schema.

may Change (optional)
The property may be modified later.
not Edi t abl e (optional)

Disable al modification of the property, even when the object isfirst created. The property is only mod-
ified through hooks.

hook (optional)
The name of a Python class implementing hook functions. See Section 6.2.4 for more information.
doNot Sear ch (optional)

If thisis enabled, the property is not show in the drop-down list of properties when searching for UDM
objects.

t abNarne (optional)

The name of thetab in the UM C where the property should be displayed. The name of existing tabs can be
copied from UMC session withthe Engl i sh locale. A new tab is automatically created for new names.
If no nameisgiven, ?7?7?

_) 73
www.univention.de

@ univention

be open.
Packaging Extended Attributes

transl ati onTabName (optional, multiple)
Trandlation of tab name.
t abPosi ti on (optional)

This setting is only relevant, when a new tab is created by using at abNane, for which no tab exists.
The integer value defines the position where the newly tab isinserted. By default the newly created tab
is appended at the end, but before the Extended settings tab.

overwr it eTab (optional)

If enabled, the tab declared by the UDM module with the name from the t abNane settings is replaces
by a new clean tab with only the properties defined by Extended Attributes.

t abAdvanced (optional)
If thissetting isenabled, thetabis created insi de the Extended settingstab instead of being atab by itsown.
gr oupNane (optional)

The name of the group inside atab where the property should be displayed. The name of existing groups
can be copied from UMC session with the Engl i sh locale. A new tab is automatically created for new
names. If no name is given, the property is placed before the first tab.

transl ati onG oupNare (optional, multiple)
Trandation of group name.
gr oupPosi ti on (optional)

This setting is only relevant, when a new group is created by using agr oupNane, for which no group
exists. The integer value defines the position where the newly group is inserted. By default the newly
created group is appended at the end.

overwritePosition (optional)

The name of an existing property this property wants to overwrite.
di sabl eUDMA&b (optional)

Disables showing this property in the UMC.
ful | W dt h (optional)

The widget for the property should span both columns.
nmodul e (required, multiple)

A list of module names where this Extended Attribute should be added to.
opt i ons (required, multiple)

A list of options, which enable this Extended Attribute.
ver si on (required)

The version of the Extended Attribute format. The current versionis 2.

74 _)
www.univention.de

@ univention

be open.
Packaging Extended Attributes

Tip

Create the Extended Attribute first through UMC-UDM. Modify it until you're satisfied. Only then
dump it using udm settings/ extended_attribute |ist and convert the output to an
equivalent shell script creating it.

Example 6.1. Extended Attribute for custom L DAP schema

This example provides asimple LDAP schema called ext ended- at t ri but e. schema, which declares
one object class uni vent i onExanpl esUdnOC and one attribute uni vent i onExanpl esUdnmAt -
tribute.

#obj ectl dentifier univention 1.3.6.1.4.1.10176
#obj ectl denti fi er univentionCustonmers univention: 99999
#obj ectl denti fi er uni venti onExanpl es uni venti onCustoners: 0
obj ectldentifier univentionExanples 1.3.6.1.4.1.10176:99999: 0
obj ectldentifier univentionExmapl esUdm uni venti onExanpl es: 1
obj ectldentifier univentionExmapl esUdmAttri buteType

uni vent i onExmapl esUdm 1
obj ectldentifier univentionExmapl esUdmObj ect Cl ass

uni vent i onExmapl esUdm 2

attributetype (univenti onExmapl esUdmAttri but eType: 1
NAME ' uni venti onExanpl esUdmAt t ri but e’
DESC ' An exanple attribute for UDM
EQUALI TY casel gnor eMat ch
SUBSTR casel gnor eSubst ri ngsiat ch
SYNTAX 1.3.6.1.4.1.1466.115. 121. 1. 15{42}
S| NGLE- VALUE

)

obj ect C ass (univenti onExmapl esUdnmObj ect Cl ass: 1
NAME ' uni vent i onExanpl esUdnOC
DESC ' An exanpl e object class for UDM
SUP top
AUXI LI ARY
MUST (uni venti onExanpl esUdmAttri bute)

)

w The schema is shipped as /usr/share/extended-attribute/extended-attribut-
e. schema and installed by calling ucs_r egi st er LDAPExt ensi on from the join-script 50ext end-
ed-attribute.inst.

#! / bi n/ sh
#DEBHEL PER#
[usr/share/univention-|ib/base. sh
call _joinscript 50extended-attribute.inst

exit O

This script calls the join-script 50ext ended- attri bute. i nst, which also creates an Extended At-
tribute by using the udmcommand line interface:

_) 75
www.univention.de

@ univention

be open.
Sdection lists

#!/ bi n/ bash

VERSI ON=1
[usr/ shar e/ uni vention-join/joinscripthelper.lib
[usr/ share/ univention-1lib/ldap.sh

joinscript _init

regi ster LDAP schema for new extended attri bute
ucs_regi st er LDAPExt ensi on "$@ --schenma /usr/share/extended-attri bute/
ext ended- attri bute. schema

Regi ster new service entry for this host
eval "$(ucr shell)"
udm settings/extended attribute create "$@ --ignore_exists \
--position "cn=custom attributes, cn=uni vention, $l dap_base" \
--set name="My Attribute" \
--set CLI Name="nyAttribute" \
--set shortDescription="Exanple attribute" \
--set translationShortDescription=""de DE" "Beispielattribut"' \
--set | ongDescription="An exanple attribute" \
--set translati onLongDescription=""de DE'" "Ein Beispielattribut"' \
--set tabAdvanced=1 \
--set tabNane="Exanpl es" \
--set transl ati onTabNane='"de DE" "Beispiele"' \
--set tabPosition=1\
--set nodul e="gr oups/ group” \
--set nodul e="conput er s/ nenber server" \
--set syntax=string \
--set default="Lorem i psuni \
--set nultival ue=0 \
--set val ueRequi red=0 \
--set mayChange=1 \
--set doNot Search=1 \
--set obj ect d ass=uni venti onExanpl esUdnOC \
--set | dapMappi ng=uni vent i onExanpl esUdnmAttri bute \
--set del et eObj ect G ass=0
--set overwitePosition=
--set overwiteTab=
--set hook=
--set options=

Term nate UDM server to force nodul e rel oad
[usr/share/uni vention-1i b/ base. sh
stop_udmcli _server

j oi nscript_save_current_version
exit O

This exampleis deliberately missing an unjoin-script (see Section 3.5) to keep this example simple. It should
check if the Extended Attribute is no longer used in the domain and then remove it.

6.2.1. Selection lists Feedback {2}

Sometimes an Extended Attribute should show alist of optionsto choose from. Thislist can either be static
or dynamic. After defining such anew syntax it can be used by referencing its namein the synt ax property
of an Extended Attribute.

76
www.univention.de

https://www.univention.com/feedback/?manual=udm:ea:select

@ univention

be open.
Selection lists

6.2.1.1. Static selections Feedback {_)

The static list of available selections is defined once and can not be modified interactively through UMC.
Such alist is best implemented though a custom syntax class. As the implementation must be available on
all system roles, the new syntax is best registered in LDAP. This can be done by using ucs_r egi st er L-
DAPExt ensi on which isdescribed in Section 3.4.3.2.

As an dternative the file can be put into the directory / usr/ shar e/ pyshar ed/ uni vent i on/ ad-
m n/ syntax. d/ and linked into the directory /usr/1i b/ pynodul es/ python2. 6/ uni ven-
tion/adm n/ synt ax. d/. When included into a Debian package, the linking is normally done by
dh_pyt hon.

The following example is comparable to the default examplein file/ usr/ shar e/ pyshar ed/ uni ven-
tion/adm n/ synt ax. d/ exanpl e. py:

class StaticSel ection(sel ect):
choi ces = |

('valuel', 'Description for selection 1'),
('value2', 'Description for selection 2'),
('valued', 'Description for selection 3"),
]
6.2.1.2. Dynamic selections Feedback {)

A dynamic list is implemented as an LDAP search, which is described in Section 6.4.2. For performance
reason it is recommended to implement a class derived from UDM At t ri but e or UDM Obj ect s instead
of using LDAP_Sear ch. Thefile/ usr/ shar e/ pyshar ed/ uni vent i on/ adm n/ synt ax. py con-
tains several examples.

Example 6.2. Dynamic selection list for Extended Attributes

The idea is to create a container with sub-entries for each selection. This following listing declares a new
syntax class for selecting a profession level.

cl ass Dynam cSel ecti on(UDM Obj ect s) :
udm nodul es = (' contai ner/cn',)
udmfilter = ' (&(objectd ass=organi zati onal Rol e)
(ou: dn: =Dynami cSel ecti on))"
sinple = True # only one value is sel ected
enpty value = True # allow sel ecting nothing
key = "% nane)s' # this is stored

| abel = '%description)s' # this is displayed
regex = None # no validation in frontend
error_nessage = 'lnvalid val ue'

The Python code should be put into a file named Dynami cSel ect i on. py. The following code registers
this new syntax in LDAP and adds some values. It also creates an Extended Attribute for user objects using
this syntax.

synt ax=' Dynani cSel ecti on'
base="cn=uni venti on, $(ucr get | dap/base)"

udm cont ai ner/ou create --position "$base" \
--set name="$synt ax" --set description="UCS profession |evel
dn="ou=$synt ax, $hase"

udm cont ai ner/cn create --position "$dn" \

77
www.univention.de

https://www.univention.com/feedback/?manual=udm:ea:select:static
https://www.univention.com/feedback/?manual=udm:ea:select:dynamic

@ univention

be open.

Known issues

--set nane="val uel" --set description="UCS Guru (> 5)'

udm contai ner/cn create --position "$dn" \

--set nanme="val ue2" --set description='"UCS Regular (1..5)

udm contai ner/cn create --position "$dn" \

--set nanme="val ue3" --set description="UCS Begi nner (< 1)

udm contai ner/cn create --ignore_exists --position "$base" \

--set nanme='udm synt ax’
dn="cn=udm synt ax, $base"
udm settings/udm syntax create --position "$dn" \

--set name="$syntax" --set fil ename="Dynam cSel ection. py" \
--set data="$(bzi p2 <Dynami cSel ection.py | base64)" \
--set package="$synt ax" --set packageversion="1"

udm settings/extended attribute create --position "cn=custom attri butes,
$base" \

--set name='Profession' \

--set nodul e=' users/user' \

--set tabName='General' \

--set transl ati onTabNane='"de DE" "Al |l genein"' \

--set groupNane='Personal infornmation' \

--set translati onG oupNanme='"de_DE" "Personliche Infornmationen"' \

--set shortDescription="UCS profession |level' \

--set transl ationShortDescription=""de DE" "UCS Erfahrung"' \

--set |ongDescription="Select a | evel of UCS experience' \

--set translati onLongDescription='"de DE" "Wihlen Sie den Level der

Erfahrung mt UCS"' \

--set objectd ass='univentionFreeAttributes' \

--set | dapMappi ng=' uni venti onFreeAttri butel' \

--set syntax="$syntax" --set mayChange=1 --set val ueRequired=0

6.2.2. Known issues Feedback {2}

o The t abNane and gr oupNane values must exactly match the values already used in the modules. If
they do not match, a new tab or group is added. This also applies to the trandlation: They must match the
already translated strings and must be repeated for every Extended Attribute again and again. The untrans-
lated strings are best extracted directly from the Python source code of the modulesin / usr/ shar e/
pyshar ed/ uni venti on/ admi n/ handl er s/ */ *. py. For thetranslated stringsrunnsgunf nt /
usr/share/ | ocal e/ | anguage- code/ LC_MESSAGES/ uni vent i on- admi n*. no.

o Theoverw it ePosition vauesmust exactly match the name of an already defined property. Other-
wise UDM will crash.

o Extended Attributes may be removed, when matching datais still stored in LDAP. The schemaon the other
hand must only be removed when all matching data is removed. Otherwise the server sl apd will fail to
start.

> Removingobj ect Cl assesfromLDAP objects must be donemanually. Currently UDM doesnot provide
any functionality to remove unneeded object classes or methods to force-remove an object classincluding
all attributes, for which the object classis required.

6.2.3. Extended Options Feedback £}

UDM properties can be enabled and disabled viaoptions. For example all properties of auser related to Samba
can be switched on or off to reduce the settings shown to an administrator. If many Extended Attributes are
added to aUDM module, it might proof necessary to also create new options. Options are per UDM module.

78
www.univention.de

https://www.univention.com/feedback/?manual=udm:ea:issues
https://www.univention.com/feedback/?manual=udm:ea:option

@ univention

be open.
Extended Options

Similar to Extended Attributesan Extended Option iscreated by using the UDM command lineinterfaceuni -
venti on-di rect ory-manager oritsaiasudm The moduleiscalled setti ngs/ ext ended_op-
t i ons. Extended Options can be stored anywhere in the LDAP, but the default location would becn=cus-
tom attributes, cn=uni venti on, below the LDAP base. Since the join script creating the option
may be called on multiple hosts, it isagood ideato add the - - i gnor e_exi st s option, which suppresses
the error exit code in case the object aready existsin LDAP.
Themoduleset ti ngs/ ext ended_opt i ons hasthe following properties:
narme (required)

Name of the option.
short Descri pti on (required)

Default short description.
transl ati onShort Descri pti on (optional, multiple)

Trandation of short description.
| ongDescri pti on (required)

Default long description.
transl ati onLongDescri pti on (optional, multiple)

Tranglation of long description.
def aul t (optional)

Enable the option by default.
edi t abl e (optional)

Option may be repeatedly turned on and off.
nodul e (required, multiple)

A list of module names where this Extended Option should be added to.

obj ect d ass (optional, multiple)

A list of LDAP object classes, which when found, enable this option.

Example 6.3. Extended Option

eval "$(ucr shell)"

udm set ti ngs/ extended options create "$@ --ignore_exists \
--position "cn=custom attri butes, cn=uni vention, $| dap_base" \
--set name="My Option" \
--set shortDescription="Exanpl e option" \
--set translationShortDescription=""de DE" "Beispieloption"' \
--set | ongDescri pti on="An exanpl e option" \
--set translati onLongDescription="'"de DE" "Ei ne Beispieloption"' \

_) 79
www.univention.de

@ univention

be open.
Extended Attribute Hooks
--set default=0 \
--set editable=0 \
--set nodul e="users/user" \
--set object d ass=uni vent i onExanpl esUdnOC
6.2.4. Extended Attribute Hooks Feedback {.)

Hooks provide a mechanism to pre- and post-process the values of Extended Attributes. Normally UDM
properties are stored as-is in LDAP attributes. Hooks can modify the LDAP operations when an object is
created, modified, deleted or retrieved. They are implemented in Python and the file must be placed in the
directory / usr/ shar e/ pyshar ed/ uni vent i on/ admi n/ hooks. d/ ! The file name must end with

The module univention.admin.hook provides the class si npl eHook, which implements all required hook
functions. By default they don't modify any request but do log all calls. This class should be used as a base
class for inheritance.

hook _open(sel f,
obj);

This method is called by the default open handler just before the current state of all propertiesis saved.

hook | dap_pre_create(self,
obj);

Thismethod is called beforea UDM object is created. It is called after the module validated all properties
but before the add-list is created.

list hook |dap addlist(self,
obj ,
al=1[1]);

This method is called before a UDM object is created. It gets passed a list of two-tuples (| dap- at -
tribute-nane, |ist-of-val ues) whichwill be used to create the LDAP object. The method
must return the (modified) list. Notice that hook | dap_nodl i st will also be called next.

hook | dap_post create(self,
obj);

This method is called after the object was created in LDAP.

hook | dap_pre_nodi fy(self,
obj);

Thismethod iscalled beforeaUDM objectismodified. Itiscalled after themodulevalidated all properties
but before the modification-list is created.

list hook |dap nodlist(self,

obj ,

m=11);
Thismethod iscalled beforeaUDM object is created or modified. It gets passed alist of tuples, which are
either two-tuples (| dap-attri but e-nane, |i st-of -new- val ues) or three-tuples (| dap-

1 This assumes that the hook file is packaged and linked by dh_pysupport to/usr/1i b/ pynodul es/ pyt hon2. 6/ uni venti on/ ad-
m n/ hooks. d/ for Python 2.6 or whatever Python version is used. If thefileisinstalled manually, it must be placed on apath listed in sys. pat h.

80 _)
www.univention.de

https://www.univention.com/feedback/?manual=udm:hook

@ univention

be open.
UDM Modules

attribute-name, |ist-of-old-values, |ist-of-new val ues).Itwill beusedtocre-
ate or modify the LDAP object. The method must return the (modified) list.

hook | dap_post _nodi fy(sel f,
obj);

Thismethod is called after the object was modified in LDAP.

hook | dap_pre_renove(self,
obj);

This method is called before a UDM object is removed.

hook | dap_post renove(self,
obj);

This method is called after the object was removed from LDAP.

