
Univention App Center for App
Providers
Release 5.0

Mar 14, 2024

The source of this document is licensed under GNU Affero General Public License v3.0 only.

https://spdx.org/licenses/AGPL-3.0-only.html

TABLE OF CONTENTS:

1 Introduction 1
1.1 What is Univention App Center? . 1
1.2 App Center infrastructure . 1

2 Get Started 3
2.1 What does the app provider need? . 3
2.2 Create an app with a Docker image . 5
2.3 Create a Multi Container App . 9

3 App lifecycle 13
3.1 Development . 13
3.2 Testing . 14
3.3 Two-way approval . 17
3.4 Release . 17
3.5 Updates . 18
3.6 Termination (end of life) . 18
3.7 App Provider Portal upload interface . 20

4 App presentation 23
4.1 Logos . 23
4.2 Screenshots and videos . 23
4.3 Description . 24
4.4 Categories . 24
4.5 Contact . 24
4.6 License . 25
4.7 README for the administrator . 25
4.8 Translations . 25
4.9 Recommended Apps Badge . 25

5 Connection with Identity Management 27
5.1 Provisioning . 27
5.2 Authentication . 32
5.3 User rights management . 33

6 App configurations 35
6.1 Installation scripts . 35
6.2 Uninstall scripts . 39
6.3 Upgrade scripts . 41
6.4 App settings . 44
6.5 Certificates . 47
6.6 Mail integration . 48
6.7 Subdomains / dedicated FQDN for an App . 49
6.8 Firewall . 50

7 App Appliances 53

i

7.1 Create an app appliance . 53
7.2 Custom branding . 54

8 Command univention-app 61

Index 63

ii

CHAPTER

ONE

INTRODUCTION

This document is for app providers who want to place their product clearly visible for a broad, professional and
growing user group. It covers the steps on how to make the product available as an app for Univention App Center.

1.1 What is Univention App Center?

Univention App Center is an ecosystem similar to the app stores known from mobile platforms like Apple or Google.
It provides an infrastructure to build, deploy and run enterprise applications on Univention Corporate Server (UCS).
The App Center uses well-known technologies like Docker1.

1.2 App Center infrastructure

The ecosystem consists of the following components:

The App
is the software plus the collection of metadata like configuration, text description, logo, screenshots and more
for the presentation.

The App Center Repository
is a central server infrastructure managed by Univention that stores the files and data for the app. It’s the
installation source for the app.

The App Center Module on UCS
is part of the web-based management system on UCS. It’s the place where UCS administrators install, update
and uninstall apps in their UCS environment.

The App Catalog
presents the app portfolio on the Univention website2.

The App Provider Portal
is the self-service portal for app providers where they can create and maintain their app.

The Test App Center
is the “staging area” for app providers to develop and test their apps.

Univention Configuration Registry
is the target platform for the app. UCS is technically a derivative of Debian GNU/Linux.

For building an app the app developer works with UCS, the app, the App Provider Portal and the Test App Center.

1 https://www.docker.com/
2 https://www.univention.com/products/app-catalog/

1

https://www.docker.com/
https://www.univention.com/products/app-catalog/

Univention App Center for App Providers, Release 5.0

2 Chapter 1. Introduction

CHAPTER

TWO

GET STARTED

This chapter describes the requirements and the steps to create an app for Univention App Center. After reading this
chapter an app provider will be able to create their own app and start with a development and test cycle using the Test
App Center.

2.1 What does the app provider need?

2.1.1 Software in a Docker image

The software needs to be provided as a Docker image3. This is the easiest way to deploy software in Univention App
Center. It’s also recommended to publish the Docker container to Docker hub4. This makes referencing the image
later much easier and simplifies the development and test cycle during development.

If public access to the image is not wanted, it can be made private. For use on a UCS test machine during app
development, the docker login needs to be used on the command-line to grant your machine access to the
private image. For the release of the app, the Univention team needs to have access to the image. Please then grant
access to the Docker Hub user univention. The image then has to be copied manually by the App Center team
to the Univention Docker registry, which cannot be browsed. It needs credentials to be accessed. The Docker image
should be considered public by the time the app is published in Univention App Center.

The image must have a version tag to distinguish different software versions. It later allows updates for the apps.

2.1.2 Account for App Provider Portal

The App Provider Portal is the app developer’s place for self service for all the settings around the app.

1. To start building the app, an account for the App Provider Portal is needed. Please request a personal account5
on the Univention website and provide some context about the intended app.

2. An email with username and instructions on how to set a password is sent.

3. Afterwards the login can be performed at the App Provider Portal6.

4. After the login, the Apps module needs to be opened to work on the app.
3 https://docs.docker.com/
4 https://hub.docker.com/
5 https://www.univention.com/products/for-solution-providers/
6 https://provider-portal.software-univention.de/univention/management/

3

https://docs.docker.com/
https://hub.docker.com/
https://www.univention.com/products/for-solution-providers/
https://provider-portal.software-univention.de/univention/management/

Univention App Center for App Providers, Release 5.0

Fig. 2.1: App Provider Portal overview with “Apps” module selected

4 Chapter 2. Get Started

Univention App Center for App Providers, Release 5.0

2.1.3 Where to get help?

App providers that need technical help during their development process are invited to open a topic in Univention
Forum7. The dedicated section App Development is for all questions around app development, debugging and the
like.

2.2 Create an app with a Docker image

This section describes how to create the app in the App Provider Portal and use a Docker image. It focuses on a single
container setup. For a setup with multiple containers with Docker Compose please see Create a Multi Container App
(page 9).

Fig. 2.2: Add new App

7 https://help.univention.com/c/apps/dev/50

2.2. Create an app with a Docker image 5

https://help.univention.com/c/apps/dev/50
https://help.univention.com/c/apps/dev/50

Univention App Center for App Providers, Release 5.0

1. In the App Provider Portal select Favorites ‣ Apps or Software ‣ Apps.

2. Click on Add new app and provide the following settings.

App ID
is like a primary key. Choose it carefully, because it cannot be changed once the app is released to the public.
It should only use small capitals, dashes and numbers. Please do not include version strings in here.

App name
is the name of the app. It’s used to display the app on the overview pages. This attribute can be changed any
time.

App version
is the version of the app. The App Center distinguishes versions and uses them to handle app updates. Once
the app is released, this attribute cannot be changed.

UCS version
is the UCS version the app should start to be available on. Simply start with the latest available UCS version.
It can also be started with the oldest maintained UCS version to cover the broadest user base of UCS. See the
Univention Help 21843 - “UCS maintenance cycle”8 for an overview of the maintained UCS version. In either
case it’s recommended to specify the supported UCS versions explicitly, see Supported UCS versions (page 6).

Provider / Maintainer
refers to the organization that the app belongs to. Please select your organization here or otherwise the app will
not show up in the listing.

Docker app
is for the recommended Docker based app. This documentation only covers single and multi container apps.

2.2.1 Docker image

1. In the app go to the tab Configuration.

2. Select the type of Docker app. This chapter discusses the Single container app, therefore please select it.

3. Enter the name of the image to Docker image. Grab the name of the image from Docker hub for example
python:3.7-bullseye.

Important: Please add the version tag explicitly. The App Center distinguishes different app versions and handles
updates accordingly.

2.2.2 Supported UCS versions

Upon app creation the UCS Version has been specified. Please define the supported UCS version explicitly on the
Version tab in the Supported UCS versions section.

Example: The app has been created for UCS Version 4.4. Two entries for Supported UCS versions for App could
be made: 4.4-8 and 5.0-0. This means that for the installation of the app UCS 4.4-8 or UCS 5.0-0 are required.

8 https://help.univention.com/t/21843

6 Chapter 2. Get Started

https://help.univention.com/t/21843

Univention App Center for App Providers, Release 5.0

2.2.3 Logo and description

On the app’s Presentation tab please provide the display name and a description in English and German and logos
for the software. Start with a short and a full description. It gives an impression on how it will look like during later
testing.

On the same tab two logos can be uploaded: A default icon that is shown on the app tile in the overview. For optimal
presentation it should be more of a 1:1 ratio. The second can be more detailed and can for example include the
software name. Please provide the logos in SVG format.

Those settings can be changed later. For a more detailed description of the app presentation and notes on the trans-
lation, please take a look at App presentation (page 23).

2.2.4 Persistent data with volumes

By default files created inside a container are stored in it, but they don’t persist when the container is no longer running,
removed or is exchanged with a newer version. As solution Docker offers volumes9, a mechanism for persisting data
generated and used by Docker containers. A volume is a directory on the Docker host that is mounted inside the
Docker container.

To define volumes for the app, please activate them on the Overview tab in theModules section with the optionDocker
app defines volumes. Then go to the Volumes tab. Add an entry for each volume and define the directory or file path
on the host in the first field and the destination in the container in the second field. Leave the second field empty for
the same path.

For example:

Host
/var/lib/app_etc

Docker container
/etc/app

2.2.5 Web interface

Many Docker apps expose a web interface to the outside world, e.g. via the port 8080. The App Center on UCS
takes care to map this web interface from some relative link to this port and adds a reverse proxy configuration to the
host’s web server configuration.

On the Web interface tab, enter the relative path and which ports should be proxied. For example, to map the
container’s ports 80 and 443 to /myapp, the following settings have to be made:

Relative URL to web application
/myapp

HTTP port of web application
80

HTTPS port of web application
443

Supported protocols by the container’s web interface
Select HTTP and HTTPS, if both protocol schemes should be covered.

9 https://docs.docker.com/storage/volumes/

2.2. Create an app with a Docker image 7

https://docs.docker.com/storage/volumes/

Univention App Center for App Providers, Release 5.0

2.2.6 Ports

If the app needs to occupy ports on the host that need to be passed along to the container in order to work properly,
they can be defined in the Ports section on theWeb interface tab. A list of ports can be defined that the Docker host
shall exclusively acquire for the Docker container (Port to be acquired exclusively). Ports defined here cannot be used
by other services or other Docker containers on the UCS host. A second list can be defined for ports that should be
forwarded from the host to the Docker container (Host port to be forwarded). Ports defined here will build an implicit
conflict list against other apps that want to use these ports.

For example, the solution exposes the API under the dedicated port 5555. This port would be predestined to be
defined here.

With the port definition the App Center also takes care to open them in the UCS firewall. If additional firewall rules
for ports are needed, they can be defined in the app join script. Please refer to Network packet filter10 in the UCS
Developer Reference.

2.2.7 Database

Many applications need a relational database management system (RDMS) somewhere in the environment to function
properly. If the app needs such a database the App Center takes care of providing one directly to the Docker host.
Activate Docker app needs database on the Overview tab in the Modules section and then go to the Database tab,
where the appropriate settings can be made.

In the Database section the settings for the database are defined. MariaDB and PostgreSQL are supported. Database
user, database name and the path to the password file can be specified. Upon installation of the app, the App Center
installs the defined database on the Docker host, creates a database with the defined settings and saves the password
in a file for later use.

In the Database environment variables section, the mapping of the database settings to the environment variables in
the container are defined. For example, if the container expects the database hostname in DATABASE_HOST, it has
to be entered into the field Variable name for the database host. There are also fields for the database port, user,
password, database name and the password file.

