@ univention

be open.

Univention Corporate Server 5.2

Architecture
Release 5.2-1

Univention GmbH

Apr 10, 2025

The source of this document is licensed under GNU Affero General Public License v3.0 only.

https://spdx.org/licenses/AGPL-3.0-only.html

CONTENTS:

1 Introduction

1.1 Audience e e e e e e e
1.2 Learnin@ ObJeCtiVES v v v v i e e e e e e e e e e e e e e e e e
1.3 Howtousethedocument o i i i i i e e e e e

2 Positioning in the IT world

2.1 Origin o e e e
2.2 Identity management L. e e e e e e e e e e e e e e e e e
2.3 Infrastructure management it e e e e e e e e e e e e e e e e e e e
2.4 Connectiontothe worldaround
3 Concepts
3.1 Domain CoNCePt . . . v v v v e
3.2 Replication CONCEPL . . . v v v v v v v e
33 Roleconcept e e e
3.4 PermiSSion CONCEPL . . . v v v v v v v et e
3.5 Certificate infrastructure e e e e
3.6 Univention app €COSYSIEIM . . . v v v v v i e e e e e e e e e e e e e e e e e e e

4 Product components

4.1 UCSportal e e
42 UCSmManagement SYSIeIM v v v v v v v e e e e e e e e e e e e e e e e e e
43 AppCenter e e e e e e e e
5 Services
5.1 Univention Configuration Registry (UCR)
5.2 Univention Directory Manager (UDM)
53 UDMHTTPREST APL e e e e e e
54 UMC - Univention Management Console,
55 UCSportal SBIVICE . . . v v v v it e e e e e e e e e e e e e e e e
5.6 App CenterServiCe v v v it e

6 Appendix

6.1 Third party software e e e e e e e e e e e e e e e e
6.2 Architecture nOtation v i e e e e e e e e e e e e e e e e
Bibliography
Index

21
22
22
26

29
29
35
39
45
53
57

69
69
70

79

81

CHAPTER
ONE

INTRODUCTION

Welcome to the architecture documentation of UCS (Univention Corporate Server).

This document doesn’t cover installation, the usage of UCS or parts of the product. For instructions about how to
install and use UCS, see Univention Corporate Server - Manual for users and administrators [1].

The document is released step by step after each part is finished. The beginning is at the first, high level.

Your feedback is welcome and highly appreciated. If you have comments, suggestions, or criticism, please send your
feedback' for document improvement.

For feedback on single sections, use the feedback link next to the section title.

1.1 Audience

This document is for consultants, administrators, solution architects, software developers and system engineers. It
describes the technical architecture of UCS on three different detail levels.

The first, high level, positions UCS in the known IT world (page 3) and describes the concepts (page 7). This view helps
readers to understand the principles of UCS. Chapters 2 and 3 assume you are familiar with information technology
in general and that you have heard of computer network building blocks and software.

The second, medium level, is for administrators and solution architects. It covers the product components and the
numerous services UCS offers to IT infrastructures. You read about the user facing product components and what
services UCS runs. You learn what open source software contributes to the capability of UCS and how it interoperates
together.

Software developers and system engineers get an overview of the technical parts.
A general understanding of Linux operating systems for servers and I'T administration are beneficial for understanding.

For notation, the document uses the C4 model notation and the ArchiMate notation. For more information, refer to
Architecture notation (page 70).

The third, low level is about the libraries, internal systems and storage. It describes the pieces a software developer
and system engineer needs to know to contribute to UCS. General knowledge of software architecture and software
engineering are helpful at this level.

! https://www.univention.com/feedback/?architecture=generic

https://www.univention.com/feedback/?architecture=generic
https://www.univention.com/feedback/?architecture=generic

Univention Corporate Server 5.2 Architecture, Release 5.2-1

1.2 Learning objectives

After reading this document you have a broad understanding of the UCS architecture. It equips consultants, admin-
istrators, and solution architects to better plan their IT environment with UCS. It enables software developers and
system engineers to get familiar with software development for UCS.

1.3 How to use the document

This document contains numerous figures. As far as possible, they use SVG format. If you need a larger view of the
image, open it in a dedicated tab in your web browser:

To open the figure in the same tab:

1. Click the figure.
Alternatively, to open the figure in a new tab:

1. Right click the figure.

2. Click Open Image in New Tab from the context menu.
To open the figure in a new tab:

1. Right click the figure.

2. Click Open Image in New Tab from the context menu.

2 Chapter 1. Introduction

CHAPTER
TWO

POSITIONING IN THE IT WORLD

To comprehend the architecture of UCS, it’s important to understand the origin and where it locates in the world of
IT (information technology).

2.1 Origin

UCS is a Linux distribution derived from Debian GNU/Linux®. Among others, it benefits from the strong software
package manager, the high quality maintenance and the long-term stability as operating system for servers. Over the
years, Debian has been and is a solid basis for UCS.