The following example implements a hook, which removes the object-class uni vent i onFreeAttri b-
ut es if the property i sSanpl eUser isno longer set.

from uni venti on. adm n. hook i nport si npl eHook

cl ass RenoveObj Cl assUnused(si npl eHook) :
type = ' RenmoveObj Cl assUnused'

def hook | dap post nodi fy(self, obj):
"""Renpve unused objectC ass."""
ext_attr_nanme = 'isSanpl eUser'
cl ass_nanme = 'univentionFreeAttri butes'

i f obj.oldinfo.get(ext _attr nanme) in ('1',) and \
obj .info.get(ext_attr_nanme) in ('0, None):

if class nanme in obj.oldattr.get('objectCass', []):
obj . | o. nodi fy(obj . dn,
[('objectd ass', class nane, '')])

After installing the file the hook can be activated by setting the hook property of an Extended Attribute to
RemoveObj O assUnused:

udm settings/ extended _attribute nodify \
--dn ... \
--set hook=RenmoveObj Cl assUnused

6.3. UDM Modules Feedback {)

The development of Univention Directory Manager modulesis currently only documented in Univention Wi-
ki (currently only availablein German): http://wiki.univention.de/index.php?title=Entwicklung_und_Integra-
tion_eigener_Module _in_Univention_Directory Manager

6.4. UDM Syntax Feedback)

Every UDM property has a syntax, which is used to check the value for correctness. Univention Corpo-
rate Server already provides several syntax types, which are defined in the Python file / usr/ shar e/
pyshar ed/ uni venti on/ adm n/ synt ax. py. The following list of syntaxes is not complete, for a
complete overview the file should be consulted directly.

_) 81
www.univention.de

https://www.univention.com/feedback/?manual=udm:modules
http://wiki.univention.de/index.php?title=Entwicklung_und_Integration_eigener_Module_in_Univention_Directory_Manager
http://wiki.univention.de/index.php?title=Entwicklung_und_Integration_eigener_Module_in_Univention_Directory_Manager
https://www.univention.com/feedback/?manual=udm:syntax

@ univention

be open.
UDM Syntax

string,

string64,
OneThirdString,
Hal f Stri ng,

TwoThi rdsStri ng,
Four Thi rdsStri ng,
OneAndAHal f Stri ng,
Fi veThi rdsStri ng,
Text Area

Different string classes, which are mapped in Univention Management Consol e to text input widgetswith
different widths and heights.

string_nunbers_letters_dots,
string_nunbers letters_dots_spaces,
| A5stri ng,

Different string classes with restrictions on the allowed character set.

Upl oad,
Base64Upl oad,
j pegPhot o

Binary data.
i nt eger
Positive integers.

bool ean,

bool eanNone,
TrueFal se,

Tr ueFal seUpper,
TrueFal seUp

Different boolean typeswhichmaptoyes andno ort rue andf al se.

host Nane,

DNS_Nane,

wi ndowsHost Nane,

i pv4Addr ess,

i pAddr ess,

host O I P,

v4dnet nask,

net mask,

| Pv4_Addr essRange,
| P_Addr essRange,

Different classes for host names or addresses.

uni xTi e,

Ti meStri ng,
i so8601Dat €,
dat e

Date and time.

82))
www.univention.de

@ univention

be open.
UDM Syntax Override

G oupDN,

User DN,

User | D,

Host DN,

Domai nControl | er,
W ndows_Server,
UCS_Server,

Dynamic classes, which do an LDAP search to provide alist of selectable values like users, groups and
hosts

LDAP_Sear ch,
UDM_(bj ect s,
UDM Attribute

These syntaxes do an LDAP search and display the result as a list. They are further described in Sec-
tion 6.4.2.

Additional syntax classes can be added by placing a Python filein/ usr/ shar e/ pyshar ed/ uni ven-
ti on/ adm n/ synt ax. d/ . They're automatically imported by UDM.

641 UDM SyntaX Ovel‘ride FeedbackQ

Sometimes the predefined syntax is inappropriate in some scenarios. This can be because of performance
problemswith LDAP searches or the need for more restrictive or lenient value checking. The latter case might
require a change to the LDAP schema, since sl apd aso checksthe provided values for correctness.

The syntax of UDM properties can be overwritten by using Univention Configuration Registry variables.
For each module and each property the variable di r ect or y/ manager / web/ nodul es/ nodul e/
properties/ property/syntax can be set to the name of a syntax class. For example di r ect o-
ry/ manager/ web/ nodul es/ users/ user/ properties/usernane/ syntax=uid would re
strict the name of users to not contain umlauts.

Since UCR variables only affect the local system, the variables must be set on all systems were UDM is
used. This can be either done through a Univention Configuration Registry policy (see ????) or by setting the
variableinthe. posti nst script of some package, which isinstalled on al hosts.

6.4.2. UDM LDAP search Feedback {2}

It is often required to present a list of entries to the user, from which she can select one or — in case of a
multi-valued property — more entries. Several syntax classes derived from sel ect provide afixed list of
choices. If the set of valuesisknown and fixed, it's best to derive an own classfrom sel ect and providethe
Pythonfilein/ usr/ shar e/ pyshar ed/ uni venti on/ adm n/ synt ax. d/ .

If on the other hand the list is dynamic and is stored in LDAP, UDM provides three methods to retrieve the
values.

UDM Attribute
This class does a UDM search. For each object found all values of a multi-valued property are returned.
For aderived class the following class variables can be used to customize the search:
udm_module

The name of the UDM module, which does the LDAP search and retrieves the properties.

_) 83
www.univention.de

https://www.univention.com/feedback/?manual=udm:syntax:overwrite
https://www.univention.com/feedback/?manual=udm:syntax:ldap

@ univention

be open.
UDM LDAP search

udm_filter

An LDAP search filter which is used by the UDM module to filter the search. The special valuedn
skips the search and directly returns the property of the UDM object specified by depends.

attribute
The name of a multi-valued UDM property which stores the values to be returned.
is_complex,
key index,
label _index

Some UDM properties consist of multiple parts, so called complex properties. These variables are
used to define, which part is displayed as the label and which part is used to reference the entry.

label_format

A Python format string, which is used to format the UDM properties to a label string presented to
theuser. %4 pr opert y- nane) s should be used to reference properties. The special property name
$at tri but e$ isreplaced by the value of variableat t r i but e declared above.

regex
This defines an optional regular expression, which is used in the frontend to check the value for
validity.

static_values

A list of two-tuples (val ue, di spl ay-stri ng), which are added as additional selection op-
tions.

empty_value
If setto Tr ue, the empty value isinserted before all other static and dynamic entries.
depends

Thisvariable may contain the name of another property, which this property depends on. Thiscan be
used to link two properties. For example, one property can be used to select aserver, while the second
dependent property then only lists the services provided by that selected host. For the dependent
syntax at t ri but e must be set to dn.

error_message
This error message is shown when the user enters a value which is not in the set of allowed values.
The following example syntax would provide alist of all userswith their telephone numbers:

cl ass Del egat eTel ephonedNunber (UDM Attri bute):
udm nodul e = ' users/user'
attribute = ' phone'
| abel format = '9%displayNane)s: % $attribute$)s'

UDM (bj ect s
This class performs a UDM search returning each object found.

For aderived class the following class variables can be used to customize the search:

www.univention.de

@ univention

be open.
UDM LDAP search

udm_modules

A List of one or more UDM modules, which do the LDAP search and retrieve the properties.

key

A Python format string generating the key value used to identify the selected object. The default is
dn, which uses the distinguished name of the object.

label

A Python format string generating the display label to represent the selected object. The default is
None, which usesthe UDM specificdescr i pt i on. dn can be used to use the distinguished name.

regex

This defines an optional regular expression, which is used in the frontend to check the value for
validity. By default only valid distinguished names are accepted.

simple

By default awidget for selecting multiple entries is used. Setting this variable to Tr ue changesthe
widget to a combo-box widget, which only allows to select a single value. This should be in-sync
withthenul ti val ue property of UDM properties.

use_objects

By default UDM opens each LDAP object through aUDM module implemented in Python. Thiscan
be a performance problem if many entries are returned. Setting thisto Fal se disables the Python
code and directly uses the attributes returned by the LDAP search. Several properties can then no
longer be used as key or label, as those are not explicitly stored in LDAP but are only calculated
by the UDM module. For example, to get the fully qualified domain name of a host % nane) s.
% donmai n) s must be used instead of the calculated property %¢ f qdn) s.

udm_filter,
static_values,
empty_value,
depends,
error_message

Same as above with UDM At t ri but e.
The following example syntax would provide alist of all servers providing arequired service:

cl ass MyServer s(UDM Obj ect s) :
udm nodul es = (
' conmput er s/ donmi ncontrol | er_master',
' comput er s/ donmi ncont rol | er _backup',
' conmput er s/ donmi ncontrol | er _sl ave',
' conput er s/ menber server"',

)
| abel = "'%fqdn)s'
udmfilter = 'service=M/Service'

LDAP_Sear ch

This is the old implementation, which should only be used, if UDM At t ri but e and UDM hj ect s
are not sufficient. In addition to ease of use it has the drawback that Univention Management Console
can not do as much caching, which can lead to severe performance problems.

_) 85
www.univention.de

@ univention

be open.
UDM LDAP search

LDAP search syntaxes can be declared in two equivaent ways:
Python API

By implementing a Python class derived from LDAP_Sear ch and providing that implementation
in/ usr/ shar e/ pyshar ed/ uni venti on/ adm n/ synt ax. d/ .

UDM API

By creating a UDM object in LDAP using themoduleset t i ngs/ synt ax.
The Python API uses the following variables:
synt ax_nane

This variable stores the common name of the LDAP object, which is used to define the syntax. It is
only used internally and should never be needed when creating syntaxes programmatically.

filter
An LDAPfilter to find the LDAP objects providing the list of choices.
attribute

A list of UDM module property definitions like "shar es/ share: dn". They are used as the
human readable |abel for each element of the choices.

val ue

The UDM module attribute that will be stored to identify the selected element. Thevalueis specified
likeshar es/ share: dn

vi ewonl y

If set to Tr ue the values can not be changed.
addEnpt yVal ue

If set to Tr ue the empty valueis add to thelist of choices.
appendEnpt yVal ue

Same as addEnpt yVal ue but added at the end. Used to automatically choose an existing entry
in the frontend.

cl ass MyServers(LDAP_Search):
def __init__(self):
LDAP_Search. __init__ (self,
filter=("(&univentionService=MyService)'
' (uni venti onSer ver Rol e=nenber))"'),

attri but e=(
' conput er s/ nenber server: fqdn',
o
val ue=' conput er s/ menber server: dn'
)
sel f.name = 'LDAP_Search' # required workaround

The UDM API uses the following properties:

86 _)
www.univention.de

@ univention

be open.
Packaging UDM Hooks

nane (required)
The name for the syntax.
descri pti on (optional)
Some descriptive text.
filter (required)
An LDAPfilter, which is used to find the objects.
base (optional)
The LDAP base, where the search starts.

attri but e (optional, multivalued),
| dapat tri but e (optional, multivalued)

The name of UDM properties, which are display as alabel to the user. Alternatively LDAP attribute
names may be used directly.

val ue (optiona),
| dapval ue (optional)

The name of the UDM property, which is used to reference the object. Alternatively an LDAP at-
tribute name may be used directly.

vi ewonl y (optional)
If set to 1 the values can not be changed.
addEnpt yVal ue (optional)
If set to 1 the empty valueis add to the list of choices.

eval "$(ucr shell)"

udm settings/syntax create "$@ --ignore_exists \

--position "cn=custom attributes, cn=uni vention, $l dap_base" \
--set name=MyServers \

--set filter="(& univentionServi ce=MyServi ce)

(uni venti onSer ver Rol e=nenber))"' \
--set attribute=" conputers/nenberserver: fqdn' \
--set val ue=' conput er s/ menber server: dn'

6.5. Packaging UDM Hooks Fecdback{)

For some purposes, e.g. for app installation, it is convenient to be able to deploy a new UDM hook in the
UCS domain from any system in the domain. For this purpose, a UDM hook can be stored as a special type
of UDM object. The module responsible for thistype of objectsiscaled set t i ngs/ udm hook. Asthese
objects are replicated throughout the UCS domain, the UCS servers listen for modifications on these objects
and integrate them into the local UDM.

The commands to create the UDM hook objectsin UDM may be put into any join script (see Chapter 3). Like
every UDM object aUDM hook object can be created by using the UDM command line interface uni ven-
tion-directory-manager oritsaiasudm UDM hook objects can be stored anywhere in the LDAP

_) 87
www.univention.de

https://www.univention.com/feedback/?manual=settings:udm_hook

@ univention

be open.
Packaging UDM Extension Modules

directory, but the recommended location would be cn=udm_hook, cn=uni venti on, below the LDAP
base. Since the join script creating the attribute may be called on multiple hosts, it is a good idea to add the
--i gnor e_exi st s option, which suppressesthe error exit code in case the object already existsin LDAP.

The module set ti ngs/ udm hook requires several parameters. Since many of these are determined au-
tomatically by theucs_r egi st er LDAPEXxt ensi on shell library function, it is recommended to use the
shell library function to create these objects (see Section 3.4.3.2).

nane (required)

Name of the UDM hook.
dat a (required)

The actual UDM hook datain bzip2 and base64 encoded format.
fil enane (required)

The file name the UDM hook data should be written to by the listening servers. The file name must not
contain any path elements.

package (required)
Name of the Debian package which creates the object.
packagever si on (required)

Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appi dentifi er (optional)

Theidentifier of the app which creates the object. Thisisimportant to indicate that the object is required
aslong asthe app isinstalled anywhere in the UCS domain. Defaultsto st ri ng.

ucsver si onst art (optional)

Minimal required UCS version. The UDM hook is only activated by systems with a version higher than
or equal to this.

ucsver si onend (optional)

Maximal required UCS version. The UDM hook is only activated by systems with a version lower than
or equd to this. To specify validity for the whole 4.1-x release range a value like 4.1-99 may be used.

acti ve (interna)

A boolean flag used internally by the master domain controller to signal availability of the new UDM
hook on the master domain controller (default: FALSE).

6.6. Packaging UDM Extension Modules Fecavack{)

For some purposes, e.g. for app installation, it is convenient to be able to deploy a new UDM module in the
UCS domain from any system in the domain. For this purpose, a UDM module can be stored as a special
type of UDM object. The module responsible for this type of objectsis called set ti ngs/ udm nodul e.
Asthese objects are replicated throughout the UCS domain, the UCS serverslisten for modifications on these
objects and integrate them into the local UDM.

88 _)
www.univention.de

https://www.univention.com/feedback/?manual=settings:udm_module

@ univention

be open.
Packaging UDM Extension Modules

The commands to create the UDM module objects in UDM may be put into any join script (see Chapter 3).
Like every UDM object a UDM module object can be created by using the UDM command line interface
uni venti on-di rect ory- manager or its aias udm UDM module objects can be stored anywhere
in the LDAP directory, but the recommended location would be cn=udm _nodul e, cn=uni venti on,
below the LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good
ideato add the- - i gnor e_exi st s option, which suppresses the error exit code in case the object already
existsin LDAP.

The module set ti ngs/ udm nodul e requires several parameters. Since many of these are determined
automatically by the ucs_r egi st er LDAPExt ensi on shell library function, it is recommended to use
the shell library function to create these objects (see Section 3.4.3.2).

name (required)

Name of the UDM module, e.g. newapp/ sonmeobj ect .
dat a (required)

The actual UDM module datain bzip2 and base64 encoded format.
fil enane (required)

The file name the UDM module data should be written to by the listening servers. The file name may
contain path elements and should conform to the name of the UDM module (e.g. newapp/ soneob-

j ect. py).

nmessagecat al og (optional)

Multivalued property to supply message trandlation files (syntax: <language tag> <base64 encoded GNU
message catalog>).

uncr egi strati on (optional)

XML definition required to make the UDM module available though the Univention Management Con-
sole (base64 encoded XML)

i con (optional)

Multivalued property to supply icons for the Univention Management Console (base64 encoded png,
j peg orsvgz).

package (required)
Name of the Debian package which creates the object.
packagever si on (required)

Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appi denti fi er (optional)

Theidentifier of the app which creates the object. Thisisimportant to indicate that the object is required
aslong asthe app isinstalled anywhere in the UCS domain. Defaultsto st ri ng.

ucsver si onst art (optional)

Minimal required UCS version. The UDM module is only activated by systems with a version higher
than or equd to this.