2.2.8 Environment

Docker images usually receive environment variables when the container is started. The App Center supports to pass
static configuration options to the container. Variables parameterized by Univention Configuration Registry Variables
are also supported. An environment file can look like the following example:

LDAP_SERVER=@%@ldap/server@%@
FQDN=@%@hostname@%@.@%@domainname@%@
HOME=/var/lib/univention-appcenter/apps/myapp/data/myapp_home

The content of the environment file can be entered in the App Provider portal on the Configuration tab in the field for
Environment file for Docker container creation.

10 https://docs.software-univention.de/developer-reference/5.0/en/misc.html#misc-nacl

8 Chapter 2. Get Started

https://docs.software-univention.de/developer-reference/5.0/en/misc.html#misc-nacl

Univention App Center for App Providers, Release 5.0

2.3 Create a Multi Container App

Univention App Center supports apps that consist of multiple Docker images. It uses Docker Compose11, a tool
for defining and running multi-container Docker applications. The heart of such applications is a YAML file that
configures all services for the application. The supported compose file format version is 2.0.

2.3.1 Multi container setup

In order to create a Multi Container App, go to the Configuration tab in the App Provider Portal, selectMulti container
app with Docker compose and enter the content of your docker-compose.yml file. A “flat” YAML file must
be used, because the implementation does currently not support references to other files like for example files that
should be mounted inside a container or files listing environment variables.

Univention Configuration Registry, UCR for short, is the central tool for managing the local system configuration
of UCS (see Administration of local system configuration with Univention Configuration Registry12). Settings from
UCR can be used in the Docker compose file to parameterize the Docker setup. This comes in very handy when
settings like for example the local LDAP server should be passed to a container via its environment variables.

[...]
services:

[...]
environment:

ROOT_URL: https://@%@hostname@%@.@%@domainname@%@/$appid
LDAP_Host: "@%@ldap/server/name@%@"
LDAP_Port: "@%@ldap/server/port@%@"
LDAP_BaseDN: "@%@ldap/base@%@"
LDAP_Authentication_UserDN: "@%@appcenter/apps/$appid/hostdn@%@"

[...]

The example above is an excerpt from a Docker compose file where environment variables are defined for a service.
The values of the variables are set to the values of the given UCR variable. appid needs to be replaced manually
by you app id. UCR variables are enclosed by @%@. Please mind the double quotes in the example.

You also need to define the Name of the “main” service within the docker-compose.yml below the Contents of the
docker-compose.yml file.

In order to provide access to the application’s web interface, please seeWeb interface (page 7).

If the app setup requires exclusive ports and a list of ports needs to get forwarded from the host to the container,
please see Ports (page 8).

2.3.2 Script execution reference

The App Center allows several scripts to be executed on the host and inside the container during installation (page 35),
uninstallation (page 39) and upgrade (page 41). Scripts run inside the container are run inside the container of the
“main service”.

11 https://docs.docker.com/compose/
12 https://docs.software-univention.de/manual/5.0/en/computers/ucr.html#computers-administration-of-local-system-configuration-with-univention-configuration-registry

2.3. Create a Multi Container App 9

https://docs.docker.com/compose/
https://docs.software-univention.de/manual/5.0/en/computers/ucr.html#computers-administration-of-local-system-configuration-with-univention-configuration-registry

Univention App Center for App Providers, Release 5.0

2.3.3 Post processing of Docker Compose file

Before a Multi Container App is started by the App Center, the docker-compose.yml is altered by the App
Center with the following changes:

1. When a Multi Container App is released, the docker-compose.yml is adjusted on the server side and
the Docker Image information is changed to point to the Docker Images in the Univention Docker Registry.
All Docker Images from published apps are copied to the Univention Docker Registry to be independent of
hub.docker.com13. This is the only server-side change to the Docker Compose file.

2. The docker-compose.yml is itself a UCR template. As such, it will be interpreted by the App Center
before being used. See UCR Template docker-compose file (page 10) for details.

3. The App Center adds two standard volumes for the main service, as they are also included in Single Container
Apps. These are the /var/lib/univention-appcenter/apps/appid/data/ and /var/lib/
univention-appcenter/apps/appid/conf/ directories on the UCS host. If volumes are defined
in the App Provider Portal in the App Configuration, these are also supplemented in docker-compose.
yml by the App Center for the main service.

4. If ports are defined in the App Provider Portal, they are also added to docker-compose.yml. Ports
that have already been defined continue to exist. If the same port is defined in the portal and in
docker-compose.yml, the configuration in the App Provider Portal takes precedence. For example, if
docker-compose.yml states that port 4500 is provided externally as port 4500, but the portal defines
that this port is to be used as 6500, docker-compose.yml will be modified to map port 4500 to 6500
on the host.

5. If docker-compose.yml specifies that port 80 or 443 should be opened to the outside and the App
Configuration specifies that these ports should be used by the App Center for the web interface, the App
Center will define a port on the fly in docker-compose.yml. This is because UCS hosts usually occupy
ports 80 and 443 with a web server. The App Center creates an Apache Reverse Proxy configuration. SeeWeb
interface (page 7) for details.

6. UCS provides a number of environment variables via the AppCenter, e.g. parameters for an LDAP connection.
The necessary variables are also written to docker-compose.yml in the environments section.

7. Furthermore, in the main service, as in Single Container Apps, all UCR variables defined on UCS are available
under /etc/univention/base.conf, as well as the password for the so-called machine account under
/etc/machine.secret.

As a result, Docker Compose starts a configuration on the UCS system that no longer matches 100%
of the App Provider’s input. The modified docker-compose.yml can be found at /var/lib/
univention-appcenter/apps/appid/compose/docker-compose.yml.

UCR Template docker-compose file

As stated above, the docker-compose.yml is a UCR template. This means that you are able to match the
file to the environment of the Docker host. The UCS Developer Reference contains more information about UCR
templates14, but the core mechanics are:

1. Although every docker-compose.yml is a UCR template, you may not notice it: Where no specific tags
are used, the very content is used. So if your file does not need any of the features mentioned below, just use
your plain docker-compose.yml.

2. You can add specific values of the configuration registry into your file. More importantly, this includes the App
settings in App settings (page 44) defined by the App itself:

environment:
MY_KEY: "@%@myapp/mysetting@%@"

13 https://hub.docker.com/
14 https://docs.software-univention.de/developer-reference/5.0/en/ucr/index.html#chap-ucr

10 Chapter 2. Get Started

https://hub.docker.com/
https://docs.software-univention.de/developer-reference/5.0/en/ucr/index.html#chap-ucr
https://docs.software-univention.de/developer-reference/5.0/en/ucr/index.html#chap-ucr

Univention App Center for App Providers, Release 5.0

Note that App Settings are always added to the main service automatically. But this allows adding them to
other containers and using them as part of a composite value.

3. You can do Python scripting within the template, e.g. to read (and write) the content of specific files.

environment:
MY_SECRET: "@!@import uuid; print(uuid.uuid4())@!@"

Note that currently, you cannot access App Settings within the Python script.

2.3.4 Finish multi container setup

As soon as all the technical settings are made, please see App life cycle (page 13) for the next steps and how to test
the app. For app presentation in the App Center please see App presentation (page 23).

2.3. Create a Multi Container App 11

Univention App Center for App Providers, Release 5.0

12 Chapter 2. Get Started

CHAPTER

THREE

APP LIFECYCLE

This section relates the lifecycle of an app from the first app development, its life in the public to termination. The
lifecycle applies to the app overall and to every single version.

3.1 Development

Every app starts with its development. It involves the definition of the app in the App Provider Portal, providing
the software solution as a Docker image, see Get Started (page 3), and the integration of the solution with UCS,
for example in the identity management area, see Connection with Identity Management (page 27). This part of the
lifecycle can be divided into two steps: setup and integration.

3.1.1 Best practice for app development environment

This section briefly describes best practices on the development and testing environment for apps dedicated to the
Univention App Center. The recommendations aim at reducing repeatable time efforts that, for example, are caused
by the download of Docker images.

The development of apps mainly involves the App Provider portal and a local instance of Univention Configuration
Registry (UCR). To setup your UCS environment the best practice is to download one of the UCS virtual machine
images and use VirtualBox or VMware, see Download UCS (page 14). After the installation, activate the system15

and copy your SSH key to the UCS system to save typing the password on each remote console login. Finally,
activate the Test App Center, see Test App Center (page 14). With that status it’s a good time to make a snapshot of
the system, which allows to got back to that status. Afterwards, app specific time consuming tasks can be prepared
to reduce recurring waiting times. Among them are for example an optional docker login to gain access to a
private Docker image or even the own Docker registry, and the manual download of the app’s Docker image(s) with
docker pull (for single container apps) or docker-compose -p $appid pull (for multi container apps)
from the within the docker-compose.yml directory of the app, see Debugging (page 16). And then also make
a new snapshot. Especially, having the Docker image(s) locally saves download time during recurring installation test
cycles.

With the last snapshot there is a prepared system that can serve as starting point for app installation and associated
testing. The development iteration cycles are a dance of changes in the App Provider portal and testing the installation
and app integration. After returning to a snapshot, it’s recommended to update the local App Center cache. This is
either automatically done during login and opening of the App Center module in the UCS management system or
triggered manually with univention-app update on the console.

15 https://docs.software-univention.de/manual/5.0/en/central-management-umc/umc.html#central-license

13

https://docs.software-univention.de/manual/5.0/en/central-management-umc/umc.html#central-license

Univention App Center for App Providers, Release 5.0

3.2 Testing

Testing the app is the final part of its development. It typically involves a combination of manual and automatic tests.
In order to test the app with UCS, please follow these instructions.

3.2.1 Download UCS

Download UCS to get a copy of UCS free of charge from the Univention website16. Choose an ISO image or
a pre-installed virtual machine image for various virtualization hypervisors, like for example VMware (ESXi and
Workstations), VirtualBox and KVM.

3.2.2 Initial UCS setup

Please refer to the Quickstart Guide for Univention Corporate Server17 for the first steps about installation and initial
setup.

3.2.3 Test App Center

Switch to the Test App Center Repository and test the app directly on the UCS system set up before.

$ univention-install univention-appcenter-dev
$ univention-app dev-use-test-appcenter

3.2.4 Install the app

Up until here, the app is available in the Test App Center and a UCS system is up and running that is configured
against the Test App Center. The app can be installed via the Univention Management Console. UMC consists of
several modules and one of them is called App Center. Open this module and install the app from there.

The following points are mandatory for the App to be published:

• The App has to install without user interaction. Exceptions are configuration parameters obtained through App
Settings, see App settings (page 44).

• The App may not negatively impact UCS’ core services.

• The App has to uninstall without leaving any remainders that interfere with UCS’ core services.

• The app is working with the UCS versions that are configured as Supported UCS version, see Supported UCS
versions (page 6).

When installing the App, also mind README information that may have been defined on the Additional texts tab in
the app in the App Provider Portal after activating it with the option Additional texts with information for UCS system
administrators on the Overview tab in the Modules section. An Administrator expects an app to be fully configured
after the installation. If something is needed in order to use the app, such as activating users for the service, it should
be described in the appropriate README section, see README for the administrator (page 25).

16 https://www.univention.com/downloads/download-ucs/
17 https://docs.software-univention.de/quickstart-en-5.0.html

14 Chapter 3. App lifecycle

https://www.univention.com/downloads/download-ucs/
https://docs.software-univention.de/quickstart-en-5.0.html

Univention App Center for App Providers, Release 5.0

Fig. 3.1: Univention Management Console overview with App Center Module

3.2.5 Upgrade the app

Once several versions of the app exist, the upgrade should be tested, as well. The App Center UMC module only
allows the installation of the latest app version. To test an upgrade of the app, please go to the console and install a
version explicitly:

$ univention-app install myapp=1.0

Afterwards, go back to the App Center UMC module. There, the app should show up with the update symbol
indicating the availability of an update. Continue and perform the app upgrade.