UCS is part of the open source family and has strong relations to important projects like for example Samba® and
OpenLDAP*,

2.1.1 History

Univention started UCS in 2002 as a collection of scripts that turn a Debian system into a Linux server that offers
Windows domain capability. The goal was to offer companies and organizations a standardized Linux server as
alternative to Microsoft Windows Server that implements Microsoft’s domain concept. Over the time it developed to
an enterprise Linux distribution with maintenance cycles that better suited the needs of organizations.

2.1.2 Packages

On UCS software is managed in software packages. The packages on UCS use the deb file format. For more infor-
mation on the deb file format, see Wikipedia about deb (file format)® and Basics of the Debian package management
system in the Debian FAQS.

UCS—Iike Debian—uses a package manager, which is a collection of software tools, to automate the process of
installation, upgrade, configuration, and removal of computer programs. Packages organize such computer programs
on UCS. In UCS the package manager is APT (advanced package tool). For more information about APT, see the

Debian package management chapter in the Debian reference’.

Univention distributes most packages from Debian GNU/Linux for the amd64 and all architecture without changes for
UCS. This includes the GNU/Linux kernel and over 98% of unchanged packages from the Debian project. Univention
uses the default services from the Debian distribution and delivers custom configurations for UCS.

In the following circumstances, Univention builds and maintains derived packages:
* A later software version of a package is needed for UCS than Debian offers.

* Bug fixes or backports of a specific software are needed for a package.

2 https://en.wikipedia.org/wiki/Debian

3 https://en.wikipedia.org/wiki/Samba_(software)

4 https://en.wikipedia.org/wiki/OpenLDAP

3 https://en.wikipedia.org/wiki/Deb_(file_format)

6 https://www.debian.org/doc/manuals/debian-faq/pkg-basics.en.html
7 https://www.debian.org/doc/manuals/debian-reference/ch02.en.html

https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Samba_(software)
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/Deb_(file_format)
https://www.debian.org/doc/manuals/debian-faq/pkg-basics.en.html
https://www.debian.org/doc/manuals/debian-faq/pkg-basics.en.html
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Additionally, Univention develops own software responsible for UCS capability that is distributed as Debian package.

Nevertheless, UCS doesn’t include packages from the Debian games section, because it would require a content rating
for video games. Univention doesn’t see added value in the distribution of video games with UCS for the product
audience.

2.2 |ldentity management

The most important functional pillar of UCS is identity management.

Simplified, an IT environment consists of services and users. Services offer capability. Users use capability. Services
can also behave as users when they use the capability of another service. Users identify themselves against services
to proof that they’re eligible to use the capability.

The identification is done with user accounts to represent users. User accounts typically have properties like for
example username, password, and email address. User accounts that digitally represent a person additionally have
for example first name and last name.

Imagine a small IT environment with 20 persons and five systems. Without a central identity management, an ad-
ministrator would have to maintain 20 user accounts on each of the five systems. The management effort sums up to
100 items. The number of items to manage is a linear function. The function’s slope increases with the number of
systems that need to know user accounts.

With a central identity management, one service holds the information about the user accounts. All other services have
access to that information. An administrator only has to maintain the user accounts on one system. The maintenance
effort for the user accounts doesn’t anymore multiply with the number of systems that need to know the user accounts.
The slope of this linear function is less steep.

Central identity management reduces the maintenance effort of user accounts for administrators.

UCS is a product for central identity management for user accounts, their permissions and the collection of user
accounts in groups.

2.3 Infrastructure management

The second important functional pillar of UCS is IT infrastructure management.

IT infrastructure is a set of IT components like computer and networking hardware, various software and network
components. It’s the foundation of an organization’s technology system and drives the organization’s success.

UCS provides important infrastructure services to create an I'T network infrastructure and connect I'T components. For
example UCS assigns addresses to computers and other network components through DHCP® and resolves hostnames
through DNS?, and much more. Administrators manage various IT components in their IT environment, like different
kind of hosts, clients, and printers.

2.4 Connection to the world around

As an operating system that offers many services, UCS interacts with its surrounding peers. Users access the capability
of UCS through the following ways:

Web
Persons like administrators and also end users use HTTPS to access the web based UCS management system.
In many cases other web-based services provided by other software products delivered through apps are also
available through HTTPS.

8 https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
9 https://en.wikipedia.org/wiki/Domain_Name_System

4 Chapter 2. Positioning in the IT world

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Domain_Name_System

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Console
Persons with more technical background and the appropriate permissions can access UCS through a console,
either on a local terminal or through a remote secure shell (SSH)'? session.

Service protocols
As soon as users use any of the services that UCS offers, they access UCS through one of the service protocols.
For example, a user’s client requests and IP address through DHCP and later asks for the IP address of the
print server through DNS.

As a central system offering identity and infrastructure management UCS has to use and offer numerous ways of
connections.