_) 89
www.univention.de

@ univention

be open.
Packaging UDM Syntax Extension

ucsver si onend (optional)

Maximal required UCSversion. The UDM moduleisonly activated by systemswith aversion lower than
or equal to this. To specify validity for the whole 4.1-x release range avalue like 4.1-99 may be used.

active (interna)

A boolean flag used internally by the master domain controller to signal availability of the new UDM
module on the master domain controller (default: FALSE).

6.7. Packaging UDM Syntax Extension Feedback{)

For some purposes, e.g. for app installation, it is convenient to be able to deploy a new UDM syntax in the
UCS domain from any system in the domain. For this purpose, a UDM syntax can be stored as a special type
of UDM abject. The module responsible for this type of objectsis called setti ngs/ udm synt ax. As
these objects are replicated throughout the UCS domain, the UCS servers listen for modifications on these
objects and integrate them into the local UDM.

The commands to create the UDM syntax objects in UDM may be put into any join script (see Chapter 3).
Like every UDM object a UDM syntax object can be created by using the UDM command line interface
uni venti on-di rect ory- manager oritsaliasudm UDM syntax objects can be stored anywhereinthe
LDAP directory, but the recommended location would be cn=udm synt ax, cn=uni venti on, below
the LDAP base. Since the join script creating the attribute may be called on multiple hosts, it isagood ideato
add the - - i gnor e_exi st s option, which suppresses the error exit code in case the object already exists
in LDAP.

The module set ti ngs/ udm synt ax requires several parameters. Since many of these are determined
automatically by the ucs_r egi st er LDAPExt ensi on shell library function, it is recommended to use
the shell library function to create these objects (see Section 3.4.3.2).
nane (required)

Name of the UDM syntax.
dat a (required)

The actual UDM syntax data in bzip2 and base64 encoded format.
fil enane (required)

The file name the UDM syntax data should be written to by the listening servers. The file name must
not contain any path elements.

package (required)
Name of the Debian package which creates the object.
packagever si on (required)

Version of the Debian package which creates the object. For object modifications the version number
needs to increase unless the package name is modified as well.

appi denti fi er (optional)

Theidentifier of the app which creates the object. Thisisimportant to indicate that the object is required
aslong asthe app isinstalled anywhere in the UCS domain. Defaultsto st r i ng.

90 _)
www.univention.de

https://www.univention.com/feedback/?manual=settings:udm_syntax

@ univention

be open.
Packaging UDM Syntax Extension

ucsver si onst art (optional)

Minimal required UCSversion. The UDM syntax is only activated by systemswith aversion higher than
or equal to this.

ucsver si onend (optional)

Maximal required UCS version. The UDM syntax isonly activated by systems with aversion lower than
or equal to this. To specify validity for the whole 4.1-x release range avalue like 4.1-99 may be used.

active (interna)

A boolean flag used internally by the master domain controller to signal availability of the new UDM
syntax on the master domain controller (default: FALSE).

)) 91
www.univention.de

92

@ univention

be open.

Architecture
Chapter 7. Univention Management
Console (UMC)

8 T N o 1) = (1 = PP 93
7.2. ASyNChronOUS FIamMEWOTKcuuiiii e e e e e e e e e e e e et e e e e e eanes 94
7.3. ProtoCOl UMOCP 2.0 ...ttt et e ettt e e et e e e e et e e e eateneeeeeteneeeees 95
A0 B - = T o PSPPI 95
7.3.2. AULNENTICEIIONeieeei et e e et e e e e eaaans 95
7.3.3. MESSAGE FOMMELeeeeieei e e e e e e e e e e e e et e e e e e eaanas 95
7.3.3.1. MESSA0E NBAEYiiei i 95
7.3.3.2. MESSAGE DOTYceveeeii et 96
T o o)== PN 96
7.4. Protocol HTTP FOr UMGC ...uii et e e e e 97
N R v o o)== PN 97
28 T 1V O 1= PSR 98
7.5.1. debi an/ package. UNT- MDAUI €S ...ooviiiiiiii e 98
7.5.2. UMC Module Declaration Fileooiiiiiiiiiii e 99
S o o= S Y = T 1Y oo 99
40T R Y13 To o 1A = PO 99
7.6.2. UMC module APl (Python and JaVaSCIiPL)cuuvreeieeiieiiii e e e e e e e e e 99
7.6.2.1. XML defiNItioNooveeeieiiiii e 100
7.6.2.2. PythOn MOCUIEenieee et e e e e e 101
7.6.2.3. UMUC SIOIE AP oot 103
S T o < o (1 0o S 104
7.7. DOMEIN LDAP MOQUIE ... e e e e e e 107
7.8. Disabling @ MOQUIEoiei e e e e e 107

The Univention Management Console (UMC) isaservicethat runsan all UCS systemsby default. Thisservice
provides accessto several system information and implements modules for management tasks. What modules
are available on a UCS system depends on the system role and the installed components. Each domain user
can log an to the service viaaweb interface. Depending on the access policiesfor the user the visible modules
for management tasks will differ.

In the following the technical details of the architecture and the Python and JavaScript API for modules are
described.

7.1. Architecture Feedback {)

The Univention Management Consol e service consists of four components. The communication between these
componentsisencrypted using SSL. The architecture and the communication channelsisshownin Figure 7.1.

_) 93
www.univention.de

https://www.univention.com/feedback/?manual=umc:architecture

@ univention

be open.
Asynchronous Framework

Figure 7.1. UMC ar chitecture and communication channels
Web browser
Dojo/UMC JavaScript API

communcation
via AJAX and JSON

e ~

UMC HTTP server

UMC server
UMC Python API

UMC module UMC module | UMC module
UCR UVMM UDM

o The UMC server is the core component. It provides access to the modules and manages the connection
and verifies that only authorized users gets access. The protocol used to communicate is the Univention
Management Console Protocol (UMCP) in version 2.0.

o The UMC HTTP server is a small web server that provides HTTP access to the UMC server. It is used
by the web frontend.

o The UMC module processes are forked by the UMC server to provide a specific area of management tasks
within a session.

7.2. Asynchronous Framework Feedback{)

All server-side components of the UMC service are based on the asynchronous framework Python Notifier,
that providestechniquesfor handling quasi parallel tasks based on events. The framework followsthree basic
concepts:
Non-blocking sockets
For servers that should handling several communication channels at a time have to use so called non-
blocking sockets. Thisis an option that needs to be set for each socket, that should be management by
the server. Thisis necessary to avoid blocking on read or write operations on the sockets.
Timer

To perform tasks after a defined amount of time the framework provides an API to manage timer (one
shot or periodically).

Signals

To inform components within a process of a specific a events the framework provide the possibility to
define signals. Components being interested in events may place a registration.

94 _)
www.univention.de

https://www.univention.com/feedback/?manual=umc:framework

@ univention

be open.
Protocol UMCP 2.0

Further details, examples and a complete API documentation for Python Notifier can be found at the website
of Python Notifierl.

7.3. Protocol UMCP 2.0 Feedback {)

This protocol is used by the UMC server for external clients and between the UMC server and its UMC
modul e processes.

731 Data ﬂOW FeedbackQ

The protocol is based on a server/client model. The client sends requests to the server that will be answered
with aresponse message by the server.

With a status code in the response message the client can determine the type of result of its request:
o An error occurred during the processing of the request. The status code contains details of the error.

o The command was processed successfully. A status message may contain details about the performed task.

7.3.2. Authentication Feedback {2}

Before a client may send request messages to the server that contain commands to execute, the client has to
authenticate. After asuccessful authentication the UM C server determinesthe permissionsfor the user defined
by policiesinthe LDAP directory. If the LDAP server isnot reachable alocal cacheis checked for previously
discovered permissions. If none of these sources is available the user is prohibited to use any command.

The authentication process within the UMC server uses the PAM service uni vent i on- manage-
nment - consol e. By default, this service uses a cache for credentialsif the LDAP server is not available to
provide the possibility to access the UMC server also in case of problems with the LDAP server.

7.3.3. Message format Feedback {2}

The messages, request and response, have the same format that consists of a single header line, one empty
line and the body.

The header line contains control information that allows the UMC server to verify the correctness of the
message without reading the rest of the message.

7.3.3.1. Message header Feedback {)

The header definesthe messagetype, auniqueidentifier, thelength of the message body in bytes, the command
and the mime type of the body.

(REQUEST| RESPONSE) / <i d>/ <l engt h of body>[/<m me-type>]:
<command>[<argunment s>]

By the first keyword the message type is defined. Supported message types are REQUEST and RESPONSE.
Any other type will be ignored.

Separated by a/ the message id follows, that must be unique within a communication channel. By default
it consists of atimestamp and a counter.

The next field is a number, defining the length of the body in bytes, starting to count after the empty line.

L https://github.com/crunchy-github/python-notifier

_) 95
www.univention.de

https://github.com/crunchy-github/python-notifier
https://github.com/crunchy-github/python-notifier
https://www.univention.com/feedback/?manual=umc:umcp2
https://www.univention.com/feedback/?manual=umc:umcp2:flow
https://www.univention.com/feedback/?manual=umc:umcp2:auth
https://www.univention.com/feedback/?manual=umc:umcp2:message
https://www.univention.com/feedback/?manual=umc:umcp2:message:header
https://github.com/crunchy-github/python-notifier

@ univention

be open.
Examples

Since UMCP 2.0 there is as another field specifying the mime type of the body. If not given then the guessed
value for the mime typeisappl i cati on/j son. If the body can not be decoded using a JSON parser the
messageisinvalid.

Thelast two fiel dsdefinethe UM CP command that should be executed by the server. Thefollowing commands
are supported:

AUTH

This commands sends an authentication request. It must be the first command send by the client. All
commands send before a successful authentication are rejected.

GET

This command is used to retrieve information from the UMC server, e.g. alist of all UMC modules
availablein this session.

SET
This command is used to define settings for the session, e.g. the language.

COVIVAND
This command is used to pass requests to UMC modules. Each module defines a set of commands, that
it implements. The UMC module command is defined by the first argument in the UMCP header, e.g.

arequest like REQUEST/ 123423423- 01/ 42/ appl i cation/json: COMWAND ucr/ query
passes on the module command ucr/query to a UMC module.

7.3.3.2. Message body Feedback {-)
The message body may contain one object of any type, e.g. an image, an OpenOffice document or a JSON
object. The JSON object is the default type and is the only supported mime type for request messages. It
contains adictionary that has afew predefined keys (for both message types):
options
Contains the arguments for the command.

status

Defines the status code in response messages. The codes are similar to the HTTP status codes, e.g. 200
defines a successful execution of the command.

message

May contain a human readable description of the status code. This may contain details to explain the
user the situation.

flavor
An optional field. If given in aregquest message the module may act differently than without the flavor.
7.3.4. Examples Feedback {2}

This section contains afew example messages of UMCP 2.0.

96 _)
www.univention.de

https://www.univention.com/feedback/?manual=umc:umcp2:message:body
https://www.univention.com/feedback/?manual=umc:umcp2:example

@ univention

be open.
Protocol HTTP for UMC

Example 7.1. Authentication request

REQUEST/ 130928961341733- 1/ 147/ appl i cati on/j son: AUTH
{"usernane": "root", "password": "univention"}
Example 7.2. Search for users

Request:

REQUEST/ 130928961341726- 0/ 125/ appl i cati on/json: COVVAND udni query

{"flavor": "users/user",
"options": {"objectProperty": "nane",
"obj ect PropertyVal ue": "test1*1",
"obj ect Type": "users/user"}}
Response:

RESPONSE/ 130928961341726- 0/ 1639/ appl i cati on/j son: COVMAND udm query

{"status": 200,

"message": null,

"options": {"objectProperty": "nane",
"obj ect PropertyVal ue": "testl1*1",
"obj ect Type": "users/user"},

"result": [{"ldap-dn": "uid=testl1l, cn=users, dc=univention, dc=ga",
"path": "univention.qga:/users",
"name": "test11l",
"obj ect Type": "users/user"},

{"ldap-dn": "uid=test191, cn=users, dc=uni venti on, dc=ga",
"path": "univention.qga:/users",
"nanme": "test191",
"obj ect Type": "users/user"}]}

7.4. Protocol HTTP for UMC Feedback {)

With the new generation of UMC thereisaso an HTTP server available that can be used to accessthe UMC
server. The web server isimplemented as afrontend to the UMC server and trandlates HTTP POST requests
to UMCP commands.

7.4.1. Examples Feedback £}
Example 7.3. Authentication request
POST http://10.200.15. 31/ uni vention/auth HITP/ 1.1
{"options": {"username": "root", "password": "univention"}}

Example 7.4. search for users
Request

POST http://10.200.15. 31/ uni venti on/ command/ udn query HTTP/ 1.1

_) 97
www.univention.de

https://www.univention.com/feedback/?manual=umc:http
https://www.univention.com/feedback/?manual=umc:http:example

@ univention

be open.
UMC files
{"options": {"container": "all",
"obj ect Type": "users/ user",
"obj ect Property": "usernane",
"obj ect PropertyVal ue": "test1*1"},
"flavor": "users/user"}
Response

{"status": 200,

"message": null,

"options": {"objectProperty": "usernanme",
"container": "all",
"obj ect PropertyVal ue": "test1*1",
"obj ect Type": "users/user"},

"result": [{"ldap-dn": "uid=testl1l, cn=users, dc=uni vention, dc=ga",
"path": "univention.qga:/users",
"nane": "test11l",
"obj ect Type": "users/user"},

{"I dap-dn": "uid=test191, cn=users, dc=uni venti on, dc=ga",
"path": "univention.qga:/users",
"nane": "test191",
"obj ect Type": "users/user"}]}

7.5. UMC files Feedback {-)

Filesfor building a UMC module.

7.5.1. debi an/ package. unt- nodul es Feedback {2}

dh- unc- nodul e- bui | d buildstrandationfiles. dh- unc- nodul e-i nst al | installsfiles. Configured
through debi an/ package. unt- nodul es.

Modul e: nodul e- nane
Pyt hon: unt
Definition: unt/nodul e- nane. xni

Javascript: unt
I cons: unt/icons

Modul e
Internal (?) name of the module.
Pyt hon
Directory containing the Python code relative to top-level directory.
Definition
Path to an XML file, which describes the module. See Section 7.5.2 for more information.
Javascri pt

Directory containing the Java-Script code relative to top-level directory.

98 _)
www.univention.de

https://www.univention.com/feedback/?manual=umc:files
https://www.univention.com/feedback/?manual=umc:umc-modules

@ univention

be open.
UMC Module Declaration File

| cons (deprecated)

Directory containing the Icons relative to top-level directory. Must provide iconsin sizes 16x16 (unc/
i cons/ 16x16/ udm nodul e. png) and 50x50 (unc/ i cons/ 50x50/ udm nodul e. png) pix-
els.

7.5.2. UMC Module Declaration File Feedback {2}

unc/ nodul e. xm

<?xm version="1.0" encodi ng="UTF- 8" ?>
<!--DOCTYPE unt SYSTEM " branches/ ucs-4. 1/ ucs- 4. 1- 0/ managenent /
uni vent i on- managenent - consol e/ doc/ nodul e. dt d" - - >
<unt version="2.0">

<nmodul e i d="udnt icon="udm MODULE" version="1.0"
transl ati onl d=" MODULE" >

<name>. .. </ nane>

<description>...</description>

<flavor>...</flavor>

<cat egori es>

<cat egory nanme="donai n"/ >

</ cat egori es>

<command>. . . </ conmand>

</ modul e>
</ unc>

unc/ cat egori es/ cat egory. xm

<?xm versi on="1. 0" encodi ng="UTF- 8" ?>
<unt version="2.0">
<cat egori es>

<category id="category" priority="..." icon="....svg" col or="#xxxxxx"/
>
</ cat egori es>
</ unc>

7.6. Local System Module Feedback{)

The UMC server provides management servicesthat are provided by so called UM C modules. These modules
are implemented in Python (backend) and in JavaScript (web frontend). The following page provides infor-
mation about devel oping and packaging of UMC modules. It isimportant to know the details of Section 7.1.

The package univention-management-console-dev provides the command unt- cr eat e- nodul e, which
can be used to create atemplate for a custom UMC module.

761 Python API FeedbackQ

The Python API for the UMCP is defined in the python module uni vent i on. managenent . con-
sol e. prot ocol .

7.6.2. UMC module API (Python and JavaScript) Feedback {2}

A UMC module consists of three components

o A XML document containing the definition.