3.2.6 Test checklist

The following list gives an idea what the app provider should test before the app is approved for release or update.
The list cannot cover all possible items, but mentions what is missed repeatedly.

• Integration with UCS identity management: Does the login with activated users work? Will the login be
blocked for users that are not activated for the app?

• Environment with proxy: How does the app behave when a proxy is configured in the UCS environment? Does
the app take the proxy settings into account? Does the app work as expected? Is the networking still working
properly for the app?

• Description and documentation: Are the texts consistent in content? Can they be understood easily? Is the
description of technical steps complete and correct, especially path and file names?

3.2. Testing 15

Univention App Center for App Providers, Release 5.0

3.2.7 Deactivate the Test App Center

To switch back to the productive App Center, please run:

$ univention-app dev-use-test-appcenter --revert

3.2.8 Automated testing for App Providers

Univention always runs automated tests on an app before it’s released. This testing infrastructure can be used by the
app provider to increase the test coverage for the app. This can save manual testing efforts.

A test script for the app can be provided in the Testing tab. The script needs to be entered in the text area Test script
run after installation. It’s run together with the automatic app tests in the Univention test infrastructure and will be
executed after the app has been installed during those tests.

On successful tests, the script has to end with exit code 0. --binddn and --bindpwdfile are passed, so that
the command line interface of UDM can be used easily. Here is an example:

#!/bin/sh
set -e
udm users/user create "$@" \

--set username=myapp-test-user \
--set password=s3cr3t-pwd \
--set lastname=Test \
--set myappActivated=TRUE

sleep 10
curl http://localhost/myapp/login ...

For certain tests user credentials for access to the directory service are needed. They are passed with the parameters
binddn and bindpwd. In many cases the user Administrator is used. The Administrator credentials are only
important for UDM calls on UCS systems that are not the Primary Directory Node.

The test script can be manually tested.

$ univention-install univention-appcenter-dev
$ univention-app dev-use-test-appcenter
$ univention-app install my-app
$ univention-app dev-test-setup # installs common testing libs like selenium
$ univention-app dev-test \

--appcenter-server http://appcenter-test.software-univention.de \
my-app \
--binddn "$DN" \
--bindpwd "$BINDPWD"

3.2.9 Debugging

During app development or for problem analysis it may be necessary to debug an app. If an app installation fails, the
App Center removes the Docker container and thus prevents the developer to have a deeper look into what happened.
With the following command the App Center will not throw away a failed app installation. The container is kept on
the system.

$ univention-app install myapp --do-not-revert

For debugging or support cases it can be helpful to enter the app container. The following command opens a shell in
the container.

$ univention-app shell myapp

If the container does not support a shell, the container can be entered with the plain Docker commands.

16 Chapter 3. App lifecycle

Univention App Center for App Providers, Release 5.0

$ CONTAINER="$(ucr get appcenter/apps/myapp/container)"
$ docker exec "$CONTAINER" ...

To view the Docker log files for the app, please use the following command:

$ univention-app logs $appid # equivalent to docker logs $CONTAINER

For multi container apps using Docker compose, those logging information can be viewed with:

$ cd /var/lib/univention-appcenter/apps/$appid/compose
$ docker-compose -p "$appid" logs

Important log files on the UCS host for debugging are:

• /var/log/univention/appcenter.log

• /var/log/univention/management-console-module-appcenter.log

• /var/log/univention/join.log

• /var/log/docker.log

3.3 Two-way approval

Testing the app also involves giving an approval for the release of the app. Each app in the App Center requires a
two-way approval, one from the app provider and one from Univention. The app provider starts with the process and
performs the tests to give the approval for its app.

The app provider’s approval is given by clicking on Approve for release in the App Provider Portal. The Univention
App Center team is notified and they will start the automated tests. As soon as the automated tests are successful, the
second approval is available and the app is ready to be released.

The automated tests conducted by Univention test for installation, un-installation and re-installation of the app for
different UCS system roles. They check for proper operation of the UCS services. No app functionality will be tested.
The tests are for ensuring that the app does not break UCS functionality.

Besides the technical testing, the first release also undergoes a manual review process on the app presentation. The
app description is checked for plausibility, understandability and for the App Center context.

3.4 Release

As soon as the app is ready for release, it’s copied to the productive App Center by the Univention App Center team.
This involves the app’s presentation material as well as the Docker image. Univention maintains an own Docker
registry. The Docker image is copied to that registry and the reference to the Docker image is updated accordingly
in the app definition. The app will be visible in the App Center UMC module immediately for all UCS users after
release. The app catalog is updated automatically and shows the new app.

3.3. Two-way approval 17

Univention App Center for App Providers, Release 5.0

3.5 Updates

After the release of the first version the app enters “maintenance mode” and receives updates from the app provider.
The evolution of an app is represented by its version. In order to provide an update for the app, follow these steps:

1. Go to the Apps UMC module in the App Provider Portal and search for the app.

2. To create a new version of the app, mouse over the app’s tile, right click and select New App Version.

Fig. 3.2: Menu to add a new App

3. Enter the values for source and target version. The App Provider Portal will then copy the source app config-
uration to the target.

4. Open the new app version and make the appropriate changes, e.g. the version tag for the Docker image. Usual
places for changes involve the scripts and maybe the integration. Texts and logos should be checked if they are
still up to date.

3.6 Termination (end of life)

If the app provider decides to discontinue an app and stop maintenance, the app can be terminated by setting it end
of life. As soon as an app is published in status end of life, UCS system administrators won’t be able to install it
anymore. UCS systems that already have the app installed, will show a notification in the App Center that informs
the UCS system administrator that they should look for alternative solutions.

App versions are not explicitly terminated. They are superseded by the next version. The termination applies to the
whole app.

The app can be terminated by going to the app’s configuration in the App Provider Portal. Please go to the Advanced
tab to the section Custom configuration. Create a new custom configuration with the Custom key EndOfLife and
the Custom value True. Afterwards press Save and Approve for release. Please provide a custom message in the
publish dialog and let the App Center team know about the reasons for the termination.

18 Chapter 3. App lifecycle

Univention App Center for App Providers, Release 5.0

Fig. 3.3: Add a new App version

3.6. Termination (end of life) 19

Univention App Center for App Providers, Release 5.0

3.7 App Provider Portal upload interface

An app is configured via the App Provider Portal, which offers a web interface. There is also an upload interface
available. If the developer prefers to keep the app configuration in a version control system, the upload interface offers
a good way to push changes for the app to the Test App Center. The script can also be used in non-interactive mode
within other scripts. In such cases username and password should be stored in separate files (no new line at the end)
that are passed as parameters.

The scripts needs to be downloaded18. It requires Python 3.7 and cURL to run. For a list of available actions and
their parameters, use the script’s help:

$./univention-appcenter-control --help
$./univention-appcenter-control upload --help

The following examples show how the script can be used.

creates a new version based on the latest version of myapp
$./univention-appcenter-control new-version 5.0/myapp

finds out on which UCS versions this Docker App may be installed
Note: jq is an external tool: apt-get install jq
you may parse JSON without it, of course
$./univention-appcenter-control get --json 5.0/myapp |

jq '._ini_vars.SupportedUCSVersions'

creates version 2.0 of myapp based on the (formerly) latest version
$./univention-appcenter-control new-version 5.0/myapp 5.0/myapp=2.0

sets the DockerImage of the new app
$./univention-appcenter-control set 5.0/myapp=2.0 \

--json '{"DockerImage": "mycompany/myimage:2.0"}'

copies myapp Version 1.0 from UCS 4.4 to UCS 5.0.
$./univention-appcenter-control new-version 4.4/myapp=1.0 5.0/myapp=1.0

uploads all README files in the current folder to the latest version
myapp in UCS 4.2
$./univention-appcenter-control upload 5.0/myapp README*

uploads an image. Will be rejected if this image is not specified
somewhere in the ini file. Note: This may overwrite the logo for other
version using the same logo name, too.
$./univention-appcenter-control upload 5.0/myapp=1.0 myapp.svg

The script can also be used to automate the creation of a new app version for an app update. The generics steps are
the following:

1. Create a new version in the provider portal via the upload script based on the latest published version.

2. For single container apps update the reference to the app’s Docker image and its version. For multi container
apps, download the compose file, update the references to the Docker images of the services there and upload
the compose file.

3. Perform the usual tests before approving an app update for release.

4. Send an email to the App Center team and approve the release. Please provide information about the UCS
section, the app’s version and the internal component reference. It’s best to provide this information in the
email’s subject and it can look like this: “Regarding 4.4/myapp=4.74 (myapp_20201106183244)”

The following examples show how to run the steps with the upload interface. The examples assume that the password
to the portal is stored in a password file which is given as parameter to the script:

18 https://provider-portal.software-univention.de/appcenter-selfservice/univention-appcenter-control

20 Chapter 3. App lifecycle

https://provider-portal.software-univention.de/appcenter-selfservice/univention-appcenter-control

Univention App Center for App Providers, Release 5.0

$ APP_UPGRADE_FROM="12.1"
$ APP_VERSION="12.2"
$ UCS_MINOR="4.4"
$ MY_APP="myapp"
$ MY_USERNAME="my_username"
$ PWD_FILE="portal_password"

1. Create a new version in the app provider portal
$./univention-appcenter-control new-version \

--username "$MY_USERNAME" \
--pwdfile "$PWD_FILE" \
"$UCS_MINOR/$MY_APP" \
"$UCS_MINOR/$MY_APP=$APP_VERSION"

First example for single container apps
2. Update the reference to the app Docker image
$./univention-appcenter-control set \

--username "$MY_USERNAME" \
--pwdfile "$PWD_FILE" \
"$UCS_MINOR/$MY_APP=$APP_VERSION" \
--json '{"DockerImage": "my_company/'"$MY_APP:$APP_VERSION"'"}'

3. Obtain the component id of the new app version.
The command asumes the latest component is the new app.
$ COMPONENT=$(./univention-appcenter-control status \

--username "$MY_USERNAME" \
--pwdfile "$PWD_FILE" \
"$UCS_MINOR/$MY_APP" | sed -rne 's/^ *COMPONENT: +//p;T;q')

4. Send the email
$ SUBJECT="Regarding $UCS_MINOR/$MY_APP=$APP_VERSION ($COMPONENT)"

####
Second example for multi container apps
2. Get app configuration data

$./univention-appcenter-control get \
"$UCS_MINOR/$MY_APP=$APP_VERSION" \
--json \
--username "$MY_USERNAME" \
--pwdfile "$PWD_FILE" > "$MY_APP.json"

3. Extract the compose content
$ jq -r .compose < "$MY_APP.json" > compose

Edit the compose file accordingly. A custom script can help to automate this␣
→˓step.
This script depends on the app and the compose file content
Replace the "image: " lines and refer to the upstream Docker images and their␣
→˓respective tags

4. Upload altered compose file
$./univention-appcenter-control upload \

--username "$MY_USERNAME" \
--pwdfile "$PWD_FILE" \
--non-interactive \
"$UCS_MINOR/$MY_APP=$APP_VERSION" compose

5. Send the mail and with subject as described above

3.7. App Provider Portal upload interface 21

Univention App Center for App Providers, Release 5.0

22 Chapter 3. App lifecycle

CHAPTER

FOUR

APP PRESENTATION

This chapter is about how the app is presented to the user with texts, logos, screenshots and videos. The contents are
part of the app configuration. They are shown to the UCS system administrator in the App Center UMC module in
UCS and to users on the Univention website in the App Catalog19.