_) 99
www.univention.de

https://www.univention.com/feedback/?manual=umc:xml
https://www.univention.com/feedback/?manual=umc:module
https://www.univention.com/feedback/?manual=umc:module:python
https://www.univention.com/feedback/?manual=umc:module:api

@ univention

be open.
UMC module API (Python and JavaScript)
> The Python module defining the command functions.
> The JavaScript frontend providing the web frontend.
7.6.2.1. XML definition FeedbackQ

7.6.2.1.1.

100

The UMC server knows three types of resources that define the functionality it can provide:
UMC modules

provide commands that can be executed if the required permission is given.

Syntax types

can be used to verify the correctness of command attributes defined by the UMCP client in the request
message or return values provided by the UMC modules.

Categories
help to define a structure and to sort the UMC modules by its type of functionality.
All these resources are defined in XML files. The details are described in the following sections
Module definition Feedback)

The UMC server does not load the Python modules to get the details about the modules name, description
and functionality. Therefor each UMC module must provide an XML file containing thiskind of information.
The following example defines a module with theid udm

<?xm version="1.0" encodi ng="UTF- 8" ?>
<unt version="2.0">
<nmodul e i d="udn icon="udm nodul e" version="1.0">
<name>Uni venti on Directory Mnager </ nane>
<descri pti on>Manages all UDM nodul es</descri ption>
<flavor icon="udm users" id="users/user">
<nanme>User s</ name>
<descri pti on>Managi ng users</descri pti on>
</fl avor >
<cat egori es>
<cat egory name="donai n"/>
</ cat egori es>
<conmand nane="udm query" function="query"/>
<conmand nane="udm cont ai ners" functi on="cont ai ners"/>
</ modul e>
</ unc>

The element nodul e defines the basic details of a UMC module.
id

Thisidentifier must be unique among the modulesof an UM C server. Other filesmay extend the definition
of amodule by adding more flavors or categories.

icon

The value of this attribute defines an identifier for the icon that should be used for the module. Details
for installing icons can be found in the Section 7.6.3.

www.univention.de

https://www.univention.com/feedback/?manual=umc:module:api:xml
https://www.univention.com/feedback/?manual=umc:module:api:xml:definition

@ univention

be open.
UMC module API (Python and JavaScript)

The child elements nanme and descr i pti on define the English human readable name and description of
the module. For other translations the build tools will create trandation files. Details can be found in the
Section 7.6.3.

Thisexample defines aso called flavor. A flavor defines anew name, description and icon for the same UMC
module. This can be used to show several virtual modulesin the overview of the web frontend. Additionally
the flavor is passed to the UMC server with each request i.e. the UMC module has the possibility to act
differently for a specific flavor.

Asthe next element cat egor i es is defined in the example. The child elements cat egor y set the cate-
gories within the overview where the module should be shown. Each module can be part of multiple cate-
gories. The attribute nane istheinternal identify of a category.

At the end of the definition file alist of commandsis specified. The UMC server only passes commandsto a
UMC module that are defined. A command definition has two attributes:

name

is the name of the command that is passed to the UMC module. Within the UMCP message it isthefirst
argument after the UM CP COVIVAND.

function
defines the method to be invoked within the python module when the command is called.
7.6.2.1.2. Category definition Feedback {)

The predefined set of categories can be extended by each module.

Example 7.5. UM C module category examples

<?xm versi on="1. 0" encodi ng="UTF- 8" ?>
<unt version="2.0">
<cat egori es>
<category id="favorites">
<nanme>Favori t es</ name>
</ cat egory>
<category id="system' >
<name>Syst enx/ name>
</ cat egory>
<category id="w zards">
<nane>W zar ds</ name>
</ cat egory>
<category id="nonitor">
<nane>Sur vei | | ance</ nane>
</ cat egory>
</ cat egori es>
</ unc>

7.6.2.2. Python module Feedback {-)

The Python API for UMC modules primary consists of one base class that must be implemented. As an
addition to python API provides some helper:

o exception classes

o tranglation support

; g 101
www.univention.de

https://www.univention.com/feedback/?manual=umc:module:api:xml:category
https://www.univention.com/feedback/?manual=umc:module:api:python

@ univention

be open.
UMC module API (Python and JavaScript)

> logging functions
o UCR access

Inthe definition file for the UM C modul e specifiesfunctionsfor the commands provided by the module. These
functions must be implemented as methods of the class | nst ance that inheritsfrom uni vent i on. man-
agemnent . consol e. base. Base.

The following Python code example matches the definition in the previous section:

from uni venti on. managenent . consol e i nmport Transl ati on
from uni venti on. managenent . consol e. base i nport Base, UMC Error
from uni venti on. managenent . consol e. | og i nport MODULE
from uni venti on. managenent . consol e. confi g i nport ucr
from uni venti on. managenent . consol e. nodul es. sani ti zers i nport
I nt eger Sani ti zer
from uni venti on. managenent . consol e. nodul es. decorators inport sanitize

_ = Transl ation('uni vention-managenent - consol e- nodul es-udnm). transl ate

cl ass I nstance(Base):

def init(self):

"""Initialize the nodule with sonme val ues
super (I nstance, self).init()

self.data = [int(x) for x in ucr.get('sone/exan e/ucr/variable',
'1,2,3).split(',")]

def query(self, request):
"""get all values of self.data
sel f.finished(request.id, self.data)

@anitize(item=l ntegerSanitizer(required=True))
def get(self, request):
"""get a specific itemof self.data
try:
item= self.data[request.options['item]]
except | ndexError:
MODULE. error (" Ainvalid item was accessed.')
raise UMC Error(_('The item % does not exists.') %
(request.options['item],), status=400)
sel f.finished(request.id, self.data[iten])

@anitize(lntegerSanitizer(required=True))

def put(self, request):
"""replace all data with the list provided in request.options
sel f.data = request.options
sel f.finished(request.id, None)

Each command methods has one parameter that contains the UM CP request. Such an object has the following
properties:

id

the unique identifier of the request.

102 : :
www.univention.de

@ univention

be open.
UMC module API (Python and JavaScript)

options

contains the arguments for the command. For most commandsiit is a dictionary.
flavor

the name of the flavor that was used to invoke the command. This might be None.
The method i ni t () in the example is invoked when the module process starts. It could e.g. be used to
initialize a database connection. The other methods in the example will serve specific request. To respond
to a request the function f i ni shed must be invoked. To validate the request body the decorator @ an-
i ti ze might be used with various sanitizers defined in uni vent i on. nanagenent . consol e. nod-
ul es. sani ti zers. For away to send an error message back to the client the UMC_Er r or can be raised

with the error message as argument and an optional HTTP status code. The base class for modules provides
some properties and methods that could be useful when writing UMC modules:

user nane
The username of the owner of this session.
user _dn
The DN of the user or None if the user isonly alocal user.
passwor d
The password of the user.
init()

Is invoked after the module process has been initialized. At that moment, the settings, like locale and
username and password are available.

destroy()

Isinvoked before the module process shuts down.

7.6.2.3. UMC store API FeedbackQ
In order to encapsulate and ease the access to module data from the JavaScript side, a store object offers a
unified way to query and modify module data. The UMC JavaScript APl comes with an object store imple-
mentation of the Dojo store AP 2 This allows the JavaScri pt code to easily access/modify module data and
to observe changes on the datain order to react immediately. The following methods are supported:
get (id)
Returns adictionary of all properties for the object with the specified identifier.
put (di ctionary, options)
modifies an object with the corresponding properties and an optional dictionary of options.

add(di ctionary, options)

Adds a new object with the corresponding properties and an optional dictionary of options.

2 http://dojotoolkit.org/reference-gui de/dojo/store.html

) . 103
www.univention.de

https://www.univention.com/feedback/?manual=umc:module:api:storepython
http://dojotoolkit.org/reference-guide/dojo/store.html
http://dojotoolkit.org/reference-guide/dojo/store.html

@ univention

be open.
Packaging
renove(id)
Removes the object with the specified identifier.
query(dictionary)

Queries alist of objects (returned as list of dictionaries) corresponding to the given query which is rep-
resented as dictionary. Note that not all object properties need to be returned in order to save bandwidth.

The UMC object store classin JavaScript will be able to communicate directly with the Python module if the
following methods are implemented:

nodul e/ get

Expectsasinput alist if unique IDs (as strings) and returns alist of dictionaries asresult. Each dictionary
entry holds all object properties.

nodul e/ put
Expectsasinput alist of dictionarieswhere each entry hasthe properties object and options. The property
object holds all object properties to be set (i.e., this may also be a subset of all possible properties) as
a dictionary. The second property options is an optional dictionary that holds additional options as a
dictionary.

nmodul e/ add
Expects similar input values as modul e/ put .

nodul e/ renove
Expects asinput alist of dictionaries where each entry has the properties object (containing the object's
unique I D (as string)) and options. The options property can be necessary as aremoval might be executed
in different ways (recursively, shallow removal etc.).

nmodul e/ query

Expects as input a dictionary with entries that specify the query parameters and returns a list of dictio-
naries. Each entry may hold only a subset of all possible object properties.

Further references:
o Dojo object store reference guide3
> Object store tutorial®

> HTMLS5 IndexedDB object store API®

7.6.3. Packaging Feedback {2}

A UMC module consists of several files that must be installed at a specific location. As this mechanism is
always the same there are debhel per tools making package creation for UMC modules very easy.

The following example is based on the package for the UMC module UCR.

3 http://dojotoolkit.org/ref erence-gui de/dojo/store.html
4 http://www.sitepen.com/blog/2011/02/15/doj 0-obj ect-stores/
5 http://www.w3.0org/TR/IndexedDB/#object-store

104 _)
www.univention.de

http://dojotoolkit.org/reference-guide/dojo/store.html
http://www.sitepen.com/blog/2011/02/15/dojo-object-stores/
http://www.w3.org/TR/IndexedDB/#object-store
https://www.univention.com/feedback/?manual=umc:module:packaging
http://dojotoolkit.org/reference-guide/dojo/store.html
http://www.sitepen.com/blog/2011/02/15/dojo-object-stores/
http://www.w3.org/TR/IndexedDB/#object-store

@ univention

be open.
Packaging

A UMC module may be part of a source package with multiple binary packages. The examples uses a own
source package for the module.
As afirst step create a source package with the following directories and files:

o uni venti on- nanagenent - consol e- nodul e- ucr/
o uni venti on- managenent - consol e- nodul e- ucr/ debi an/
o uni venti on- nanagenent - consol e- nodul e- ucr/
debi an/ uni venti on- managemnent - consol e- nodul e- ucr. unc- nodul es
o uni venti on- managenent - consol e- nodul e- ucr/ debi an/ rul es
o uni venti on- managenent - consol e- nodul e- ucr/ debi an/ changel og
o uni venti on- managenent - consol e- nodul e-ucr/debi an/ contro
o uni vent i on- managenent - consol e- nodul e- ucr/ debi an/ copyri ght
o uni venti on- managemnent - consol e- nodul e- ucr/ debi an/ conpat

All these files are standard Debian packaging files except uni vent i on- managenent - consol e- nod-
ul e- ucr. unct- nodul es. Thisfile contains information about the locations of the UMC module source
files:

Modul e: ucr

Pyt hon: unct/ pyt hon
Definition: unc/ucr.xmn
Synt ax: unt/synt ax/ ucr. xn
Javascript: unt/js

I cons: unt/icons

The keysin thisfile of the following meaning:
Modul e

The internal name of the module
Pyt hon

A directory that contains the python package for the UMC module
Definition

The filename of the XML file with the module definition
Javascri pt

A directory containing the JavaScript source code
I cons

A directory containing the icons required by the modules web frontend
Synt ax (optional)

The filename of the XML file with the syntax definitions
Cat egor y (optional)

The filename of the XML file with the category definitions
The directory structure for such a UMC module file would look like this:

> uni venti on- managenent - consol e- nodul e- ucr/ unc/

) . 105
www.univention.de

@ univention

be open.
Packaging

o uni venti on- nanagenent - consol e- nodul e- ucr/ unt/ synt ax/

o uni venti on- managenent - consol e- nodul e-ucr/unt/ synt ax/ ucr. xni

> uni venti on- nanagenent - consol e- nodul e-ucr/ unt/j s/

o uni venti on- nanagenent - consol e- nodul e-ucr/unt/js/ucr.js

o uni venti on- nanagenent - consol e- nodul e-ucr/ unt/j s/ de. po

o uni venti on- nanagenent - consol e- nodul e- ucr/ unt/ de. po

o uni venti on- nanagenent - consol e- nodul e- ucr/ unt/i cons/

o uni vent i on- managenent - consol e- nodul e-ucr/unt/icons/ 16x16/

o uni venti on- managenent - consol e- nodul e-ucr/unt/icons/ 16x16/ ucr. png
o uni venti on- managenent - consol e- nodul e- ucr/ unc/i cons/ 24x24/

o uni venti on- nanagenent - consol e- nodul e-ucr/ unt/i cons/ 24x24/ ucr. png
o uni venti on- managenent - consol e- nodul e-ucr/ unt/i cons/ 64x64/

o uni venti on- nanagenent - consol e- nodul e- ucr/ unt/i cons/ 64x64/ ucr. png
o uni venti on- managenent - consol e- nodul e-ucr/ unt/i cons/ 32x32/

> uni venti on- managenent - consol e- nodul e-ucr/unt/i cons/ 32x32/ ucr. png
> uni venti on- managenent - consol e- nodul e- ucr/ unc/ ucr. xn

o uni venti on- nanagenent - consol e- nodul e- ucr/ unt/ pyt hon/

o uni venti on- nanagenent - consol e- nodul e- ucr/ unt/ pyt hon/ ucr/

o uni venti on- nanagenent - consol e- nodul e- ucr/ unt/ pyt hon/ ucr/ de. po

o uni venti on- nanagenent - consol e- nodul e- ucr/ unt/ python/ucr/__init__.py

If such a package has been created a few things need to be adjusted
debi an/ conpat

7
debi an/rul es

%
dh $@

overri de_dh_auto buil d:
dh- unt- nodul e-bui | d
dh_auto_build

override_dh_auto install:
dh- unt- nodul e-i nst al
dh_aut o_i nstall

debi an/ cont rol

Sour ce: uni venti on- managenent - consol e- nodul e- ucr
Section: univention
Priority: optiona
Mai nt ai ner: Uni venti on GrbH <packages@ni venti on. de>
Bui | d- Depends: debhel per (>= 7.0.50~),
pyt hon- support ,
uni vent i on- managenent - consol e- dev,
pyt hon- al
St andar ds- Versi on: 3.5.2
XS- Pyt hon- Ver si on: al

Package: univenti on-managenent - consol e- nodul e- ucr
Archi tecture: al
Depends: uni venti on- managenent - consol e- server

106 : :
www.univention.de

@ univention

be open.
Domain LDAP Module

Descri pti on: UMC nodul e for UCR
Thi s package contains the UMC nodul e for Univention Configuration
Regi stry

7.7. Domain LDAP Module Feedback {)

Done through flavor.

<?xm versi on="1. 0" encodi ng="UTF- 8" ?>
<unt version="2.0">
<nmodul e i d="udn icon="udm MODULE" version="1.0"
transl ati onl d=" MODULE" >
<flavor priority="25" icon="udm MODULE- SUBMODULE" i d="MODULE/
SUBMODULE" >
<nane>MODULE nane</ name>
<descri pti on>MODULE descri pti on</descri pti on>
</fl avor >
<cat egori es>
<cat egory nane="donai n"/ >
</ cat egori es>
</ nodul e>
</ unc>

Must use / unt/ nmodul e/ cat egory/ @anme="donmai n"! Must use / unt/ nodul e/ @r ansl a-
tionld to specify daternative trandation file, which must be installed as / usr/ shar e/ uni ven-
ti on- managenent - consol e/ i 18n/ | anguage/ nodul e. no.

7.8. Disabling a Module Feedback ()

To disabling a module use the following XML file as atemplate:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<unt version="2.0">
<nodul e i d="udnm' i con="udm nodul e" versi on="1.0"
transl ati onl d=" MODULE" >
<nane/ >
<descri pti on/ >
<fl avor id="MODULE/ SUBMODULE" deacti vat ed="yes" />
</ modul e>
</ unt>

_) 107
www.univention.de

https://www.univention.com/feedback/?manual=umc:udm
https://www.univention.com/feedback/?manual=umc:module:disable

108

@ univention

be open.
Extending the overview page

Chapter 8. Web services

8.1. EXtending the OVEIVIEW PAOEcvvveiee it e e e et e e e e e e aenas 109

8.1. Extending the overview page

When auser openshtt p: / /1 ocal host/ orhttp://host nane/ inabrowser, sheisredirected to the
UCSoverview page.

Depending on the preferred language negotiated by the web browser the user iseither redirected to the German
or English version. The overview pageis split between I nstalled web services and Administration entries.

The start page can be extended using Univention Configuration Registry variables. PACKAGE refers to a
unique identifier, typically the name of the package shipping the extensions to the overview page. The con-
figurable options are explained below:

o

ucs/ web/ overvi ew ent ri es/ adm n/ PACKAGE/ OPTI ON variables extend the administrative
section.

ucs/ web/ overvi ew entri es/ servi ce/ PACKAGE/ OPTI ON variables extend the web services
section.

To configure an extension of the overview page the following options must/can be set using the pattern ucs/
web/ over vi ew entri es/ adm n/ PACKAGE/ OPTI ON=VALUE (and likewise for services).

o

o

I i nk definesalink to a URL representing the service (usually aweb interface).

| abel specifiesatitlefor an overview entry. Thetitle can also betranslated; e.g. | abel / de can be used
for atitlein German.

descri pti on configures alonger description of an overview entry. The description can also be trans-
lated; e.g. descri pt i on/ de can be used for adescription in German. Should not exceed 60 characters,
because of space limitations of the rendered box.

Optionally an icon can be displayed. Using i con either afilename or aURI can be provided. When spec-
ifying afilename, the name must be relative to the directory / var / www, i.e. with aleading /. All file for-
matstypically displayed by browsers can be used (e.g. PNG/JPG). All icons must be scal ed to 50x50 pixels.

The display order can be specified using pri ori t y. Depending on the values the entries are displayed
in lexicographical order (i.e. 100 < 50).

The following example configures the link to the Nagios web interface:

ucs/ web/ overvi ew entri es/adm n/ nagi os/ descri pti on/ de: Netzwerk-, Host -

und Servi cellber wachung

ucs/ web/ overvi ew entri es/adm n/ nagi os/ descri pti on: Network, host and

service nonitoring system

ucs/ web/ overvi ew entri es/adm n/ nagi os/icon: /icon/50x50/ nagi 0s. png
ucs/ web/ overvi ew entri es/adm n/ nagi os/ | abel / de: Uni venti on Nagi os
ucs/ web/ overvi ew entri es/adm n/ nagi os/ | abel : Uni venti on Nagi os
ucs/ web/ overvi ew entri es/adm n/ nagi os/ | i nk: /nagi os/

ucs/ web/ overvi ew entri es/adm n/ nagi os/priority: 50

109

www.univention.de

Feedback Q

https://www.univention.com/feedback/?manual=www:overview

110

@ univention

be open.

Chapter 9. App Center

The Univention App Center provides a platform for software vendors and an easy-to-use entry point for
Univention Corporate Server users to extend their environment with business software.

The dolcumentati on how to develop Appsfor Univention App Center can befoundinthe App Center Devel oper
Guide

1 http://wiki.univention.de/index.php?title=Category:App_Center_Developer_Guide

- 111
www.univention.de

http://wiki.univention.de/index.php?title=Category:App_Center_Developer_Guide
http://wiki.univention.de/index.php?title=Category:App_Center_Developer_Guide
http://wiki.univention.de/index.php?title=Category:App_Center_Developer_Guide

112

@ univention

b eo p en. Integration of repository components via Univention Management
Console
Chapter 10. Integration of external
repositories
10.1. Integration of repository components via Univention Management Consolecccccuvveeunnnnns 113
10.2. Integration of repository components via Univention Configuration Registryccccceeeennnnns 114

Sometimesit might be necessary to add external repositories, e.g. when testing an application which is devel-
oped for the UCS@school. Such components can be registered via Univention Management Console or in
Univention Configuration Registry.

Components can be versioned. This ensures that only components are installed that are compatible with a
UCS version.

empty or unset

All versions of the same major number will be used. If for example UCS-4.2 isinstalled, all repositories
of the component with version numbers 4.0, 4.1 and 4.2 will be used if available.

current

current Using the keyword current will likewise include all versions of the same major version. Addi-
tionally it will block al minor and major upgrades of the installed UCS system until the respective com-
ponent isalso availablefor the new release. Patch level and errata updates are not affected. If for example
UCS-3.1iscurrently installed and UCS-3.2 or UCS-4.0 is already available, the release updated will be
postponed until the component is also available for version 3.2 and 4.0 respectively.

major.minor
By specifying an explicit version number only the specified version of the component will be used. Re-

lease updates of the system will not be hindered by such components. Multiple versions can be given
using commas as delimiters, for example 3.2,4.0.

10.1. Integration of repository components via Univen- rewsxf
tion Management Console

A list of the integrated repository components is in the UMC module Repository Settings. Applications
which have been added via the Univention App Center are still listed here, but should be managed via the
App Center module.

A further component can be set up with Add. The Component name identifies the component on the repos-
itory server. A free text can be entered under Description, for example, for describing the functions of the
component in more detail.

The host name of the download server isto be entered in the input field Repository server, and, if necessary,
an additional file path in Repository prefix.

A Username and Passwor d can be configured for repository servers which require authentication.
A software component is only available once Enable this component has been activated.

A differentiation is also made for components between maintained and unmaintained components.

; g 113
www.univention.de

https://www.univention.com/feedback/?manual=computers:Integration_of_repository_components_via_the_Univention_Management_Console

@ univention

Integration of repository components via Univention Configura- b e open.
tion Registry

10.2. Integration of repository components via Univen- rewsxf
tion Configuration Registry

The following Univention Configuration Registry variables can be used to register a repository component.
Itisalso possible to activate further functions here which cannot be configured viathe UMC module. NAME
stands for the component's name:

repository/onlinel/ conponent/ NAMVE/ server

The repository server on which the components are available. If this variable is not set, the server from
the Univention Configuration Registry variabler eposi t ory/ onl i ne/ server uses.

reposi tory/online/ conponent/ NAMVE
This variable must be set to enabled if the components are to be mounted.
reposi tory/online/ conponent/ NAME/ | ocal mi rror

Thisvariable can be used to configure whether the component ismirrored locally. In combination with the
Univention Configuration Registry variable r eposi t ory/ onl i ne/ conponent / NAME/ ser ver,
a configuration can be set up so that the component is mirrored, but not activated, or that it is activated,
but not mirrored.

repository/online/ conponent/ NAVE/ descri ption

A descriptive name for the repository.
reposi tory/online/ conponent/ NAME/ prefix

Defines the URL prefix which is used on the repository server. Thisvariable is usually not set.
reposi tory/ online/ conponent/ NAME/ user nane

If the repository server requires authentication, the user name can be entered in this variable.
reposi tory/online/ conponent / NAVE/ passwor d

If the repository server requires authentication, the password can be entered in this variable.
reposi tory/online/ conponent/ NAME/ ver si on

This variable controls the versions to include, see Chapter 10 for details.
reposi tory/online/ conponent / NAME/ def aul t packages

A list of package names separated by blanks. The UMC module Repository Settings offerstheinstallation
of this component if at least one of the packages is not installed. Specifying the package list eases the
subsequent installation of components.

114 . .
www.univention.de

https://www.univention.com/feedback/?manual=computers::softwaremanagement::repoadducr

@ univention

be open.
Univention Management Console tranglations

Chapter 11. Translating UCS

11.1. Univention Management Console tranSlalionseeeeuenieriiiiiee e e e e 115
11.1.1. Install NEEAEA TOOIS ...t 115
11.1.2. Obtain a current checkout of the UCS GIT repoSItOrYvveieiviiieiiiiiieeeeiineeeeiie 115
11.1.3. Create a new translation PaCKagecoeuuuiiiiiiiie e 115
11.1.4, Edit tranglation fillESuuieiiii e 116
11.1.5. Update the translation Packageuueiiiiiiiiiiiii e 116
11.1.6. Build the trandation PaCKAgEuuiiiiiii e 117
11.1. Univention Management Console translations Feedback{)

By default UCSincludes English and German localizations. Univention provides a set of toolsthat facilitates
the process of creating translations for Univention Management Console.

This section describes all steps necessary to create a working translation package for UCS. We recommend
having a running UCS installation where the tools can be set up in an easy manner. Further more a current
GIT checkout of the UCS source code is required.

11.1.1. Install needed tools Feedback {)

The package univention-ucs-translation-template contains all toolsrequired to setup and update atranslation
package. It requires some additional Debian tools to build the package. Run the following command on your
UCSto install al needed packages.

sudo uni vention-install univention-ucs-translation-tenplate dpkg-dev git

11.1.2. Obtain a current checkout of the UCS GIT repository Feedback{ D)

The GIT repository is later processed to get initial files for a new translation(often referred to as PO file or
Portable Objects).

nkdir ~/translation
cd ~/transl ation
git clone \
--singl e-branch --depth 1 --shall ow subnodul es \
htt ps://github. com uni venti on/ uni vent i on- cor por at e- server

11.1.3. Create a new translation package Feedback {2}

To create anew trandlation packagefor, e.g., French in the current working directory, the following command
must be executed:

cd ~/transl ation
uni venti on-ucs-transl ati on-bui | d- package \
--source ~/translation/univention-corporate-server \
- -l anguagecode fr \
--locale fr_FR UTF-8: UTF-8 \
- -1 anguage- nane French

This creates a new directory ~/ transl ati on/ uni venti on-110n-fr/ which contains a Debian
source package of the same name. It includes all source and target files for the trandlation.

; g 115
www.univention.de

https://www.univention.com/feedback/?manual=misc:translation
https://www.univention.com/feedback/?manual=misc:translation:preparation
https://www.univention.com/feedback/?manual=misc:translation:checkout
https://www.univention.com/feedback/?manual=misc:translation:createpackage

@ univention

be open.
Edit trandation files

11.1.4. Edit translation files Feedback {2}

The trandation source files (. po files) are located below the directory ~/ t r ansl ati on/ uni ven-
tion-110n-fr/fr.Eachfileshould be edited to create the trandation.

Thesefilesare generated by the package gettext. The manual can befound at http://www.gnu.org/software/get-
text/manual/gettext.html. Tranglation files created by gettext consist of aheader and various entries of theform

#: unc/ app. | s: 637

#, python-for mat

msgid "The % will expire in % days and should be renewed!"
msgstr ""

The first line provides a hint, were the text is used. The second line is optiona and contains flags, which
indicatethetype and state of thetranslation. Thestring f uzzy indicatesan entry, which was copied by gettext
from a previous version and needs to be updated.

Theline starting with nsgi d containsthe original text. Thetranslation has to be placed on the line containing
nmsgst r . Long texts can be split over multiple lines, were each line must start and end with a double-quote.
The following example from the German translation shows a text spanning two lines, with the placeholder
present in the original and translated text.

#: unc/j s/ appcent er/ AppCent er Page. j s: 1067

#, python-format

msgid ""

"If everything else went correct and this is just a tenporary network
"probl em you should execute % as root on that backup system"
msgstr ""

"Wenn keine weiteren Fehler auftraten und dies nur ein tenporéares "
"Net zwer kprobl emist, sollten Sie % als root auf dem Backup System
ausf dhren."

Some lines contain parameters, in this example % and %. They are indicated by aflag likec- f or mat or
pyt hon- f or mat , which must not be removed. The placeholders have to be carried over to the translated
string unmodified and in the same order. Some other files contain placeholders of theform %4 t ext } s, which
are more flexible and can be reordered.

After afile has been translated completely, the line containing f uzzy at the beginning of the entry should
be removed to avoid warnings. If a trandlation string consists of multiple lines the translated string should
roughly contain as many lines asthe original string.

11.1.5. Update the translation package Feedback {2}
First update your GIT checkout:

cd ~/transl ati on/ uni venti on-cor por at e-server
git pull --rebase

If changes affecting trandations are made in the GIT repository, existing translation packages need to be
updated to reflect those changes. Given a path to an updated GIT checkout, uni vent i on- ucs-trans-
| at i on- ner ge can update a previously created translation source package. The following example will
update the tranglation package univention-110n-fr/:

uni venti on-ucs-transl ati on-nerge \
~/ transl ati on/ uni venti on- cor por at e- server \
~/transl ati on/uni vention-1210n-fr

116 : ;
www.univention.de

https://www.univention.com/feedback/?manual=misc:translation:translate
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
https://www.univention.com/feedback/?manual=misc:translation:updatepackage

@ univention

be open.
Build the trandlation package

11.1.6. Build the translation package Feedback £}

Before using the new translation, the Debian package has to be built and installed. This can be done with the
following commands:

cd ~/transl ation/univention-|210n-fr

sudo apt-get buil d-dep .

dpkg- bui | dpackage -uc -us -b -rfakeroot
sudo dpkg -i ../univention-110n-fr_*.deb

After logging out of the Univention Management Console the new language should now be selectable in
the Univention Management Console login window. Untrandated strings will be still shown in their origina
language, i.e. in English.

)) 117
www.univention.de

https://www.univention.com/feedback/?manual=misc:translation:buildpackage

118

@ univention

be open.
Separate repositories

Chapter 12. Univention Updater

12.1. SEPArate FEPOSITOMIESceeeei ettt e et et e et e et et e e e eaa e e e ean e e eenanns 119
N U oo = = g o] o £ PSPPSR 119

12.2.1. Digita@l SIQNBEUIE ..ceeveeeieit ettt ettt e e et e et et eaans 120
12.3. Release update WalKtNrOUGNcoooii e 120

The Univention Updater is used for updating the software. It is based on the Debian APT tools. On top of that
the updater provides some UCS specific additions.

12.1. Separate repositories Fecaback{)

UCSreleasesare provided either viaDV D images or viaonline repositories. For each major, minor and patch-
level release there is a separate online repository. They are automatically added to the filesin/ et ¢/ apt /
sources. | i st. d/ depending onthe Univention Configuration Registry variablesver si on/ ver si on
andver si on/ pat chl evel , which are managed by the updater.

Separate repositories are used to prevent automatic updates of software packages. Thisis done to encouraged
users to thoroughly test anew release before their systems are updated. The only exception from thisrule are
the errata updates, which are put into a single repository, which is updated incrementally.

Therefore the updater will include the repositories of a new release in a file caled /et c/ apt/
sources.list.d/ 00 _ucs tenporary_errata__conponents_update.|ist andthendothe
updates. Only at the end of a successful update are the Univention Configuration Registry variables updated.

Additional components can be added as separate repositories using Univention Configuration Registry vari-
ablesr eposi tory/ online/ conponent/ .., which are described in ???? manual. Setting the variable
..Lversion=current can be used to mark a component as required, which blocks an upgrade until the
component is available for the new release.

12.2. Updater scripts Fecavack{)

In addition to the regular Debian Maintainer Scripts (see Section B.3.5) the UCS updater supports additional
scripts, which are called before and after each release update. Each UCS release and each component can
include its own set of scripts.

preup. sh

These scriptsis called before the update is started. If any of the scripts aborts with an exit value unequal
zero, the updateis canceled and never started. The scripts receives the version number of the next release
as an command line argument.

For componentstheir pr eup. sh scriptsiscalled twice: Once beforethe main release pr eup. sh script
iscalled and once more after the main script was called. Thisisindicated by the additional command line
argument pr e respectively post , which isinserted before the version string.

post up. sh

These scripts is called after the update successfully completed. If any of the scripts aborts with an exit
value unequal zero, the update is canceled and does not finish successfully. The scripts receives the same
arguments as described above.

The scripts are located in the al | / component of each release and component. For UCS-4.2 this would be
4.2/ mai ntai ned/ 4.2-0/all/preup.sh and 4. 1/ mai nt ai ned/ conponent s/ sone- com

; g 119
www.univention.de

https://www.univention.com/feedback/?manual=updater:repositories
https://www.univention.com/feedback/?manual=updater:scripts

@ univention

be open.
Digital signature

ponent/al | / preup. sh for the pr eup. sh script. The same appliestothepost up. sh script. Thefull
processis shown in Procedure 12.1.

12.2.1. Digital signature Feedback {2}

From UCS 3.2 on the scripts must be digitally signed by an PGP (Pretty Good Privacy) key stored in the key-
ring of apt-key(8). The detached signature must be placed in a separate file next to each updater scripts with
the additional file name extension . gpg, thatispr eup. sh. gpg and post up. sh. gpg. These extrafiles
are downloaded aswell and any error in doing so and in the validation process aborts the updater immediately.

The signatures must be updated after each change to the underlying scripts. This can be automated or be done
manually with a command like the following: gpg -a -u key-id --passphrase-file key-
phrase-file -0 script.sh.gpg -b script.sh

Signatures can be checked manually using the following command: gpgv - - keyring /etc/apt/
trusted. gpg script.sh.gpg script.sh

12.3. Release update walkthrough Fecaback{)

For an release update the following steps are performed. It assumes asingle component is enabled. If multiple
components are enabled, the order in which their scripts are called is unspecified. It shows which scripts are
called in which order with which arguments.