All changes are made in the App Provider portal. They need to be saved by pressing the button Save. Then a release
can be requested via the buttonApprove for release. The itemsmentioned in this chapter can be changed and published
any time and do not require a new version of the app.

4.1 Logos

All logos uploaded to the App Provider Portal have to be SVG format, which is most flexible for the presentation
purposes.

Important: When SVG files are created or exported, please make sure that fonts are converted to paths before
export. Otherwise the text in the logos is not rendered properly and the logo may look odd.

Please also do not simply import a bitmap graphic into SVG and export it. Results after scaling may not look good,
because the logo is basically a bitmap in SVG apparel.

The logos can be uploaded on the Presentation tab in the Logos section. Two icons are needed: One for the app tile
on the overview page and a more detailed logo for the app page. The tile has only limited space in square format.
Please make sure, the logo can still be recognized. The detailed logo is not limited. Most logos for this slot have a
landscape orientation. The App Center and the App Catalog take care of the appropriate scaling. SVG allows a very
good result due to its nature as a vector graphics format.

4.2 Screenshots and videos

Screenshots and videos are a good way to introduce the solution to the user. To add screenshots please go to the
Screenshots & YouTube videos section on the Presentation tab. Screenshots can be in PNG or JPG format. Videos
have to be published on YouTube and the full YouTube link has to be provided in the App Provider Portal. Please
keep in mind to provide the material for English and German speaking audience.

If the same screenshots exist in German, it’s recommended that they are added, as well.

Comprehensive visualizations can be added optionally which make it easier to understand the app’s description.
Give the image files sensible names including the keywords. An example of a bad file name for an image would
be app_76bz3.jpg, whereas app_name.jpg would be much better.

19 https://www.univention.com/products/app-catalog/

23

https://www.univention.com/products/app-catalog/

Univention App Center for App Providers, Release 5.0

4.3 Description

The full description is the text introducing the solution to the user and thus is very important for getting their
attention. Here are some tips intended to help to present the app in a user-friendly, customer-oriented, and
search-engine-optimized manner.

• Unique content with at least 300 words. Not a copy from the solutions web page.

• Content: What does the app do? The added value and benefits should be described and examples be provided.

• The app is running on UCS. What is the added value that the combination of UCS and the app offers to the
customer?

• It’s important for the user to understand which “edition” of the solution is installed and what features or limi-
tations are included. Please also provide information on how to “upgrade” to the next “edition”.

• The text should be structured in paragraphs. Subheadings and lists should be used.

• Search engines should be kept in mind and keywords be used.

• Links should be furnished with all HTML attributes.

• Include supporting images/screenshots and define them in the app configuration (not within description).

The description is provided in HTML format. If more control on the HTML is needed, switch to HTML source
mode and edit the HTML directly. Here sections and headings can be added.

Note: Custom styles in CSS should not be used, because they may distract from the overall impression. The App
Center UMC module and the App Catalog already have respective CSS style definitions.

The length of the description depends on howmuch there is to say and howmuch explanation the app requires. Ideally
the description should be at least 300 words long. The text should be structured and paragraphs should be used to
make it easier to read. The target group are potential customers. Subheadings (HTML: h2, h3) should be used to
divide the text into logical sections. It’s very helpful for the reader to be able to see the advantages of the app and
its combination with UCS at a glance. For this reason, presentation of the advantages in lists (HTML: ol, ul, li) is
particularly practical.

If links are used in the app description (e.g., to pages on the solution’s own website), please always use the tar-
get="_blank" (open in new tab) and assign the link a title attribute. Please keep the use of links to a minimum
and ideally use the fields provided especially for this purpose in the app metadata.

4.4 Categories

On the Presentation tab the app can be given one or more categories from a given set in the App categories section.
Users can filter the app overview in the App Center and in the App Catalog accordingly. App categories help to group
apps together by topic and give a better overview for the various apps available.

4.5 Contact

For the users it’s important to knowwho is the producer of the app. For this purpose there is theResponsibility: Contact
information section on the Presentation tab in the App Provider Portal. Please provide product contact information
like an email address and a website to the solution. Please also link to a website, where the app provider’s support
options and pricing is explained to potential customers and place the link in the field Link to website with product
support options.

24 Chapter 4. App presentation

Univention App Center for App Providers, Release 5.0

4.6 License

In the License section on the Presentation tab license information can be defined; for example, a license agreement.
This has to be read and accepted by a UCS system administrator before the app is installed. If the text is not accepted,
the installation process is aborted and no app is installed. The license agreement is mostly used by app providers for
legal information that needs confirmation by the administrator before anything is installed. If such a text is not needed,
leave it empty.

UCS system administrators have to register with a valid email address in order to use the App Center. If the app
provider configures an email address in the field E-mail address for App install notifications it receives information on
a daily basis about who installed the app. The App Center UMC module informs the user that the app provider may
contact them. App providers can use the address, for example, for lead management.

The last setting is intended to provide the users a rough imagination about the license type of the software. One
option best fitting to the solution should be chosen:

• Empty: If no value is given, the App Center UMC module and the App Catalog will show the text “Please
contact the App provider for further license details”.

• Free commercial use

• Free commercial use. Some functions or services are liable to costs.

• Liable to Costs with Free Trial

• Liable to Costs

4.7 README for the administrator

In the tab Additional texts further information for an app can be provided that show up at certain stages of the app
lifecycle. Those README files are also in HTML like the description and content can be provided the same way,
see Description (page 24). The App Provider Portal describes when each README file shows up.

It’s highly recommended to use the README files to show information that should not go in the app description, like
for example configuration details, hints before and after an update, etc. Please also keep in mind to provide a proper
German translation.

4.8 Translations

All texts, screenshots and videos should be entered in English. Translations to German should be only made in the
appropriate field next to the English text. It should be made sure that translations for the texts that have an English
version are provided. Otherwise, English text will show up for a user with German language settings.

4.9 Recommended Apps Badge

Apps can be awarded with different badges and are therefore especially highlighted in the App Center. One of those
badges is the “Recommended Apps”20 award for the use in professional environments. Apps with the “Recommended
Apps” award meet the below listed quality criteria. The functional scope of the software solution is not evaluated.
The award is assigned by the Univention App Center Team and the criteria serve as decision guidelines.

• The app can be installed and uninstalled cleanly and does not alter the UCS system against the rules.

• Univention is not aware of any open security vulnerabilities for the app or the app provider has promised to
remedy the vulnerabilities soon. In principle, Univention does not carry out any active security monitoring for
apps in the App Center. If Univention becomes aware of security vulnerabilities, the App provider will be
informed and a deadline for an update will be agreed upon.

20 https://www.univention.com/products/app-catalog/?recommended_app=1

4.6. License 25

https://www.univention.com/products/app-catalog/?recommended_app=1

Univention App Center for App Providers, Release 5.0

• The version of the software solution offered in the App Center is maintained by the app provider.

• If the software solution requires user accounts to identify users, the app uses UCS Identity Management as a
source of user accounts.

• The app provider makes updates of its software for the app available regularly and promptly to UCS via the
App Center.

• If the app provider offers update paths for its software solution, the app also supports these update paths.

• The app vendor ensures that the app deploys its software solution to new UCS versions within a short period
of time, ensuring that administrators can update UCS.

• Commercial support is available for the app.

• The app has been available in the App Center for at least 3 months.

• For the app, there are virtual app appliances that are linked on the app vendor’s website for download. This
makes commissioning the app on UCS extremely easy.

26 Chapter 4. App presentation

CHAPTER

FIVE

CONNECTION WITH IDENTITY MANAGEMENT

One of the key features of UCS is the integrated identity management (IDM). With this central identity management,
users benefit, among other things, from a single login independent of which services or systems they use. It’s highly
recommended to integrate the app into the identity management system.

If the app should benefit from the identity management, the flag The administrator needs to enable users for the app
should be activated in the App Provider Portal on the Identity management tab under the User rights management
section. This extends the IDM by a checkbox and an administrator of the UCS system can activate or deactivate each
user individually for the app. The setting can then be found in the Users UMC module and is called Apps. It’s also
possible to make significantly more complex settings. See User rights management (page 33) for more details.

5.1 Provisioning

There are different ways in which applications can access provisioning information. The following describes a pull
and push-based procedure.

5.1.1 Automatically via LDAP connection (Pull)

UCS stores the user and group information in an OpenLDAP based directory. Thus, the default informa-
tion can be accessed via the LDAP protocol. Objects are identified by an LDAP filter. The following fil-
ter can be used to search for users (univentionObjectType=users/user) and for groups the filter
(univentionObjectType=groups/group) can be used.

If the user activation is used (The administrator needs to enable users for the app), the following LDAP filter can
be used: (&(univentionObjectType=users/user)(myappActivated=TRUE)). The string myapp
has to be replaced with the appid.

The parameters for the LDAP server can be read from the environment variables:

LDAP_SERVER_NAME
The fully-qualified host name of the OpenLDAP server the app may connect to.

LDAP_SERVER_PORT
The port of the OpenLDAP server the app may connect to.

LDAP_SERVER_ADDITION
A list of alternative OpenLDAP servers. These values should be used for failover.

LDAP_BASE
The base for the whole LDAP database, e.g., dc=mydomain,dc=intranet or o=mydomain
<o=mydomain>.

Important: As a rule, the LDAP base should not be further restricted. Many environments store users below
cn=users <cn=users> but this is not the case in all environments.

27

Univention App Center for App Providers, Release 5.0

By default, the OpenLDAP server in UCS doesn’t allow anonymous connections. For every app a user account is
created. The account has read access to the LDAP directory. The username is passed as the environment variable
LDAP_HOSTDN. The password is written in the file /etc/machine.secret. The credentials are not changed
when an app is upgraded. But they change if an app is reinstalled.

5.1.2 Automatically via IDM notifications (Push)

An app can be notified by the IDM system when users or groups are created, modified or deleted. For each change,
a file is created in a specific directory. The app can either poll the directory or register a command that is executed
when a file is created.

Setup in App configuration

The configuration for these IDM notifications can be done on the Identity management tab in the Provisioning section
in the App Provider Portal. It can be configured which object types are watched. Currently, users and groups are
supported.

A script should be specified in the App Provider Portal. The script is copied from the App Center into the Docker
container and executed in the context of the container there. If a script is already part of the container, this script can
be called accordingly, e.g.

#!/bin/sh
exec /usr/sbin/app-connector

How the mechanism works

The JSON files are created in the directory /var/lib/univention-appcenter/apps/appid/data/
listener/. As soon as any attribute of the watched object types is changed a JSON file is created in the directory.
The script is called in a defined and configurable interval by the App Center, if at least one JSON file has been written.
Once the script has finished a JSON file, the script must delete the JSON file.

New in version 5.0-3: ListenerUDMVersion

ListenerUDMVersion is a custom configuration for an app. It defines the format version, that the listener uses
to pass data from UDM to the app. Possible values are 1 and 2. If ListenerUDMVersion isn’t defined as custom
configuration in the app metadata, the listener uses version 2.

Univention recommends to use ListenerUDMVersion 2, because it uses the UDM HTTP REST API represen-
tation.