Procedure 12.1. Update process steps
1. Createtemporary sourcelist file0O_ucs_t enporary_errata__conponent s_update. | i st

2. Download thepr eup. sh and post up. sh filesfor the next release and all components into a tempo-
rary directory and validate their PGP signatures

3. Executeconponent - preup. sh pre $version

4. Executer el ease- preup. sh $version

5. Executeconponent - pr eup. sh post $version

6. Download the new Packages and Rel ease files. Their PGP signatures validated by APT internally.
7. Preform the update

8. [Executeconponent - post up. sh pre $version

9. Executer el ease- post up. sh $version

10. Executeconponent - post up. sh post $versi on

11. Set therelease related Univention Configuration Registry variables to the new version

120 . .
www.univention.de

https://www.univention.com/feedback/?manual=updater:scripts:signature
https://www.univention.com/feedback/?manual=updater:release-update

@ univention

be open.
Register new service provider via udm

Chapter 13. Single Sign-On: Integrating
a service provider into UCS

13.1. Register new Service Provider VIa UMooeuniiiiicii e e e e e e e 121
13.2. Get information required by the SEerviCe Providercocoeviiiiii i 121
13.3. Add direct [ogin link t0 UCS-OVEIVIEW PAJE ... ccvuneirieiiiieeiieeei e e ee e e e e e e e et e e et e e eaneeeens 122

UCS provides Sngle Sgn-On functionality with a SAML 2.0 compatible identity provider based on simple-
samlphp. The identity provider is by default installed on the DC Master and all DC Backup servers. A DNS
Record for al systems providing Sngle Sgn-On services is registered for failover, usually ucs- sso. do-
mai nname. Clients are required to be able to resolve the Sngle Sgn-On DNS name.

13.1. Register new service provider via udm Feedback{)

New service providers can be registered by using the UDM module sani / ser vi cepr ovi der . To create
anew service provider entry in ajoinscript, see the following example:

eval "$(ucr shell)"
udm samd / servi ceprovi der create "$@ \
--ignore_exists \
--position "cn=samnl -servi ceprovi der, cn=uni venti on, $l dap_base" \
--set isActivated=TRUE \
--set ldentifier="M/ServiceProviderldentifier" \
--set Nanel DFor mat =" ur n: oasi s: nanes: tc: SAM.: 1. 1: nanei d-
format: unspeci fied" \
--set sinplesam Attri butes="fal se" \
--set Asserti onConsuner Servi ce="https://$host nane. $donmai nnane/ sso-
| ogi n- page" \
--set sinpl esam Nanmel DAt tri but e="ui d" \
--set privacypolicyURL="https://exanple.com policy.htm" \
--set serviceProvi der Organi zati onNane="M/ Service Nanme" \
--set serviceproviderdescription="A | ong description shown to the user
on the Single Sign-On page." || die

13.2. Get information required by the service provider — rewf)

The service provider usually requires at least a public certificate or XML metadata about the identity provider.
The certificate can e.g. be downloaded with the following call:

eval "$(ucr shell)"
wget --ca-certificate /etc/univention/ssl/ucsCA CAcert.pem\
https://"${ucs_server_sso_fqdn: - ucs-sso. $donai nnane} "/ si npl esam php/
sam 2/idp/certificate \

-O/etc/idp.cert

The XML metadatais available e.g. from

eval $(ucr shell)
wget --ca-certificate /etc/univention/ssl/ucsCA/ CAcert.pem\
https://"${ucs_server_sso _fqdn: -ucs-sso. $domai nnane} "/ si npl esand php/
sam 2/ i dp/ et adat a. php \

-O /etc/idp. netadat a

o 121
www.univention.de

https://www.univention.com/feedback/?manual=sso:register
https://www.univention.com/feedback/?manual=sso:idpinfo

@ univention

be open.

Add direct login link to ucs-overview page

The Sngle Sgn-On Login page to be configured in the service provider isht t ps: // ucs- sso. domai n-
nane/ si npl esam php/ sam 2/ i dp/ SSCSer vi ce. php

13.3. Add direct login link to ucs-overview page Feedback{)

122

To provide users with a convenient link to an identity provider initiated login, the following ucr command
may be used

f gdn="ucs- sso. donai nnane"

myspi =" MySer vi ceProvi der |l dentifier"

ucr set ucs/web/overview entries/servicel/ SP/ descri pti on="Ext er nal
Service Login" \

ucs/ web/ overvi ew entries/servi ce/ SP/| abel =" Ext ernal Servi ce SSO' \

ucs/ web/ overvi ew entri es/service/ SP/link="https://$fqgdn/sinpl esam php/

sanl 2/ i dp/ SSCSer vi ce. php?spentityi d=$nyspi " \

ucs/ web/ overvi ew entri es/ servi ce/ SP/ descri pti on/ de="Ext er ner Di enst
Logi n" \

ucs/ web/ overvi ew entries/servi ce/ SP/| abel / de="Ext erner Di enst SSO' \

ucs/ web/ overvi ew entri es/ servi cel/ SP/ priority=50

Where MyServiceProvider|dentifier isthe identifier used when creating the UDM service provider object.

www.univention.de

https://www.univention.com/feedback/?manual=sso:addlink

@ univention

be open.

Databases
Chapter 14. Miscellaneous

TA.L DEIADESESvvueiie ettt 123
14,00, POSIGrESQL . .eruuiieeeteeettii e e ettt e e e et e et e eeereenne 123
TA.0.2. MY SOQL ittt e e e eenne 123
S U123 1o | TSP PP 123
14.3. FUNCHON LIDIAITES ... it e e e e 125
14.3.2. shell-univention-liD ... 125
14.3.2. python-univention-1ih ... e 126
14.4. LOgGiN ACCESS COMLIOI ... ettt ettt ettt e e e e et e et e e et e e ea e e eaaeeanns 127
14.5. NetWOrk Packet FIITErcoooiiiiiiiii e 127
14.5.1. Filter rules by Univention Configuration ReQISIIYcc.uvviiuiiiiiiiiiiiieeieceeeeeeeen 127
14.5.2. Local filter rules viai pt abl s commandscouviiiiiiiiiiii e, 128
14.5.3. Testing Univention Firewall SEiNGSccuuiiiiiiiii e 129

14.1. Databases Feedback {)

UCS shipswith two major database management systems, which are used for UCS internal purposes, but can
also be used for custom additions.

14.1.1. PostgreSQL Feedback {2}

UCS uses PostgreSQL by default for its package tracking database, which collects the state and versions of
packagesinstalled on all systems of the domain.

1412 MySQL FeedbackQ

By default the MySQL root password issetto . Debian provides the dbconfig package, which can be used
to create and modify additional databases from maintainer scripts.

14.2. UCS lint Feedback {2}

Useucsl i nt to find packaging mistakes. Called best from debi an/ r ul es, needs build dependency on
ucdlint.

override _dh_auto test:
dh_aut o_t est
ucsl i nt

For each issue, ucsl i nt prints one line, which line contains several fields separated by : :

severity: modul e-id-test-id[:filenane[:!|ine-nunber[:colum-
nunmber]]]: nessage

For someissues extra context datais printed on the following lines, which are indented with space characters.
All other lines start with aletter specifying the severity:

E

Error: Missing data, conflicting information, real bugs.

Warning: Possible bug, but might be okay in some situations.

; g 123
www.univention.de

https://www.univention.com/feedback/?manual=misc:database
https://www.univention.com/feedback/?manual=misc:postgresql
https://www.univention.com/feedback/?manual=misc:mysql
https://www.univention.com/feedback/?manual=misc:ucslint

UCSlint

124

@ univention

be open.

Informational: found some issue, which needs further investigation.

Style: There might be some better less error prone way.

The severities are ordered by importance. By default ucsl i nt only aborts on errors, but this can be over-
written using the - - exi t code- cat egor i es argument followed by a subset of the characters EW S.

After the severity an identifier follows, which uniquely identifiesthe module and the test. The moduleisgiven
asfour digits, which isfollowed by a dash and the number of the test in that module. Currently the following
modules exist:
0001-CheckJoinScript
Checksjoin fileissues
0002-CopyPasteErrors
Checks for copy& paste error from example files
0004-CheckUCR
Checks UCR info files
0006-CheckPostinst
Checks Debian maintainer scripts
0007-Changelog
Checksdebi an/ changel og file for conformance with Univention rules
0008-Translations
Checks trandation files for completeness and errors
0009-Python
Checks Python files for common errors
0010-Copyright
Checks for Univention copyright
0011-Control
Checksdebi an/ cont r ol filefor errors
0013-bashism
Checksfilesusing / bi n/ sh for BASH constructs
0014-Depends

Checksfiles for missing runtime dependencies on UCS packages

www.univention.de

@ univention

be open.
Function Libraries

0015-FuzzyNames

Checks for mis-spellings of Univention
0016-Deprecated

Checksfiles for usage of deprecated functions
0017-Shell

Checks shell scripts for quoting errors

The module and test number may be optionally followed by afile name, line number in that file, and column
number in that line, where the issue was found. After that a message is printed, which describes the issue
in more detail.

Sinceucsl i nt isvery Univention centric, many of its tests return fal se positives for software packages by
other parties. Therefore many tests need to be disables. For that afiledebi an/ ucsl i nt. overri des can
be created with list of modules and test, which should be ignored. Without specifying the optional filename,
line number and column number, the test is globally disabled for all files.

14.3. Function Libraries Feedback {)

The source package univention-lib provides two binary packages shell-univention-lib and python-univen-
tion-lib, which contain common library functions usable in shell or Python programs.

14.3.1. shell-univention-lib Feedback ()

This package provides severa librariesin/ usr/ shar e/ uni venti on- | i b/, which can be used in shell
scripts.

/usr/share/univention-Ilib/adnmenber. sh
Thisfile contains some helpers to test for and to manage hostsin AD member mode.
/usr/share/uni vention-1ib/base. sh

This file contains some helpers to create log files, handle unjoin scripts (see Section 3.5) or query the
network configuration.

/usr/share/univention-lib/ldap.sh

Thisfile contains some helpersto query data from LDAP, register and unregister service entries, LDAP
schemaand LDAP ACL extensions.

/usr/share/uni vention-1lib/sanba. sh
Thisfile contains a hel per to check is Samba4 is used.
/usr/share/uni vention-1lib/ucr.sh

This file contains some hel pers to handle bool'ean Univention Configuration Registry variables and han-
dle UCR files on package removal.

/usr/share/uni vention-Ilib/unt. sh

This file contains some helpers to handle UM C (see Chapter 7) related tasks.

' ’ 125
www.univention.de

https://www.univention.com/feedback/?manual=misc:lib
https://www.univention.com/feedback/?manual=misc:lib:sh

@ univention

be open.
python-univention-lib
/usr/share/univention-lib/all.sh
Thisisaconvenient library, which just includes all libraries mentioned above.
14.3.2. python-univention-lib Feedback {2}

This package provides several Python libraries located in the module univention.lib.
univention.lib.admember

This module contains functions to test for and to manage hostsin AD member mode.
univention.lib.atjobs

This module contains functions to handle at-jobs.
univention.lib.error

This module provides the function f or mat Tr aceback, which returns the full stack trace for an ex-
ception.

univention.lib.fstab
This module provides some functions for handling thefile/ et c/ f st ab.

/usr/ shar e/ pyshared/ uni venti on/li b/ get Mai | Fromvai | Or Ui d. py { uid |
email }

This program returns the di stinguished name of the user, which either matchesthe user identifier or email
address given to the command as an argument.

univention.lib.i18n
This module provides some classes to handle texts and their trandations.
univention.lib.Idap_extension

This module provides some helper functions internally used to register LDAP extension as described in
Section 3.4.3.2.

univention.lib.listener SharePath

This module provides some helper functions internally used by the Directory Listener module handling
file shares.

univention.lib.locking
Thismodule provides somefunctionsto implement mutual exclusion using file objects aslocking objects.
univention.lib.misc

This module provides miscellaneous functions to query the set of configured LDAP servers, localized
domain user names, and other functions.

univention.lib.package manager

This module provides some wrappers for dpkg and APT, which add functions for progress reporting.

126 . .
www.univention.de

https://www.univention.com/feedback/?manual=misc:lib:python

@ univenfion
be open.
Login Access Control

univention.lib.s4

This module provides some well known SIDs and RIDs.
univention.lib.shell

This module provides two functions for escaping shell command line arguments and creating at jobs.
univention.lib.ucrLogrotate

This module provides some helper functions internally used for parsing the Univention Configuration
Registry variables related to logrotate(8).

univention.lib.ucs

This module provides the class UCS_Ver si on to more easily handle UCS version strings.
univention.lib.umc

Thismodule providesthe classCl i ent to handle connections to remote UMC servers.
univention.lib.umc_module

This module provides some functions for handling icons.
univention.lib.urllib2_ssl

Thismodule provides apack-port of urllib2 from Python-3.3, which implements proper certificate check-
ing.

14.4. Login Access Control Feedback{)

Access control to services can be configured for individual services by setting certain Univention Config-
uration Registry variables. Setting aut h/ SERVI CE/ restri ct tot r ue enables access control for that
service. Thiswill include the file/ et ¢/ securi ty/ access- SERVI CE. conf, which contains the list
of allowed users and groups permitted to login to the service. Users and groups can be added to that file by
setting aut h/ SERVI CE/ user / USER and aut h/ SERVI CE/ gr oup/ GROUP tot r ue respectively.

14.5. Network Packet Filter Feedback {)

Firewall rulesare setup by univention-firewall and can be configured through Univention Configuration Reg-
istry or by providing additional UCR templates.

14.5.1. Filter rules by Univention Configuration Registry Feedback{)

Besides predefined service definitions, Univention Firewall also allows the implementation of package filter
rules via Univention Configuration Registry. Theserulesareincludedin/ et ¢/ securi ty/ packetfil -
ter. d/ viaaUnivention Configuration Registry module.

Filter rules can be provided via packages or can be configured locally by the administrator. Local rules have
ahigher priority and overwrite rules provided by packages.

All Univention Configuration Registry settings for filter rules are entered in the following format:

Local filter rule

security/packetfilter/protocol/port(s)/address=policy

_) 127
www.univention.de

https://www.univention.com/feedback/?manual=misc:acl
https://www.univention.com/feedback/?manual=misc:nacl
https://www.univention.com/feedback/?manual=misc:nacl:ucr

@ univention

be open.
Local filter rulesviai pt abl es commands

Package filter rule
security/ packetfilter/package/ package/ protocol/port(s)/address=policy
The following values need to be filled in:
package (only for packaged rules)
The name of the package providing the rule.
pr ot ocol

Canbeeither t cp for server services using the Transmission Control Protocol or udp for servicesusing
the statel ess User Datagram Protocol.

port,
m n- port: max- port

Ports can be defined either as a single number between 1 and 65535 or as a range separated by a colon:
m n- port: max- port

addr ess

Thiscan beeither i pv4 for al IPv4 addresses, i pv6 for all IPv6 addresses, al | for both IPv4 and IPv6
addresses, or any explicitly specified IPv4 or I1Pv6 address.

policy

If aruleisregistered as DROP, then packets to this port will be silently discarded; REJECT can be used
to send back an ICMP message port unr eachabl e instead. Using ACCEPT explicitly alows such
packets. (IPtables rules are executed until one rule applies; thus, if a package is accepted by arule which
is discarded by alater rule, then the rule for discarding the package does not become valid).

Filter rules can optionally be described by setting additional Univention Configuration Registry variables. For
each ruleand language, an additional variablesuffixedby “/ | anguage” can be used to add adescriptivetext.

Some examples:

Example 14.1. Local firewall rule

security/ packetfilter/tcp/ 2000/ al | =DROP

security/ packetfilter/tcp/2000/all/en=Drop all packets to TCP port 2000
security/ packetfilter/udp/500: 600/ al | =ACCEPT

security/ packetfilter/udp/500: 600/all/en=Accept UDP port 500 to 600

All package rules can be globally disabled by setting the Univention Configuration Registry variable secu-
rity/ packetfilter/use_packagestofal se..

14.5.2. Local filter rules via i pt abl es commands Feedback {2}

Besidesthe existing possibilitiesfor settings via Univention Configuration Registry, thereis also the possibili-
ty of integrating user-defined enhanced configurationsin/ et ¢/ securi ty/ packetfilter. d/,eg.for
realizing afirewall or Network Address Translation. The enhancements should be realized in the form of shell
scripts which execute the corresponding i pt abl es for IPv4 and i p6t abl e for IPv6 calls. For packages
thisis best done through using a Univention Configuration Registry template as described in Section 2.2.1.1.

Full documentation for |PTables can be found at http://www.netfilter.org/.