Configuration in App Provider Portal

To set ListenerUDMVersion in the App Provider Portal, open the app of interest and navigate to Advanced ‣
Custom configuration. Add a new custom configuration with the key ListenerUDMVersion.

Migration to ListenerUDMVersion 2

For using version 2, app developers need to compare what data they process and how they handle the representation.
In best case, they don’t need to adjust the listener integration.

All files are JSON with one dictionary and the following content. You find logging information about the listener in
/var/log/univention/listener_modules/appid.log.

id
A unique identifier for the object holding the value of entry_uuid attribute of the LDAP object. It does
not change even if the object is moved. The script certainly wants to identify objects by this attribute.

28 Chapter 5. Connection with Identity Management

Univention App Center for App Providers, Release 5.0

dn
The distinguished name of the LDAP object.

udm_object_type
The type of the object, for example users/user, or groups/group.

object
A dictionary of the attributes of this object. If object is null, the object was deleted.

The listener passes the data in the UDM HTTP REST API representation to the object dictionary.

For example, refer to JSON example for ListenerUDMVersion 2 (page 29).

The listener passes the data in the UDM representation to the object dictionary. The representation uses
strings for boolean values such as "OK", "1", "0", "TRUE", or "FALSE".

For example, refer to JSON example for ListenerUDMVersion 1 (page 31).

What should the script cover?

• The mechanism does not filter the data. Every change will be saved in JSON files. If only a subset of users,
e.g. a certain user type like students, shall be processed, the script should filter on it and only continue with the
relevant data.

• UCS can re-synchronize a listener. In this case, each and every object appears once again as a JSON file. The
script needs to cover the case where no real modification to the object has been made.

• The script has to exit with exit code = 0 on success and != 0 on failure.

• The script has to delete the JSON file that has already been processed. If the files are not deleted, the script
should detect duplicates and make sure to handle the same change accordingly.

• If a mapping between the id of the JSON file and the primary user key in the solutions database is not possible,
consider maintaining a mapping table by the script, if necessary. The id is the only attribute that remains the
same for an object.

• It may happen that the same id appears twice in the set of JSON files. This means that multiple modifications
on the object have been made since the last time your script processed the object.

JSON example

This is an example of a JSON file for a user change. It’s not complete, but should clarify the idea.

JSON example for ListenerUDMVersion 2

{
"dn": "uid=Administrator,cn=users,dc=demo,dc=univention,dc=de",
"id": "b2f13544-e3cb-1037-810e-23ad4765aade",
"properties": {

"accountActivationDate": {
"activation-date": null,
"activation-time": null,
"activation-timezone": "Europe/Berlin"

},
"birthday": null,
"city": null,
"country": null,
"departmentNumber": [],
"description": null,
"disabled": false,
"displayName": "Administrator",

(continues on next page)

5.1. Provisioning 29

Univention App Center for App Providers, Release 5.0

(continued from previous page)

"e-mail": [],
"employeeNumber": null,
"employeeType": null,
"firstname": null,
"gecos": "Administrator",
"gidNumber": 5000,
"groups": [

"cn=Domain Admins,cn=groups,dc=demo,dc=univention,dc=de",
"cn=Domain Users,cn=groups,dc=demo,dc=univention,dc=de",
"cn=DC Backup Hosts,cn=groups,dc=demo,dc=univention,dc=de"

],
"homePostalAddress": [],
"homeShare": null,
"homeSharePath": "Administrator",
"homeTelephoneNumber": [],
"homedrive": null,
"initials": null,
"jpegPhoto": null,
"lastbind": null,
"lastname": "Administrator",
"locked": false,
"lockedTime": "0",
"mailAlternativeAddress": [],
"mailForwardAddress": [],
"mailForwardCopyToSelf": "0",
"mailHomeServer": null,
"mailPrimaryAddress": null,
"mobileTelephoneNumber": [],
"objectFlag": [

"hidden"
],
"organisation": null,
"overridePWHistory": null,
"overridePWLength": null,
"pagerTelephoneNumber": [],
"password": null,
"passwordexpiry": null,
"phone": [],
"physicalDeliveryOfficeName": null,
"postOfficeBox": [],
"postcode": null,
"preferredDeliveryMethod": null,
"preferredLanguage": null,
"primaryGroup": "cn=Domain Admins,cn=groups,dc=demo,dc=univention,dc=de",
"profilepath": null,
"pwdChangeNextLogin": null,
"roomNumber": [],
"sambaLogonHours": null,
"sambaPrivileges": [],
"sambaRID": 500,
"sambaUserWorkstations": [],
"sambahome": null,
"scriptpath": null,
"secretary": [],
"serviceprovider": [],
"shell": "/bin/bash",
"street": null,
"title": null,
"uidNumber": 2002,
"umcProperty": {

"appcenterSeen": "false",

(continues on next page)

30 Chapter 5. Connection with Identity Management

Univention App Center for App Providers, Release 5.0

(continued from previous page)

"udmUserGridView": "tile"
},
"unixhome": "/home/Administrator",
"unlock": false,
"unlockTime": "",
"userexpiry": null,
"username": "Administrator"

},
"udm_object_type": "users/user"

}

JSON example for ListenerUDMVersion 1

{
"dn": "uid=Administrator,cn=users,dc=demo,dc=univention,dc=de",
"id": "b2f13544-e3cb-1037-810e-23ad4765aade",
"object": {

"description": "Built-in account for administering the computer/domain",
"disabled": "0",
"displayName": "Administrator",
"gecos": "Administrator",
"gidNumber": "5000",
"groups": [

"cn=Domain Admins,cn=groups,dc=demo,dc=univention,dc=de",
"cn=Domain Users,cn=groups,dc=demo,dc=univention,dc=de",
"cn=DC Backup Hosts,cn=groups,dc=demo,dc=univention,dc=de",
"cn=Schema Admins,cn=groups,dc=demo,dc=univention,dc=de",
"cn=Enterprise Admins,cn=groups,dc=demo,dc=univention,dc=de",
"cn=Group Policy Creator Owners,cn=groups,dc=demo,dc=univention,dc=de",
"cn=Administrators,cn=Builtin,dc=demo,dc=univention,dc=de"

],
"lastname": "Administrator",
"locked": "0",
"lockedTime": "0",
"mailForwardCopyToSelf": "0",
"mailPrimaryAddress": "admin@sparka-43.intranet",
"mailUserQuota": "0",
"passwordexpiry": null,
"primaryGroup": "cn=Domain Admins,cn=groups,dc=demo,dc=univention,dc=de",
"sambaRID": "500",
"shell": "/bin/bash",
"uidNumber": "2002",
"umcProperty": [

[
"appcenterDockerSeen",
"true"

],
[

"appcenterSeen",
"2"

],
[

"udmUserGridView",
"default"

]
],
"unixhome": "/home/Administrator",
"unlockTime": "",
"userexpiry": null,

(continues on next page)

5.1. Provisioning 31

Univention App Center for App Providers, Release 5.0

(continued from previous page)

"username": "Administrator",
"webweaverActivated": "TRUE"

},
"udm_object_type": "users/user"

}

5.2 Authentication

There are different ways in which applications can authenticate against the UCS identity management system.

5.2.1 LDAP

UCS stores the user and group information in an OpenLDAP based directory. Thus, the default informa-
tion can be accessed via the LDAP protocol. Objects are identified by an LDAP filter. The following fil-
ter can be used to search for users (univentionObjectType=users/user) and for groups the filter
(univentionObjectType=groups/group) can be used.

If the user activation is used (The administrator needs to enable users for the app), the following LDAP filter can
be used: (&(univentionObjectType=users/user)(myappActivated=TRUE)). The string myapp
has to be replaced with the appid.

The parameters for the LDAP server can be read from the environment variables:

LDAP_SERVER_NAME
The fully-qualified host name of the OpenLDAP server the app may connect to.

LDAP_SERVER_PORT
The port of the OpenLDAP server the app may connect to.

LDAP_SERVER_ADDITION
A list of alternative OpenLDAP servers. These values should be used for failover.

LDAP_BASE
The base for the whole LDAP database, e.g., dc=mydomain,dc=intranet or o=mydomain
<o=mydomain>.

Important: As a rule, the LDAP basis should not be further restricted. Many environments store users below
cn=users <cn=users> but this is not the case in all environments.

By default, the OpenLDAP server in UCS does not allow anonymous authentications. For every app a user account
is created. The account has read access to the LDAP directory. The username is passed as the environment variable
LDAP_HOSTDN. The password is written in the file /etc/machine.secret. The credentials are not changed
when an app is upgraded. But they change if an app is reinstalled.

5.2.2 Kerberos

UCS integrates a Kerberos server by default. As usual with Kerberos, the data for the Kerberos configuration can be
obtained from DNS. By default, the DNS domain name is passed through the DOMAINNAME environment variable.
The following settings can then be queried via DNS:

Kerberos Realm
It can be queried by the TXT record _kerberos.DOMAINNAME.

Kerberos KDC
It can be queried by the SRV records _kerberos._tcp.DOMAINNAME and _kerberos._udp.
DOMAINNAME.

32 Chapter 5. Connection with Identity Management

Univention App Center for App Providers, Release 5.0

5.3 User rights management

The flag The administrator needs to enable users for the app can be activated in the App Provider Portal on the Identity
management tab in theUser rights management section. This adds a checkbox to the user administration and a schema
extension for the IDM is created, so that the status of the checkbox is stored in an attribute in the IDM. This allows
each user to be activated or deactivated separately.

If the app requires more settings in the IDM, an own LDAP schema can be uploaded into the App Provider Portal
on the Identity management tab in the User rights management section in the field Schema extension for LDAP.

In this case, it’s also possible to create individual extended attributes during the setup process. This should be done
in the join script. Further information on extended attributes can be found in the Univention Developer Reference21.

21 https://docs.software-univention.de/developer-reference/5.0/en/index.html

5.3. User rights management 33

https://docs.software-univention.de/developer-reference/5.0/en/index.html

Univention App Center for App Providers, Release 5.0

34 Chapter 5. Connection with Identity Management

CHAPTER

SIX

APP CONFIGURATIONS

The App Center offers the possibility to add scripts at various points during the installation and configuration of the
app. The scripts are described below. They can be edited in the app in the App Provider portal in the following
sections:

• Scripts → Join & unjoin script

• Scripts → Scripts called before App Center action on apps

• Scripts → Scripts for data store and restore (store_data, restore_data_before_setup, re-
store_data_after_setup)

• Scripts → Setup script

• Scripts → Configure scripts. (configure)

• Scripts → Configure scripts. (configure_host)

6.1 Installation scripts

During the installation of an app, various scripts are called. Please see the overview below about of the involved
scripts and the parameters they are called with. More information on the scripts themselves can be found in the
following sections.

During installation process you may need to run commands inside a container of your app, for example, to properly
prepare it. For more information, refer to Command univention-app (page 61).

6.1.1 Script called before installation to verify that App may be installed

The preinst script is executed on the UCS host system before the app is initialized, even before the app image is
downloaded. Its purpose is to check whether installation will be successful or not. Any exit code other than 0 will
result in cancellation of the installation process. This script is also executed if the app is upgraded.

The script receives the LDAP bind DN of the Administrator account and its password, the version of the app that
should be installed, the locale and an error log file for log output as parameters. Error messages in the passed error log
file will be passed to the UCS management system and thus to the administrator performing the installation. Proper
error messages can thus be passed to the administrator.

Note that App settings (page 44) with scope outside are already set by the time the script is run and can therefore
be checked against.

35

Univention App Center for App Providers, Release 5.0

Fig. 6.1: App workflow for installation

36 Chapter 6. App configurations

Univention App Center for App Providers, Release 5.0

6.1.2 Docker script restore_data_before_setup

The lifecycle script restore_data_before_setup is executed inside the Docker container before the setup
script is run. Its purpose is to restore the data which has been stored by the store_data script. The parameters
are the appid, the app version and a filename for error logging.

6.1.3 Docker script setup

The lifecycle script setup is executed inside the Docker container. It’s the heart of the initial app configuration
and typically used to make environment specific settings to the container or apply certain changes that require the
container environment. If the script fails (exit code != 0) the installation is aborted.

The parameters given to the script are the appid, the app version, a filename for error logging and the username and
credentials for the Administrator user.

6.1.4 Docker script restore_data_after_setup

The lifecycle script restore_data_after_setup is executed inside the Docker container after the setup
script is run. Its purpose is to restore the data which has been stored by the store_data script. The parameters
are the appid, the app version and a filename for error logging.

6.1.5 Settings script run on Docker host

The settings script configure_host is executed on the Docker host after the restore_data_af-
ter_setup script is run. Its purpose is to make environment specific settings on the UCS host regarding the
app. The parameters are the app action install, the app version, a filename for error logging and the locale.

6.1.6 Settings script run in Docker container

The settings script configure is executed inside the Docker container after the configure_host script. Its
purpose is to make environment specific settings in the app container. The parameters are the app action install,
the appid, the app version and a filename for error logging.

6.1.7 Join script

The joinscript inst is executed on the UCS host system after the Docker container is configured. Please refer to
Domain join22 in the UCS Developer Reference about how to write a join script. In principle a join script is a script
that runs after the installation of an app and it has write access to the LDAP directory service. If it runs successfully,
the join script may save this information in a status file. If this does not happen, the user is constantly reminded to
re-run the join script. So the join script does not need to run successfully. The installation will not be aborted at this
point. But of course at some point it should run through successfully.

22 https://docs.software-univention.de/developer-reference/5.0/en/join/index.html#chap-join

6.1. Installation scripts 37

https://docs.software-univention.de/developer-reference/5.0/en/join/index.html#chap-join

Univention App Center for App Providers, Release 5.0

Join script helper

Apart from the functions documented in the Developer Reference, the below listed functions are available in join
scripts for dealing with apps. They require the following line in the script:

. /usr/share/univention-appcenter/joinscripthelper.sh

Furthermore, this call provides access to the following variables:

$APP
app id

$APP_VERSION
app version

$SERVICE
app name

$CONTAINER
Docker container id

Join script functions

joinscript_add_simple_app_system_user
Adds a domain wide user to the LDAP directory that is not a real Domain User and offers an authentication
account. It can be used as bind user for the app to connect to the LDAP directory. The password will be stored
on the Docker Host at /etc/APP.secret. The DN will be uid=APP-systemuser,cn=users,
ldap_base.

joinscript_add_simple_app_system_user "$@" --set mailPrimaryAddress=...

joinscript_container_is_running
Returns whether or not the Docker container is currently running.

• 0: Yes

• 1: No

Can be used in an if statement.

joinscript_container_is_running || die "Container is not running"

joinscript_run_in_container
Runs one command inside the container. Returns the return code of the command.

joinscript_run_in_container service myapp restart ||
die "Could not restart the service"

joinscript_container_file
Prints the absolute path for the Docker host for the filename given inside the container.

FILENAME="$(joinscript_container_file "/opt/$APP/my.cnf")"

joinscript_container_file_touch
Creates a file inside the container. Directories are created along the way. Prints the resulting filename just like
“joinscript_container_file”.

joinscript_register_schema
Registers a LDAP schema file semi automatically. The schema file allows to extend LDAP objects with new
attributes. The file will be copied to theDocker host’s/usr/share/univention-appcenter/apps/
APPID/APPID.schema during installation. See the LDAP documentation23 for the syntax of a schema file.

23 https://www.openldap.org/doc/admin24/schema.html

38 Chapter 6. App configurations

https://www.openldap.org/doc/admin24/schema.html

Univention App Center for App Providers, Release 5.0

If an official object identifier (OID) namespace is needed, Univention can provide one. It’s important to note
that shipping the schema file alone is not enough. It has to be registered with the mentioned function in the
join script.

The schema file content can be provided in the App Provider portal on the Identity management tab in the User
rights management section, in the field for Schema extension for LDAP.

joinscript_register_schema "$@"

Join script boilerplate

The following boilerplate can be used as a starting point for the app’s own join script.

#!/bin/bash
VERSION=1

. /usr/share/univention-appcenter/joinscripthelper.sh
joinscript_init
eval "$(univention-config-registry shell)"
ucs_addServiceToLocalhost "$SERVICE" "$@" || die

... # Place for the app's join script code

joinscript_save_current_version
exit 0

6.2 Uninstall scripts

During the process to uninstall an app, various scripts are called. Please see the overview below about the involved
scripts and the parameters they are called with. More information on the scripts themselves can be found in the
following sections.

6.2.1 Script called before uninstalling to verify that App may be removed

The prerm script is executed on the UCS host system. Its purpose is to check the prerequisites to uninstall an app
or abort if they are not met. For example, the prerm may fail if other software still depends on it. Any exit code
other than 0 will result in cancellation of the uninstall process. The given parameters are the LDAP bind DN of the
Administrator account and its password, the version of the app that should be uninstalled/removed, the locale and
an error log file for log output. Error messages in the passed error log file will be passed to the UCS management
system and thus to the administrator performing the installation. Proper error messages can thus be passed to the
administrator.

6.2.2 Settings script run on Docker host

The settings script configure_host is executed on the Docker host after the prerm script is run. Its purpose
is to make environment specific settings on the UCS host during the removal of the app. The parameters are the app
action remove, the app version, a filename for error logging and the locale.

6.2. Uninstall scripts 39

Univention App Center for App Providers, Release 5.0

Fig. 6.2: App workflow for Removal

40 Chapter 6. App configurations

Univention App Center for App Providers, Release 5.0

6.2.3 Settings script run in Docker container

The settings script configure is executed inside the Docker container after the configure_host script. Its
purpose is to make environment specific settings in the app container before it’s removed. The parameters are the
app action remove, the appid, the app version and a filename for error logging.

6.2.4 Docker script store_data

The lifecycle script store_data is required if data exists in the container which should not be removed when the
container is replaced with a new container or if the app is uninstalled. The script is not required if all the data is stored
outside of the container for example in a database or amapped volume. It’s executed inside the Docker container and it
should copy the relevant data to /var/lib/univention-appcenter/apps/APPID/data/. Afterwards,
the data can be restored by one of the restore_data* scripts. The parameters are the appid, the app version and
a filename for error logging.

6.2.5 Unjoin script

The unjoin script uinst is executed on the UCS host system after the Docker container is removed. See Writing
unjoin scripts24 in UCS Developer Reference for how to write an unjoin script. It should revert most (if not all)
changes done in the join script. With the notable exception of schema registration. An LDAP schema extension
should never be removed once it was registered.

6.3 Upgrade scripts

It may be necessary to move data from the old container to the new container when the app container is replaced
during an upgrade or when the app is uninstalled. The upgrade scripts can be used for this purpose. Please see an
overview of the involved scripts and the parameters they are called with in the figure below. More information on the
scripts themselves can be found in the following sections.

During upgrade process you may need to run commands inside a container of your app, for example, to run a data
migration. For more information, refer to Command univention-app (page 61).

6.3.1 Script called before upgrade to verify that App may be upgraded

The preinst script is executed on the UCS host system before the app upgrade is initialized, even before the Docker
image is downloaded. Its purpose is to check whether the requirements for the upgrade are fulfilled. Any exit code
other than 0 will result in cancellation of the upgrade process.

The script receives the LDAP bind DN of the Administrator account and its password, the old version of the app and
the new version, the locale and an error log file for log output as parameters. Error messages in the passed error log
file will be passed to the UCS management system and thus to the administrator performing the installation. Proper
error messages can thus be passed to the administrator.

24 https://docs.software-univention.de/developer-reference/5.0/en/join/write-unjoin.html#join-unjoin

6.3. Upgrade scripts 41

https://docs.software-univention.de/developer-reference/5.0/en/join/write-unjoin.html#join-unjoin
https://docs.software-univention.de/developer-reference/5.0/en/join/write-unjoin.html#join-unjoin

Univention App Center for App Providers, Release 5.0

Fig. 6.3: App workflow for upgrade

42 Chapter 6. App configurations

Univention App Center for App Providers, Release 5.0

6.3.2 Docker script store_data

The lifecycle script store_data is required if data exists in the container which should not be removed when it’s
replaced with a new container or if the app is uninstalled. It isn’t required if all the data is stored outside the container
for example in a database or a mapped volume. The script is executed inside the Docker container and it should copy
the relevant data to /var/lib/univention-appcenter/apps/APPID/data/. Afterwards, the data can
be restored by one of the restore_data* scripts when they are executed in the new container.

6.3.3 Docker script restore_data_before_setup

The lifecycle script restore_data_before_setup is executed inside the Docker container before the setup
script is run. Its purpose is to restore the data which has been stored by the store_data script.

6.3.4 Docker script setup

The lifecycle script setup is executed inside the Docker container. ‘t is used to make environment specific settings
to the new container or apply certain changes that require the container environment. If the script fails (exit code
!= 0) the upgrade is aborted.

The parameters given to the script are the appid, the app version, a filename for error logging and the username and
credentials for the Administrator user.

6.3.5 Docker script restore_data_after_setup

The lifecycle script restore_data_after_setup is executed inside the Docker container after the setup
script is run. Its purpose is to restore the data which has been stored by the store_data script in the old container.

6.3.6 Settings script run on Docker host

The settings script configure_host is executed on the Docker host after the restore_data_af-
ter_setup script is run. Its purpose is to make environment specific settings on the UCS host regarding the
app during the upgrade. The parameters are the app action upgrade, the app version, a filename for error logging
and the locale.

6.3.7 Settings script run in Docker container

The settings script configure is executed inside the Docker container after the configure_host script is run.
Its purpose is to make environment specific settings in the app container during the upgrade. The parameters are the
app action upgrade, the appid, the app version and a filename for error logging.

6.3.8 Join Script

Finally, the join script inst is called to end the upgrade. With an updated join script changes can be made to the
environment that require the necessary execution permissions or access to the UCS directory service. When a join
script should run during the upgrade, please keep in mind to increment the VERSION counter. For more information
on the join script in general see Join script (page 37).

6.3. Upgrade scripts 43

Univention App Center for App Providers, Release 5.0

6.4 App settings

The App settings allow the user to configure the app during its runtime. The App Provider Portal can be used to
define which settings are displayed to the user. The app can react accordingly to the changes.

If App settings are defined for an app, the user can reach these settings in the app configuration, see App settings
button (page 44)).

Fig. 6.4: App settings button

An example for an App settings dialog is in App settings example (page 45)).

The App settings can be defined on the tab Advanced in the section App settings in the App Provider Portal.

6.4.1 React on App settings

The settings are saved inside the Docker container in the file /etc/univention/base.conf in the format key:
value. After the settings are changed, two scripts are executed. First, the script configure_host. This script
is run on the Docker host. Second, the script configure is executed. It’s executed inside the Docker container.
In the App Provider Portal, the path of the script can be given (Configure scripts) or the script code can be uploaded
(Path to script inside the container (absolute)).