128 : ;
www.univention.de

https://www.univention.com/feedback/?manual=misc:nacl:ipt
http://www.netfilter.org/

@ univention

be open.
Testing Univention Firewall settings

14.5.3. Testing Univention Firewall settings Feedback £}

Package filter settings should always be thoroughly tested. The network scanner nmap, which is integrated
in Univention Corporate Server as a standard feature, can be used for testing the status of individual ports.

Since Nmap requires elevated privileges in the network stack, it should be started asr oot user. A TCP port
can be tested with the following command: nmap HOSTNAME - p PORT(Ss)

A UDP port can be tested with the following command: nmap HOSTNAME -sU -p PORT(S)

Example 14.2. Using nrmap for firewall port testing

nmap 192.168. 1. 100 -p 400
nmap 192.168.1. 110 -sU -p 400-500

' ’ 129
www.univention.de

https://www.univention.com/feedback/?manual=misc:nacl:test

130

Appendix A. Bug reporting

UCS is neither error free nor feature complete. Issues are tracked using Bugzilla at https://forge.univen-
tion.org/bugzillal.

Create an account.

Search for existing entries before opening new reports.

Includethe versioninfo: ucr search --brief ~version/.
Provide enough information to help us reproduce the bug.

Search http://sdb.univention.de/

Search http://wiki.univention.de/

Search http://forum.univention.de/ and ask for help. In addition to our support team many of our partners
are also present there. Y our questions might also help other users while you may profit from issues already
solved for other users.

https://forge.univention.org/bugzilla/
https://forge.univention.org/bugzilla/
http://sdb.univention.de/
http://wiki.univention.de/
http://forum.univention.de/

Appendix B. Debian packaging

This chapter describes how software for Univention Corporate Server is packaged in the Debian format. It
allows proper dependency handling and guarantees proper tracking of file ownership. Customers can package
their own internal software or use the package mechanism to distribute configuration files consistently to
different machines.

Software is packaged as a source package, from which one or more binary packages can be created. Thisis
useful to create different packages from the same source package. For example the Samba source package
creates multiple binary packages: one containing thefile server, one containing the client commands to access

the server, and several other packages containing documentation, libraries, and common files shared between
those packages, The directory should be named package _nane- ver si on.

B.1. Prerequisites and preparation Fecaback{)

Some packages are required for creating and building packages.
build-essential

This meta package depends on several other packages like compilers and toolsto extract and build source
packages. Packages must not declare an explicit dependency on this and its dependent packages.

devscripts

This package contains additional scripts to modify source package files like for example de-
bi an/ changel og.

dh-make

This program helps to create an initial debi an/ directory, which can be used as a starting point for
packaging new software.

These packages must be installed on the devel opment system. If not, missing packages can be installed on the
command lineusing uni vent i on-i nstal | or through UMC, which is described in the [ucs-handbuch].

BZ dh_n'ake Feedback {)}

dh_make isatool, which helps creating the initial debi an/ directory. It isinteractive by default and asks
several questions about the package to be created.

Type of package: single binary, indep binary, multiple binary, library,
kernel nodul e, kernel patch?
[s/i/ml/k/n]

s, single binary

A single architecture specific binary package is created from the source package. This is for software
which needs to be compiled individually for different CPU architectureslikei 386 and and64.

i, indep binary

A single architecture-independent binary packageis created from the source package. Thisisfor software
which runs unmodified on al CPU architectures.

https://www.univention.com/feedback/?manual=deb:prerequisites
https://www.univention.com/feedback/?manual=deb:dhmake

Debian control files

m, multiple binary

Multiple binary package are created from the source package, which can be both architecture independent
and dependent.

[, library

Two or more binary packages are created for a compiled library package. The runtime package consists
of the shared object file, which is required for running programs using that library. The development
package contains the header files and other files, which are only needed when compiling and linking
programs on a devel opment system.

k, kernel module

A single kernel-dependent binary package is created from the source package. Kernel modules need to
be compiled for each kernel flavor. dkms should probably be used instead. This type of packagesis not
described in this manual.

n, kernel patch

A single kernel-independent package is created from the source package, which contains a patch to be
applied against an unpacked Linux kernel source tree. dkms should probably be used instead. This type
of packagesis not described in this manual.

In Debian a package normally consists of an upstream software archive, which is provided by athird party like
the Samba team. This collection is extended by a Debian specific second TAR archive or a patch file, which
addsthedebi an/ directory and might also modify upstream filesfor better integration into a Debian system.

When a source package is built, dpkg-source(1) separates the files belonging to the packaging process from
files belonging to the upstream package. For this to work, dpkg- sour ce needs the origina source either
provided asa TAR archive or a separate directory containing the unpacked source. If neither of theseisfound
and - - nat i ve isnot given, dh_make prints the following warning:

Coul d not find ny-package_1.0.o0rig.tar.gz
Ei ther specify an alternate file to use with -f,
or add --createorig to create one.

The warning from dh_make states that no pristine upstream archive was found, which prohibits the cre-
ation of the Debian specific patch, since the Debian packaging tools have no way to separate upstream files
from files specific to Debian packaging. The option - - cr eat eor i g can be passed to dh_nake to create
a.orig.tar. gz archive before creating the debi an/ directory, if such separation isrequired.

B.3. Debian control files Feedback ()

The control files in the debi an/ directory control the package creation process. The following sections
provide a short description of these files. A more detailed description is available in the [Debian FAQ].

Severd files will have the . ex suffix, which mark them as examples. To activate these files, they must be
renamed by stripping this suffix. Otherwise thefiles should be del eted to not clutter up the directory by unused
files. In case a file was deleted and needs to be restored, the origina templates can be found in the / usr/
shar e/ debhel per/ dh_nake/ debi an/ directory.

Thedebi an/ directory contains some global configuration files, which can be put into two categories: The
fileschangel og, control ,copyri ght,rul es arerequired and control the build process of al binary
packages. Most other files are optional and only affect a single binary package. Their filename is prefixed
with the name of the binary package, *

Lif only asingle binary package is build from the source package, this prefix can be skipped, but it is good practice to always use the prefix.

https://www.univention.com/feedback/?manual=deb:debian

Debian control files

The following files are required:
changel og

Changes related to packaging, not the upstream package. See Section B.3.3 below for more information.
conpat

The Debhelper tools support different compatibility levels. For UCS-3.x the file must contain a single
line with the value 7. See debhelper(7) for more details.

control

Contains control information about the source and all its binary packages. This mostly includes package
name and dependency informations. See Section B.3.1 below for more information.

copyri ght

This file contains the copyright and license information for all files contained in the package. See Sec-
tion B.3.2 below for more information.

rul es

ThisisaMakefile style file, which controls the package build process. See Section B.3.4 below for more
information.

sour ce/ f or mat

Thisfile configures how dpkg-source(1) separates the files belonging to the packaging process from files
belonging to the upstream package. Historically the Debian source format 1. O shipped packages as a
TAR file containing the upstream source plus one patch file, which contained al files of the debi an/
sub-directory in addition to all changes to upstream files.

Thenew format 3. 0 (qui | t) replacesthe patch file with a second TAR archive containing the de-
bi an/ directory. Changesto upstream filesare no longer applied as one giant patch, but splitinto logical
changes and applied using a built-in quilt(1).

For simple packages, where there is no distinction between upstream and the packaging entity, the 3. 0
(native) format can be used instead, were al files including the debi an/ directory are contained
inasingle TAR file.

Thefollowing files are optional and should be deleted if unused, which helps other developers to concentrate
on only the files relevant to the packaging process:

READIVE. Debi an

Notes regarding package specific changes and differences to default options, for example compiler op-
tions. Will beinstalled into/ usr/ shar e/ doc/ package_nane/ READVE. Debi an.

package. cron.d
Cron tab entriesto be installed. See dh_installcron(1) for more details.
package. dirs

List of extradirectoriesto be created. See dh_installdirs(1) for more details. 2

2 May other dh__ tools automatically create directories themselves, so in most cases thisfile is unneeded.

Debian control files

package.install

List of files and directories to be copied into the package. This is normally used to partition all files
to be installed into separate packages, but can also be used to install arbitrary files into packages. See
dh_install(1) for more details.

package. docs

List of documentation files to be installed in / usr/ shar e/ doc/ package/ . See dh_installdocs(1)
for more details.

package. emacsen-instal |,
package. emacsen-renove,
package. enmacsen- st artup

Emacs specific files to be installed below / usr/ shar e/ emacs- cormon/ package/ . See dh_in-
stallemacsen(1) for more details.

package. doc- base*

Control filesto install and register extended HTML and PDF documentation. See dh_installdocs(1) for
more details.

package.init.d,
package. def aul t

Start-/stop script to manage a system daemon or service. See dh_installinit(1) for more details.

package. manpage. 1,
package. manpage. sgni

Manual page for programs, library functions or file formats, either directly in troff or SGML. Seedh_in-
stallman(1) for more details.

package. nenu
Control file to register programs with the Debian menu system. See dh_installmenu(1) for more details.
wat ch

Control fileto specify the download location of this upstream package. This can be used to check for new
software versions. See uscan(1) for more details.

package. prei nst,
package. posti nst,
package. prerm
package. postrm

Scripts to be executed before and after package installation and removal. See Section B.3.5 below for
more information.

package. mai nt scri pt

Control file to simplify the handling of conffiles. See dpkg-maintscript-helper(1) and dh_installdeb(1)
for more information.

Other debhelper programs use additional files, which are described in the respective manual pages.

debian/control

B.3.1. debian/control Feedback {2}

Thecont r ol filecontainsinformation about the packagesand their dependencies, whichisneeded by dpkg.
Theinitial cont r ol file created by dh_make lookslikethis:

Source: testdeb

Secti on: unknown

Priority: optional

Mai nt ai ner: John Doe <user @xanpl e. conr
Bui | d- Depends: debhel per (>= 5.0.0)

St andar ds- Version: 3.7.2

Package: testdeb

Archi tecture: any

Depends: ${shlibs: Depends}, ${m sc: Depends}
Description: <insert up to 60 chars description>
<insert long description, indented with spaces>

Thefirst block beginning with Sour ce describes the source package:
Sour ce

The name of the source package. Must be consistent with the directory name of the package and the
information in the changel og file.

Secti on®

A category name, which is used to group packages. There are many predefined categories like | i bs,
edi tors, mai |, but any other string can be used to define a custom group.

Priority?

Defines the priority of the package. This information is only used by some tools to create installation
DVD. Moreimportant packages are put on earlier CD, while lessimportant packages are put on later CD.

essenti al
Packages are installed by default and dpkg prevents the user from easily removing it.
required

Packages which are necessary for the proper functioning of the system. The package is part of the
base installation.

i mport ant

Important programs, including those which one would expect to find on any Unix-like system. The
packageis part of the base installation.

st andard
These packages provide a reasonably small but not too limited character-mode system.
optional

Package is not installed by default. Thislevel is recommended for most packages.

3 http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
4 http://www.debian.org/doc/debian-policy/ch-archive. html#s-priorities

https://www.univention.com/feedback/?manual=deb:control
http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
http://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities
http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
http://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities

debian/control

extra
This contains all packages that conflict with some other packages.
Mai nt ai ner
The name and email address of a person or group responsible for the packaging.

Bui | d- Depends,
Bui | d- Depends- | ndep

A list of packages which are required for building the package.
St andar ds- ver si on

Specifies the Debian Packaging Standards version, which this package is conforming to. Thisisnot used
by UCS, but required by Debian.

All further blocks beginning with Package describes a binary package. For each binary package one block
isrequired.

Package

The name of the binary package. The nhame must only consist of lower case letters, digits and dashes. If
only asingle binary package is build from a source package, the name is usually the same as the source
package name.

Archi tecture

Basically there are two types of packages: Architecture dependent packages must be build for each archi-
tecturelikei 386 and anmd64, since binaries created on one architecture do not run on other architectures.
A list of architectures can be explicitly given, or any can be used, which is then automatically replaced
by the architecture of the system where the package is built.

Architecture independent packages only need to be built once, but can be installed on all architectures.
Examples are documentation, scripts and graphicsfiles. They are declared using al | in the architecture
field.

Descri ption

Thefirst line should contain a short description of up to 60 characters, which should describe the purpose
of the package sufficiently. A longer description can be given after that, where each line isindented by a
single space. An empty line can be inserted by putting a single dot after the leading space.

Most packages are not self-contained but need other packages for proper function. Debian supports different
kinds of dependencies.

Depends

A essential dependency on some other packages, which must be already installed and configured before
this package is configured.

Recommends

A strong dependency on some other packages, which should normally be co-installed with this package,
but can be removed. Thisis useful for additional software like plug-ins, which extends the functionality
of this package, but is not strictly required.

debian/control

Suggest s

A soft dependency on some other packages, which are not installed by default. Thisisuseful for additional
software like large add-on packages and documentation, which extends the functionality of this package,
but is not strictly required.

Pr e- Depends

A strong dependency on some other package, which must be fully operational even before this packageis
unpacked. Thiskind of dependency should be used very sparsely. It's mostly only required for software
caled fromthe. pr ei nst script.

Conflicts

A negative dependency, which prevents the package to be installed while the other package is already
installed. This should be used for packages, which contain the same files or use the same resources, for
example TCP port numbers.

Provi des

This package declares, that it provides the functionality of some other package and can be considered as
areplacement for that package.

Repl aces

A declaration, that this package overwrites the files contained in some other package. This deactivates
the check normally done by dpkg to prevent packages from overwriting files belonging to some other
package.

Br eaks

A negative dependency, which requests the other package to be upgraded before this package can be in-
stalled. Thisisalesser formof Conf | i ct s. Br eaks isamost aways used with aversion specification
intheform Br eaks: package (<< versi on): Thisforcespackage to beupgradedto aversion
greater than ver si on before this package isinstalled.

In addition to literal package names, debhel per supports a substitution mechanism: Several helper scripts are
capable of automatically detecting dependencies, which are stored in variables.

${shl i bs: Depends}

dh_shl i bdeps automatically determines the shared library used by the programs and libraries of the
package and stores the package names providing them in this variable.

${ pyt hon: Depends}
dh_pyt hon detects similar dependencies for Python modules.
${ mi sc: Depends}

Several Debhelper commands automatically add additional dependencies, which are stored in this vari-
able.

In addition to specifying a single package as a dependency, multiple packages can be separated by using the
pipe symbol (|). At least one of those packages must be installed to satisfy the dependency. If none of them
isinstalled, the first package is chosen as the default.

A package name can be followed by a version constraint enclosed in parenthesis. The following operators
arevalid:

debian/copyright

<<

islessthan

islessthan or equal to

isequal to

is greater than or equal to

>>
is greater than
An Example:

Depends: |ibexanplel (>= ${binary: Version}),
eximd | mail-transport-agent,
${shli bs: Depends}, ${ni sc: Depends}

Conflicts: |ibggO, libggil

Recommends: |ibncurses5 (>> 5. 3)

Suggests: libgiiO-target-x (= 1:0.8.5-2)

Repl aces: vi mpython (<< 6.0), vimtcl (<= 6.0)

Provi des: www browser, news-reader

B.3.2. debian/copyright Feedback {2}

Thecopyri ght filecontains copyright and licenseinformation. For adownloaded source packageit should
include the download location and names of upstream authors.

Thi s package was debi ani zed by John Doe <max@xanpl e.con®> on
Mon, 21 Mar 2009 13:46: 39 +0100.

It was downl oaded from<fill in ftp site>

Copyri ght :
Upstream Aut hor (s): <put author(s) name and emmil here>

Li cense:
<Must foll ow here>

Thefile does not require any specific format. Debian now recommends to use a machine-readable format, but
thisis not required for UCS. The format is described in http://dep.debian.net/deps/dep5/ at |ooks like this:

Format: http://ww. debi an. or g/ doc/ packagi ng- nanual s/ copyri ght -
format/ 1.0/

Upstream Nane: Uni vention GrbH

Upstream Cont act: <package@ni venti on. de>

Source: https://docs. software-univention. de/

Files: *

https://www.univention.com/feedback/?manual=deb:copyright
http://dep.debian.net/deps/dep5/

debian/changel og

Copyri ght: 2013-2016 Uni vention GrbH
Li cense: AGPL

B.3.3. debian/changelog Feedback £}

The changel og file documents the changes applied to this Debian package. The initia file created by
dh_rmake only contains asingle entry and looks like this:

testdeb (0.1-1) unstabl e; urgency=l ow
* |Initial Release.

-- John Doe <user @xanpl e.con> Mbn, 21 Mar 2013 13:46: 39 +0100

For each new package release a new entry must be prepended before al previous entries. The version number
needs to be incremented and a descriptive text should be added to describe the change.