6.4.2 App settings configuration

The App settings are defined in the ini format. The definition can be done in the field Settings that can be used to
configure the app ini file format. One ini file can contain several settings.

The name of a setting is the name of the section in the ini file, for example

[myapp/mysetting]

It’s recommended to use the app ID as a prefix to prevent collisions.

The type of the attribute is defined with the keyword Type. The following types are supported:

String
A standard input field with no restrictions. This is used by default.

Int
A number field which is validated accordingly.

Bool
A checkbox. The value true or false is set.

44 Chapter 6. App configurations

Univention App Center for App Providers, Release 5.0

Fig. 6.5: App settings example

6.4. App settings 45

Univention App Center for App Providers, Release 5.0

List
A widget that lets the user choose from a predefined set of values.

Password
A password input.

Note: The content will be stored as clear text value inside the Docker container.

File
An upload widget. The content is stored directly in a file according to the definition of the setting.

PasswordFile
As a File, but shown as a password input.

Status
A read-only settings that is actually meant as a feedback channel for the user. This does not render a widget,
but instead just writes a text with whatever was written into this variable. Writing to it’s up to the App Provider
(e.g., by using the configure script).

The attribute Description is used to define the description of the setting. It’s shown next to the widget so that
the user knows what to do with this form. It can be localized by also defining Description[de] and so on.

The attribute Group can be used to group settings. All settings sharing one group will be put under that label. The
default group is Settings. It’s also possible to localize it for example Group[de].

The attribute Show can be used to define when the setting should be shown. By default the setting attribute is shown
when the app is up and running. It’s also possible to show the setting attribute during the installation. The following
values are possible Install, Upgrade, Remove and Settings. It’s possible to specify more than one value
which must be separated by comma.

The attribute ShowReadOnly can be used in the same way as Show. The difference is that the value is not
changeable.

The attribute InitialValue can be used during the installation. If no value for this attribute was given during
the installation, the defined value is set.

The attribute Required can be used to define if this setting has to be set or not.

The attribute Scope is used to specify if the value is set inside the Docker container (inside), on the Docker
host (outside) or on both (inside, outside). The default is inside. Values in the scope inside can
be referenced in the docker-compose.yml for multi container apps just like Univention Configuration Registry
Variables. For an example see Post processing of Docker Compose file (page 10).

The attributes Labels and Values are used if a type List is defined. The attribute Labels defines the values
shown to the user and the attribute Values defines the values which are stored. The lists are comma separated and
should have the same size. If a comma is necessary inside a label or value, it can be escaped with a \\.

The attribute Filename can be used to define the absolute path where the file should be stored. This attribute is
needed in case the types File or PasswordFile are used.

6.4.3 App settings examples

This is a minimal settings definition:

[myapp/mysetting]
Type = String
Description = This is the description of the setting
Description[de] = Das ist die Beschreibung der Einstellung

These are two more advanced settings

46 Chapter 6. App configurations

Univention App Center for App Providers, Release 5.0

[myapp/myfile]
Type = File
Filename = /opt/myapp/license
Description = License for the App
Description[de] = Lizenz der App
Show = Install, Settings
Group = License and List
Group[de] = Lizenz und Liste

[myapp/list]
Type = List
Description = List of values
Show = Install
ShowReadOnly = Settings
Values = value1, value2, value3
Labels = Label 1, Label 2, Label 3
InitialValue = value2
Scope = inside, outside
Group = License and List
Group[de] = Lizenz und Liste

The first of these two settings will upload a file to /opt/myapp/license inside the container. The second will
save myapp/list: value2 (or another value) inside the container and on the Docker host. Both settings will be shown
before the installation. On the App settings page, the list setting will be read-only.

6.5 Certificates

UCS provides a certificate infrastructure for secure communication protocols. See SSL certificate management25 in
the UCS manual.

Apps may need access to the UCS certificate infrastructure or need to be aware of changes to the certificates. The
Univention App Center provides a simple way to manage certificates inside an app. The script update-cer-
tificates is executed on the UCS host automatically during the installation and upgrade of apps (but can also be
executed manually) and provides apps a simple way to gain access to certificates and to react to changes to certificates.

update all apps
univention-app update-certificates

update app "my-app"
univention-app update-certificates my-app

What happens with update-certificates?

• The UCS root CA certificate is copied to /usr/local/share/ca-certificates/ucs.crt inside
the container.

• update-ca-certificates is executed in the Docker container, if it exists, to update the CA certificate list.

• The UCS root CA certificate is copied to /etc/univention/ssl/ucsCA/CAcert.pem inside the
container.

• The Docker host UCS certificate is copied to /etc/univention/ssl/
docker-host-certificate/{\cert.perm,private.key} and /etc/univention/
ssl/FQDN_DOCKER_HOST/{cert.perm,private.key}.

Every app can define a update_certificates script. In the app provider portal it can be added on the tab
Advanced in the section Certificates.

Example:
25 https://docs.software-univention.de/manual/5.0/en/domain-ldap/ssl.html#domain-ssl

6.5. Certificates 47

https://docs.software-univention.de/manual/5.0/en/domain-ldap/ssl.html#domain-ssl

Univention App Center for App Providers, Release 5.0

#!/bin/sh
cat the UCS root CA to the app's root CA chain
cat /etc/univention/ssl/ucsCA/CAcert.pem >> /opt/my-app/ca-bundle.crt
service my-app-daemon restart

The script has to be uploaded via the upload API (section App Provider Portal upload interface (page 20)). The script
should be written locally and then uploaded with the following command:

./univention-appcenter-control upload --username "$your_username" 5.0/myapp=1.0␣
→˓update_certificates

6.6 Mail integration

Univention Corporate Server (UCS) provides a complete mail stack with the Mailstack app in the App Center. It
includes Postfix asMTA for SMTP and Dovecot for IMAP. If the app relies on an existing mail infrastructure, it’s one
option to use the mail stack app and require its installation in the UCS domain. This can be configured for the app
in the App Provider portal on the Version tab in the section Required apps by adding the Mailserver app and setting
Installed in domain. With this configuration the App Center on the system administrator’s UCS system will
check, if theMailserver app is installed somewhere in the domain and asks the administrator to install it accordingly.

Next the app needs to be configured to use the UCS SMTP and IMAP servers. This is done in the Join Script, see
Join script (page 37). The following snippet gives an example what should be included in the Join Script:

...
eval "$(univention-config-registry shell)"
...
use the first IMAP server as smtp and imap server
mailserver="$(univention-ldapsearch -LLL '(univentionService=IMA)' cn |
sed -ne 's/^cn: "//p;T;q')"
if [-n "$mailserver"]; then

mailserver="$mailserver.$domainname"

for Docker Apps the helper script joinscript_run_in_container
can be used to run commands in the container
. /usr/share/univention-appcenter/joinscripthelper.sh
joinscript_run_in_container my-app-setup --config imap="$mailserver"
joinscript_run_in_container my-app-setup --config smtp="$mailserver"
joinscript_run_in_container my-app-setup --config sieve="$mailserver"

fi
...

The snipped searches the UCS LDAP directory for the host with the service IMAP and sets the FQDN of this host
as IMAP, SMTP and SIEVE server for the app. This is a good default and may not be correct for some setups.

The best practice mail settings when the UCS mail stack is used, are the following.

IMAP:

• TLS

• Port 143

• Authentication is possible for domain users with a primary mail address.

• The user’s uid or the primary mail address are both valid for authentication.

SMTP:

• TLS

• Port 587 (submission) for authentication

• Mechanism Login or Mechanism Plain

48 Chapter 6. App configurations

Univention App Center for App Providers, Release 5.0

6.6.1 Provide mail with Docker Apps

For the intended app it may be necessary to provide SMTP and IMAP with a custom setup for the app. To provide
SMTP and/or IMAP services in a Docker app, these services have to be stopped on the Docker host. This can be done
in the app’s preinst Docker script, see Script called before installation to verify that App may be installed (page 35).
Example:

#!/bin/sh

stop imap/smtp on docker host
systemctl stop postfix dovecot
ucr set postfix/autostart=no dovecot/autostart=no

To map SMTP and/or IMAP ports from the container to the host to be able to use the Docker host as IMAP/SMTP
server exclusive ports for the container have to be set to the relevant ports (e.g. 110, 143, 993, 995, 587, 25,
465, 4190 for POP3(S), IMAP(S), SMTP(S), submission and sieve). See Ports (page 8) on how to set an exclusive
port.

Firewall exceptions for these ports are create automatically.

Best practice is to at least map the IMAP data store to the Docker host to provide a separation of data and container
(important for migration to Docker and Docker image updates). See Persistent data with volumes (page 7).

6.6.2 Use local mail on Docker host

With a stopped Postfix on the Docker host, mail can no longer be delivered locally. If that is a problem, the following
setup can help.

Install the extremely simple MTA ssmtp and configure this MTA to use the localhost (our Docker container is
listening on localhost:25).

univention-install --yes ssmtp
add mailhub=localhost:25 in to /etc/ssmtp/ssmtp.conf

Now configure Postfix in the Docker container to deliver mails from the Docker host locally by adding the FQDN of
the Docker host to mydestination:

ucr set mail/postfix/mydestination="\$myhostname, localhost.\$mydomain, localhost,
→˓$DOCKER_HOST_NAME"

6.7 Subdomains / dedicated FQDN for an App

There may be reasons why an App needs to have its own FQDN within the UCS domain. Some Apps may not be
able to configure a web interface that integrates well into the default Apache sites of UCS, seeWeb interface (page 7).

To avoid naming collisions, the App’s FQDN should reference the Docker Host’s FQDN, e.g, myapp.
ucs-primary.domain.tld. UCS can do the following to allow this scenario to work as smooth as possible:

• Add a dedicated FQDN for the App and make it known to the internal DNS. That means that the new FQDN
is an alias for the actual FQDN of the Docker host.

• Generate a certificate for this FQDN. Technically, a wildcard certificate is created.

• Generate a virtual host for Apache with that new FQDN. Thus, requests to that FQDN will be handled by the
VHost. The skeleton configuration can be easily extended by writing a configuration file that is then included
in the VHost entry.

For this to work, this snippet can be used in the join script (Join script (page 37)):

6.7. Subdomains / dedicated FQDN for an App 49

Univention App Center for App Providers, Release 5.0

univention-add-vhost \
"myapp.$(ucr get hostname).$(ucr get domainname)" 443 \
--conffile /var/lib/univention-appcenter/apps/myapp/data/apache.conf \
"$@" # "$@" is used to pass credentials

write the apache.conf, maybe by using the App Settings
systemctl reload apache2
nscd -i hosts # only needed if the new fqdn should be used immediately by the␣
→˓system
systemctl reload bind9 # same here

This will create the following entry in /etc/apache2/sites-available/univention-vhosts.conf

Virtual Host for myapp.ucs-primary.domain.tld/443
<IfModule mod_ssl.c>
<VirtualHost *:443>

ServerName myapp.ucs-primary.domain.tld
IncludeOptional /var/lib/univention-appcenter/apps/myapp/data/apache.con[f]
SSLEngine on
SSLProxyEngine on
SSLProxyCheckPeerCN off
SSLProxyCheckPeerName off
SSLProxyCheckPeerExpire off

SSLCertificateFile /etc/univention/ssl/*.ucs-primary.domain.tld/cert.pem
SSLCertificateKeyFile /etc/univention/ssl/*.ucs-primary.domain.tld/private.key
SSLCACertificateFile /etc/univention/ssl/ucsCA/CAcert.pem

</VirtualHost>
</IfModule>

Note: Although this seems convenient for some Apps, this feature creates an internal name. It may still be in-
convenient for testers that run UCS in a virtual environment where their browser is not part of UCS’ DNS.

Warning: This method may not work in the “AD member mode”. There, a Windows Domaincontroller is the
leading system and provides the DNS. The DNS alias has to be added by the Admin manually there as our script
cannot add it for them.

6.8 Firewall

This section describes how the local Univention Firewall based on iptables is changed by apps and how it can be
customized. Docker containers have access to the Docker host. And the Docker containers can be made available
for external clients with Ports redirection settings, see Ports (page 8).

If MariaDB or PostgreSQL are used as database, those ports will be opened automatically for the Docker container
(section Database (page 8)).

Every app can provide additional custom rules to open required ports. This can be done in the join script (section
Join script (page 37)). In the example the port 6644 is opened for TCP and UDP:

$ univention-config-registry set \
"security/packetfilter/package/$APP/tcp/6644/all=ACCEPT" \
"security/packetfilter/package/$APP/tcp/6644/all/en=$APP" \
"security/packetfilter/package/$APP/udp/6644/all=ACCEPT" \
"security/packetfilter/package/$APP/udp/6644/all/en=$APP"

$ systemctl try-restart univention-firewall

50 Chapter 6. App configurations

Univention App Center for App Providers, Release 5.0

Please also add corresponding ucr unset commands in the unjoin script so that the firewall rules will be removed
when the app is removed from the system (section Unjoin script (page 41)).

6.8. Firewall 51

Univention App Center for App Providers, Release 5.0

52 Chapter 6. App configurations

CHAPTER

SEVEN

APP APPLIANCES

App Appliances are pre-defined images which consist of the App, the UCSmanagement system and the UCS runtime
environment. They are run as a virtual machine within a hypervisor and are currently provided as VMware, VMware
ESXi, VirtualBox and KVM images. By default the UCS branding is used, but it’s possible and recommended to use
a custom branding.

7.1 Create an app appliance

To create an appliance, select an app version that has already been published and activate the Create App appliance
checkbox on the Appliance tab. If the solution needs a minimum size of memory, please specify the needed mega
bytes.

7.1.1 Additional software

If the appliance should include additional apps, please specify them in the Additional software section.

7.1.2 Customize setup wizard in appliance

The appliance allows customization of the UCS setup wizard and controls which setup pages and setup fields should
be hidden. For simplicity towards the user, it’s recommended to hide the software page.

7.1.3 Customize app listing in App Center

The listing of apps in the App Center UMCmodule in the appliance can be customized to either whitelist or blacklist
certain apps. For example, if the solution is a groupware, other groupware solutions can be hidden from the overview
listing. System administrators can only install the whitelisted apps or are not allowed to install the black listed apps.

7.1.4 First steps information

The appliances are usually configured in such a way that the user can start using them right away. In some cases it
may be necessary to provide some information for the first steps. For example, the user needs to know that a user
object has to be created and activated for the app first. This could be briefly described in this section. The German
translation should be kept in mind and provided.

53

Univention App Center for App Providers, Release 5.0

7.1.5 Customize UMC favorite category

The appliance also allows to customize the UMC modules which should be pre-configured for the favorites section in
the UCS management system. The favorites section comes up first, after a UCS system administrator logs onto the
UCS management system. It’s recommended to have the modules Users, Groups and App Center listed here.

7.1.6 Appliance build

As soon as the settings are made, Save, click the Approve for release button and provide a custom message to let
the Univention team know that an appliance is ready to be build. This will create a ticket which helps to keep the
communication in one place.

7.1.7 Test and release

The appliance is automatically built in the Univention build infrastructure. After the build is finished, automatic tests
will be started. Build and testing will approximately need four hours.

After the automatic tests have finished successfully, the app provider is informed. A link to the appliance download is
sent and a few days are given for testing. If no veto is sent, the Appliance is usually published after the veto deadline.
After the release, the appliance will show up for download on the app page in the App Catalog. App Providers are
recommended to also place a link to the app detail page from their download page. The link is one criteria for the
recommended apps badge in the App Center overview and the App Catalog.

7.2 Custom branding

With a customized branding of an appliance the boot loader, the boot splash, the system setup wizard and the portal
page can be modified. Please look at the screenshots below and the explanations of the options that control the look.

7.2.1 Boot loader

The background color can be configured for the boot loader. Please define in the Primary color setting.

7.2.2 Boot splash

The boot splash can have a custom background and a logo. The logo is defined in Logo for the bootsplash during
system boot. Please provide a SVG file and mind the recommendations in Logos (page 23).

The background color is defined in CSS definition of the appliance background in bootsplash & welcome screen. For a
black background, simply define #000000. A gradient can for example be defined with linear-gradient(to
bottom, #345279 0%, #1d2c41 100%). For more information on how to use a gradient, see CSS
linear-gradient() function on w3schools26.

26 https://www.w3schools.com/csSref/func_linear-gradient.php

54 Chapter 7. App Appliances

https://www.w3schools.com/csSref/func_linear-gradient.php
https://www.w3schools.com/csSref/func_linear-gradient.php

Univention App Center for App Providers, Release 5.0

Fig. 7.1: Boot loader

7.2. Custom branding 55

Univention App Center for App Providers, Release 5.0

Fig. 7.2: Boot splash

56 Chapter 7. App Appliances

Univention App Center for App Providers, Release 5.0

7.2.3 System setup wizard

The system setup wizard allows several slots to be customized. In the Configuration section in the App Provider
Portal, the Appliance name (the word “appliance” is automatically appended) can be set. It controls the heading
in the system setup wizard. The Logo for the first page of the setup wizard shows up on the first page of the system
setup wizard.

In the Branding section, the logo on the top left can be changed with the Logo for header in setup wizard setting. The
Primary color controls the background color of the UMC header.

The Secondary color is used as color for smaller graphical elements throughout the setup wizard, see System setup
summary screen (page 58).

Fig. 7.3: System setup first screen

7.2.4 Welcome screen

The welcome screen is shown after the appliance setup has been finished and also every time the appliance is started.
It offers information on how the user can access the appliance. It uses settings like the Appliance name and the CSS
definition of the appliance background. The Logo for the welcome screen needs to be a SVG file that is slightly wider
than high and which has the fonts converted to paths. Please mind the recommendations in Logos (page 23).

Depending on the character of the welcome screen background (bright or dark), the Font color for welcome screen
should be either set to White or Black.

7.2. Custom branding 57

Univention App Center for App Providers, Release 5.0

Fig. 7.4: System setup summary screen

58 Chapter 7. App Appliances

Univention App Center for App Providers, Release 5.0

Fig. 7.5: Appliance welcome screen

7.2. Custom branding 59

Univention App Center for App Providers, Release 5.0

7.2.5 Portal page

The branding of the portal page is independent from the other sections. The Title for the UCS portal page in the
appliance can be defined and it can be configured if the font color shall be black or white. The Logo for the portal
page controls which logo shall be set in the first tile on the portal page. The background can either consist of a
background image or a background color or a background color gradient as described in Boot splash (page 54).

Fig. 7.6: Appliance portal page

60 Chapter 7. App Appliances

CHAPTER

EIGHT

COMMAND UNIVENTION-APP

univention-app is a program to manage apps from Univention App Center on the command line on a UCS
system.

This section describes a selection of the available commands. For a complete list of available commands, run uni-
vention-app without any arguments and univention-app <command> --help for details on a specific
command.

shell [-h] [-u USER] [-i] [-t] [-s SERVICE_NAME] app command

The univention-app shell (page 61) command allows to run commands within a Docker app.

For multi container apps, univention-app shell runs the command in the main container which is the
default behavior. The app metadata defines the app’s “main service”. For more information about referencing
containers, see Create a Multi Container App (page 9).

To run a command in the main service of the app:

Listing 8.1: Run a shell command inside the app’s main service

$ univention-app shell <app> <command>

To run a command in a specific service of the app, such as creating a backup of a MongoDB database:

Listing 8.2: Run a shell command inside the app’s main service

$ univention-app shell -s <service-name> <app> mongodump --out /data/backup

For descriptions of the outline options and arguments of univention-app shell (page 61), refer to the
console output of:

Listing 8.3: Show options and arguments of univention-app shell
(page 61)

$ univention-app shell --help

61

Univention App Center for App Providers, Release 5.0

62 Chapter 8. Command univention-app

INDEX

S
shell

univention-app command line option,
61

U
Univention Help

Univention Help 21843, 6
univention-app command line option

shell, 61

63

	Introduction
	What is Univention App Center?
	App Center infrastructure

	Get Started
	What does the app provider need?
	Software in a Docker image
	Account for App Provider Portal
	Where to get help?

	Create an app with a Docker image
	Docker image
	Supported UCS versions
	Logo and description
	Persistent data with volumes
	Web interface
	Ports
	Database
	Environment

	Create a Multi Container App
	Multi container setup
	Script execution reference
	Post processing of Docker Compose file
	Finish multi container setup

	App lifecycle
	Development
	Best practice for app development environment

	Testing
	Download UCS
	Initial UCS setup
	Test App Center
	Install the app
	Upgrade the app
	Test checklist
	Deactivate the Test App Center
	Automated testing for App Providers
	Debugging

	Two-way approval
	Release
	Updates
	Termination (end of life)
	App Provider Portal upload interface

	App presentation
	Logos
	Screenshots and videos
	Description
	Categories
	Contact
	License
	README for the administrator
	Translations
	Recommended Apps Badge

	Connection with Identity Management
	Provisioning
	Automatically via LDAP connection (Pull)
	Automatically via IDM notifications (Push)
	Setup in App configuration
	How the mechanism works
	What should the script cover?
	JSON example
	JSON example for ListenerUDMVersion 2
	JSON example for ListenerUDMVersion 1

	Authentication
	LDAP
	Kerberos

	User rights management

	App configurations
	Installation scripts
	Script called before installation to verify that App may be installed
	Docker script restore_data_before_setup
	Docker script setup
	Docker script restore_data_after_setup
	Settings script run on Docker host
	Settings script run in Docker container
	Join script
	Join script helper
	Join script functions
	Join script boilerplate

	Uninstall scripts
	Script called before uninstalling to verify that App may be removed
	Settings script run on Docker host
	Settings script run in Docker container
	Docker script store_data
	Unjoin script

	Upgrade scripts
	Script called before upgrade to verify that App may be upgraded
	Docker script store_data
	Docker script restore_data_before_setup
	Docker script setup
	Docker script restore_data_after_setup
	Settings script run on Docker host
	Settings script run in Docker container
	Join Script

	App settings
	React on App settings
	App settings configuration
	App settings examples

	Certificates
	Mail integration
	Provide mail with Docker Apps
	Use local mail on Docker host

	Subdomains / dedicated FQDN for an App
	Firewall

	App Appliances
	Create an app appliance
	Additional software
	Customize setup wizard in appliance
	Customize app listing in App Center
	First steps information
	Customize UMC favorite category
	Appliance build
	Test and release

	Custom branding
	Boot loader
	Boot splash
	System setup wizard
	Welcome screen
	Portal page

	Command univention-app
	Index