The command debchange from the devscripts package can be used for editing the changel og file. For
exampl e the following command adds a new version:

dch -i
After that the changel og file should look like this:

testdeb (0.1-2) unstable; urgency=l ow

* Add nore details.

-- John Doe <user @xanpl e.conm> Mbn, 21 Mar 2013 17:55: 47 +0100
testdeb (0.1-1) unstable; urgency=l ow

* Initial Release.

-- John Doe <user @xanpl e.conm> Mbon, 21 Mar 2013 13:46: 39 +0100

The date and time stamp must follow the format described in RFC 2822%. debchange automatically inserts
and updates the current date. Alternatively dat e - R can be used on the command line to create the correct
format.

For UCS it is best practice to mention the bug ID of the UCS bug tracker (see Appendix A) to reference
additional details of the bug fixed. Other parties are encouraged to devise similar comments, e.g. URLS to
other bug tracking systems.

B.3.4. debian/rules Feedback {2}

Thefiler ul es describes the commands needed to build the package. It must use the Make syntax [make].
It consists of several rules, which have the following structure:

target: dependencies
conmand

Each rule startswith the target name, which can beafile name or symbolic name. Debian requiresthefollowing
targets:

4 http://tool s.ietf .org/html/rfc2822

https://www.univention.com/feedback/?manual=deb:changelog
http://tools.ietf.org/html/rfc2822
https://www.univention.com/feedback/?manual=deb:rules
http://tools.ietf.org/html/rfc2822

debian/rules

cl ean

This rule must remove all temporary files created during package built and must return the state of all
files back to the same state as when the package is freshly extracted.

bui |l d,
bui | d- ar ch,
bui | d-i ndep

Theserules should configure the package and build either all, all architecture dependent or all architecture
independent files. These rules are called without root permissions.

bi nary,
bi nary-arch,
bi nary-i ndep

These rules should install the package into a temporary staging area. By default this is the directory
debi an/ t np/ below the source package root directory. From there files are distributed to individual
packages, which are created as the result of these rules. These rules are called with root permissions.

Each command line must be indented with one tabulator character. Each command is executed in a separate
shell, but long command lines can be split over consecutive lines by terminating each linewith abackslash (\).

Each rule describes a dependency between the target and its dependencies. nake considers atarget to be out-
of-date, when afile with that namet ar get does not exists or when the file is older than one of the files it
depends on. In that case nake invokes the given commands to re-create the target.

In addition to file names also any other word can be used for target names and in dependencies. Thisis most
often used to define “phony” targets, which can be given on the command line invocation to trigger some
tasks. The above mentioned cl ean, bui | d and bi nar y targets are examples for that kind of targets.

dh_make only creates atemplate for ther ul es file. Theinitial content looks like this:

#! [/ usr/ bi n/ make -f

-*- makefile -*-

Sanpl e debi an/rul es that uses debhel per.

This file was originally witten by Joey Hess and Craig Small .

As a special exception, when this file is copied by dh-nake into a

dh-nmake output file, you may use that output file without restriction.
This special exception was added by Craig Small in version 0.37 of dh-
make.

Unconment this to turn on verbose npde.
#export DH VERBOSE=1

%
dh $@

Since UCS-3.0 the debi an/ r ul es fileis greatly simplified by using the dh sequencer. It is a wrapper
around al the different debhelper tools, which are automatically called in the right order.

Tip
To exactly see which commands are executed when dpkg- bui | dpackage builds a package, in-

vokedh target --no-act byhand, forexampledh bi nary --no-act listsal commands
to configure, build, install and create the package.

debian/preinst, debian/prerm, debian/postinst, de-
bian/postrm

In most cases it's sufficient to just provide additional configuration files for the individual debhelper com-
mands as described in Section B.3. If thisis not sufficient, any debhelper command can be individualy over-
ridden by adding an override target to ther ul es file. For example the following snippet disables the auto-
matic detection of the build system used to build the package and passes additional options:

overri de_dh_auto_confi gure:
./setup --prefix=/usr --wth-option-foo

Without that explicit override dh_aut o_conf i gur e would be called, which normally automatically de-
tects several build systems like cmake, setup.py, autoconf and others. For these dh also passes the right op-
tionsto configure the default prefix / usr and use the right compiler flags.

After configuration the package is built and installed to the temporary staging areain debi an/ t np/ . From
theredh_i nst al | partitionsindividua files and directories to binary packages. This is controlled through
thedebi an/ package. i nst al | files.

This file can aso be used for simple packages, where no build system is used. If a path given in the de-

bi an/ package. i nstal | fileisnot found below debi an/t np/, the path is interpreted as relative to
the source package root directory. This mechanism is sufficient to install simple files, but fails when files
must be renamed or file permissions must be modified.

B.3.5. debian/preinst, debian/prerm, debian/postinst, debian/postrm

In addition to distributing only files packages can also be used to run arbitrary commands on installation,
upgrades or removal. Thisis handled by the four “Maintainer scripts’, which are called before and after files
are unpacked or removed:

debi an/ package. pr ei nst

called before files are unpacked.
debi an/ package. posti nst

called after files are unpacked. Mostly used to (re-)start services after package installation or upgrades.
debi an/ package. prerm

called before files are removed. Mostly used to stop services before a package is removed or upgraded.
debi an/ package. postrm

called after files have been removed.

The scripts themsel ves must be shell scripts, which should contain a#DEBHEL PER# marker, where the shell
script fragments created by the dh_ programs are inserted. Each script is invoked with several parameters,
from which the script can determine, if the package is freshly installed, upgraded from a previous version, or
removed. The exact arguments are described in the template files generated by dh_nake.

The maintainer scripts can be called multiple times, especially when errors occur. Because of that the scripts
should beidempotent, that isthey should be written to “achieve aconsistent state” instead of blindly doing the
same seguence of commands again and again. A bad example would be to append somelinesto afile on each
invocation. Theright approach would beto add acheck, if that linewas already added and only do it otherwise.

Warning

It isimportant that these scripts handle error conditions properly: Maintainer scripts should terminate
withexit 0 onsuccessand exit 1 onfail, if things go catastrophically wrong.

https://www.univention.com/feedback/?manual=deb:scripts

Building

On the other hand an exit code unequal to zero usually aborts any package installation, upgrade or
removal process. This prevents any automatic package maintenance and usually requires manual
intervention of a human administrator. Therefore it is essential that maintainer scripts handle error
conditions properly and are able to recover an inconsistent state.

B.4. BUIIdlng Feedback {)

Before the first build is started, remove all unused files from the debi an/ directory. This simplifies main-
tenance of the package and hel ps other maintainers to concentrate on only the relevant differences from stan-
dard packages.

The build process is started by invoking the following command:

dpkg- bui | dpackage -us -uc

The options - us and - uc disable the PGP signing process of the source and changes files. This is only
needed for Debian packages, were al files must be cryptographically signed to be uploaded to the Debian

infrastructure.

Additionally the option - b can be added to restrict the build process to only build the binary packages. Oth-
erwise a source package will also be created.

B.5. Further reading Feedback{)

o [Debian FAQ]
o [Debian Guide]
o [Debian Policy]

o [Debian Reference]

https://www.univention.com/feedback/?manual=deb:build
https://www.univention.com/feedback/?manual=deb:links

Bibliography

[ucs-handbuch] Univention GmbH. 2018. Univention Corporate Server - Manual for users and administrators. https:/
docs.software-univention.de/manual-4.3.html.

[make] Free Software Foundation. 2010. The GNU Make manual 1

[1SO639] International Organization for Standardization. 2002. SO 639-1: Alpha-2 code?.

[Debian FAQ] Debian. 2012. The Debian GNU/Linux FAQ - Basics of the Debian package management system?’.

[Debian Guide] Debian. 2013. Debian New Maintainers Guide®.

[Debian Policy] Debian. 2012. Debian Poalicy Manual®.

[Debian Reference] Debian. 2012. Debian Developer's Reference®.

L http:/Avww.gnu.org/software/make/manual/

2 http://www.loc.gov/standards/iso639-2/

3 http://www.debian.org/doc/manual §/debian-fag/ch-pkg_basics
4 http://www.debian.org/doc/devel -manual s#maint-guide

5 http://www.debian.org/doc/debian-policy/

6 http://www.debian.org/doc/manual S/devel opers-reference/

https://docs.software-univention.de/manual-4.3.html
https://docs.software-univention.de/manual-4.3.html
http://www.gnu.org/software/make/manual/
http://www.loc.gov/standards/iso639-2/
http://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics
http://www.debian.org/doc/devel-manuals#maint-guide
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/developers-reference/
http://www.gnu.org/software/make/manual/
http://www.loc.gov/standards/iso639-2/
http://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics
http://www.debian.org/doc/devel-manuals#maint-guide
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/developers-reference/

Index

A

Apache (see Web Services)
App center, 111

B
Bug (see Bugzilla)
Bugzilla, 131

C
Config Registry, 19
Categories, 26
Configuration files, 22
Descriptions, 26
Examples, 30
Multifile, 31
Services, 33
Single File, 30
Repository, 17
Services, 27
Template
Module, 25
Multi file, 24
Script, 25
Singlefile, 23
Templatefile, 28
Custom Attributes (see Extended Attributes)

D

Database, 123
MySQL, 123
PostgreSQL, 123

Directory Listener, 55
Cache, 67
Credentids, 67
Debug, 67
Example module, 58
modrdn, 59
Notifier ID, 68
Verify, 68

Directory Manager, 71
Custom Modules, 81
Extended Attributes (see Extended Attributes)
Hook extension, 44
Hooks

Packaging, 87

LDAP search, 83
Module extension, 44
Syntax extension, 44
Syntax override, 83

Domain join, 37

Domain credentials, 52
Machine credentia change, 52
Join script (see Join script)
Join status, 37
Running, 38

E

Example
Config Registry, 30
Extended Attributes, 72
Hooks, 80
Options, 78
Selection list, 76

J

Join (see Domain join)

Join script
Exit codes, 40
Helpers (see Library)
Library, 41
Return codes (see Exit codes)
Writing, 38

L
LDAP
Access control list extension, 44
Schema extension, 43
Listener (see Directory Listener)
Localisation (see Trandation)

M

Management Console, 93
Files, 98
Module
Disable, 107
LDAP, 107
System, 99
umc-modules, 98
XML, 99

P

Package
binary-, 133
source-, 133

Packaging, 11
Build dependencies, 133
Checking for errors, 123
Debian, 133
Library functions, 125
Modifying existing package, 11
New package, 12
Package repository, 17

postup (see Updater)

preup (see Updater)

R
Registry (see Config Registry)
Repository (see Packaging)

S
Server password change (see Domain join)
Single Sign-On
SAML, 121
SSO (see Single Sign-On)

T
Translation, 115

U
UCR (see Config Registry)
UDM (see Directory Manager)
UMC (see Management Console)
Univention Directory Listener (see Directory Listener)
Univention Directory Manager (see Directory Manager)
Univention Management Console (see Management Con-
sole)
Update (see Updater)
Updater
Repositories, 119
Scripts, 119
System update, 119
Upgrade (see Updater)

W
Web Services, 109

	Univention Developer Reference
	Table of Contents
	Foreword
	Chapter 1. Packaging software
	1.1. Introduction
	1.2. Preparations
	1.3. Example: Re-building an UCS package
	1.4. Example: Creating a new UCS package
	1.5. Setup repository
	1.6. Building packages through the openSUSE Build Service

	Chapter 2. Univention Config Registry
	2.1. Using UCR
	2.1.1. Using UCR from shell
	2.1.2. Using UCR from Python

	2.2. Configuration files
	2.2.1. debian/package.univention-config-registry
	2.2.1.1. File
	2.2.1.2. Multifile
	2.2.1.3. Script
	2.2.1.4. Module

	2.2.2. debian/package.univention-config-registry-variables
	2.2.3. debian/package.univention-config-registry-categories
	2.2.4. debian/package.univention-config-registry-services

	2.3. UCR Template files conffiles/path/to/file
	2.4. Build integration
	2.5. Examples
	2.5.1. Minimal File example
	2.5.2. Multifile example
	2.5.3. Services

	Chapter 3. Domain Join
	3.1. Join scripts
	3.2. Join status
	3.3. Running join scripts
	3.4. Writing join scripts
	3.4.1. Basic join script example
	3.4.2. Join script exit codes
	3.4.3. Join script libraries
	3.4.3.1. univention-join
	3.4.3.2. shell-univention-lib

	3.5. Writing unjoin scripts

	Chapter 4. Lightweight Directory Access Protocol (LDAP) in UCS
	4.1. General
	4.2. Packaging LDAP Schema Extensions
	4.3. Packaging LDAP ACL Extensions
	4.4. LDAP secrets
	4.4.1. Password change

	Chapter 5. Univention Directory Listener
	5.1. Structure of Listener Modules
	5.2. Listener Tasks and Examples
	5.2.1. Basic Example
	5.2.2. Rename and Move
	5.2.3. Full Example with Packaging
	5.2.4. A Little Bit more Object Oriented

	5.3. Technical Details
	5.3.1. User-ID and Credentials
	5.3.2. Internal Cache
	5.3.2.1. univention-directory-listener-ctrl
	5.3.2.2. univention-directory-listener-dump
	5.3.2.3. univention-directory-listener-verify
	5.3.2.4. get_notifier_id.py

	5.3.3. Internal working

	Chapter 6. Univention Directory Manager (UDM)
	6.1. Introduction
	6.2. Packaging Extended Attributes
	6.2.1. Selection lists
	6.2.1.1. Static selections
	6.2.1.2. Dynamic selections

	6.2.2. Known issues
	6.2.3. Extended Options
	6.2.4. Extended Attribute Hooks

	6.3. UDM Modules
	6.4. UDM Syntax
	6.4.1. UDM Syntax Override
	6.4.2. UDM LDAP search

	6.5. Packaging UDM Hooks
	6.6. Packaging UDM Extension Modules
	6.7. Packaging UDM Syntax Extension

	Chapter 7. Univention Management Console (UMC)
	7.1. Architecture
	7.2. Asynchronous Framework
	7.3. Protocol UMCP 2.0
	7.3.1. Data flow
	7.3.2. Authentication
	7.3.3. Message format
	7.3.3.1. Message header
	7.3.3.2. Message body

	7.3.4. Examples

	7.4. Protocol HTTP for UMC
	7.4.1. Examples

	7.5. UMC files
	7.5.1. debian/package.umc-modules
	7.5.2. UMC Module Declaration File

	7.6. Local System Module
	7.6.1. Python API
	7.6.2. UMC module API (Python and JavaScript)
	7.6.2.1. XML definition
	7.6.2.1.1. Module definition
	7.6.2.1.2. Category definition

	7.6.2.2. Python module
	7.6.2.3. UMC store API

	7.6.3. Packaging

	7.7. Domain LDAP Module
	7.8. Disabling a Module

	Chapter 8. Web services
	8.1. Extending the overview page

	Chapter 9. App Center
	Chapter 10. Integration of external repositories
	10.1. Integration of repository components via Univention Management Console
	10.2. Integration of repository components via Univention Configuration Registry

	Chapter 11. Translating UCS
	11.1. Univention Management Console translations
	11.1.1. Install needed tools
	11.1.2. Obtain a current checkout of the UCS GIT repository
	11.1.3. Create a new translation package
	11.1.4. Edit translation files
	11.1.5. Update the translation package
	11.1.6. Build the translation package

	Chapter 12. Univention Updater
	12.1. Separate repositories
	12.2. Updater scripts
	12.2.1. Digital signature

	12.3. Release update walkthrough

	Chapter 13. Single Sign-On: Integrating a service provider into UCS
	13.1. Register new service provider via udm
	13.2. Get information required by the service provider
	13.3. Add direct login link to ucs-overview page

	Chapter 14. Miscellaneous
	14.1. Databases
	14.1.1. PostgreSQL
	14.1.2. MySQL

	14.2. UCS lint
	14.3. Function Libraries
	14.3.1. shell-univention-lib
	14.3.2. python-univention-lib

	14.4. Login Access Control
	14.5. Network Packet Filter
	14.5.1. Filter rules by Univention Configuration Registry
	14.5.2. Local filter rules via iptables commands
	14.5.3. Testing Univention Firewall settings

	Appendix A. Bug reporting
	Appendix B. Debian packaging
	B.1. Prerequisites and preparation
	B.2. dh_make
	B.3. Debian control files
	B.3.1. debian/control
	B.3.2. debian/copyright
	B.3.3. debian/changelog
	B.3.4. debian/rules
	B.3.5. debian/preinst, debian/prerm, debian/postinst, debian/postrm

	B.4. Building
	B.5. Further reading

	Bibliography
	Index