10 https://en.wikipedia.org/wiki/Secure_Shell

2.4. Connection to the world around 5

https://en.wikipedia.org/wiki/Secure_Shell

Univention Corporate Server 5.2 Architecture, Release 5.2-1

6 Chapter 2. Positioning in the IT world

CHAPTER
THREE

CONCEPTS

UCS unites numerous concepts to support administrators with their identity and infrastructure management tasks.
The following concepts explain how UCS uses them:
1. Domain concept (page 7)
. Replication concept (page 8)

. Role concept (page 10)

2

3

4. Permission concept (page 11)

5. Certificate infrastructure (page 13)
6

. Univention app ecosystem (page 13)

3.1 Domain concept

The domain concept is the most important concept in an IT environment operated with UCS. The domain concept
offers a way to centrally manage an IT environment where administrators can map their organization’s structure to
the IT environment.

Simplified, an IT environment consists of computer systems and users. Systems offer services that provide capability.
Users use capability. A domain is a single trust context that groups one or more entities like computer systems or
users. The domain offers special services called domain services to systems and users. Fig. 3.1 shows the relationship
between the actors systems, services, and users.

A trust context uses roles, permissions, and cryptography certificates to ensure secure communication between the
domain participants. Domain services and domain participants can rely on the shared trust context when secure and
mutually authenticated communication is required.

One key participant in a domain is the identity, a digital representation for persons. An identity represents an account
for a user in a domain. It holds information like for example username and password for login. Furthermore, it
contains various data associated to the user like for example group memberships, permissions, and different attributes
used by services.

User accounts are organized in groups and users can belong to multiple groups. User groups help administrators
to apply permissions for domain services to users and are essential to the organization’s structure to the domain
administration.

All the objects in a domain need to be managed and organized. In a domain a central database called domain database
registers all objects, like for example user identities, computer systems, printers, and file shares. See Fig. 3.2 for a
graphical interpretation. The database stores the objects in a hierarchical tree-like structure. One or more central
systems store the central database and are called domain node.

UCS is a system that operates the central database for the domain. UCS is the central platform that implements the
domain concept and helps administrators to manage and organize the IT environment for their organization. For the
distinct roles of UCS systems in a domain, see the role concept (page 10).

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Service A
[Software System]

Provides functionality

Service B
N [Software System]

Provides functionality

Service ...
> [Software System]

Provides functionality

I
1UCS Domain
| [Domain]

Fig. 3.1: Relationship of the systems, services and users in a domain

3.2 Replication concept

The replication concept ensures the availability and consistency of the central domain database and contributes to
its scalability. It’s necessary to keep the domain data synchronized across all domain nodes because more than one
domain node can have a copy of the central database. For example, domain nodes can get disconnected or need to
shutdown for maintenance.

UCS implements the replication concept. The first domain node in the domain has the following tasks:
* It writes domain object data to the database.
« It monitors changes to the database.
* It makes changes available to other domain nodes.

The other domain nodes have a read-only copy of the domain database.

The replication synchronizes a lot of data types. The following list names a few that domain nodes replicate and can’t
cover all items:

¢ User identities

¢ Groups

* Policies

¢ Permissions

¢ Information about systems

¢ Information about printers

¢ Information about file shares

The domain replication in UCS also ensures that the affected UCS systems run follow-up actions after the changes
are replicated. The actions can contain, for example, updates to configurations of services and making the changes
available to the users.

8 Chapter 3. Concepts

Univention Corporate Server 5.2 Architecture, Release 5.2-1

User Group A
[Container]

User Group B
[Container]

e —

| Identities
| [Container]

Domain objects
[Container]

Fig. 3.2: Central domain database with different objects

3.2. Replication concept 9

Univention Corporate Server 5.2 Architecture, Release 5.2-1

3.3 Role concept

UCS uses a role concept to assign different roles that include certain tasks to the systems in a domain.

3.3.1 Primary Directory Node

A UCS system with the role Primary Directory Node is the first, the primary, domain node in a domain. It’s the only
system with write permissions to the central domain database and performs all write requests regarding data for the
domain database. Only one system in the domain can have the Primary Directory Node role.

3.3.2 Backup Directory Node

A UCS system with the role Backup Directory Node has a complete read-only copy of the domain database, including
security certificates. More than one UCS system can have the Backup Directory Node role. In case the Primary
Directory Node is unavailable, recovery is impossible or needs too much time, an administrator can promote a UCS
system in the role Backup Directory Node to a Primary Directory Node. The promotion can’t be reversed.

See also:

Converting a Backup Directory Node backup to the new Primary Directory Node'!
for details on the promotion process of a UCS Backup Directory Node in Univention Corporate Server - Manual
for users and administrators [1].

3.3.3 Replica Directory Node

UCS systems with the role Replica Directory Node have a complete read-only copy of the domain database. Admin-
istrators can’t promote Replicate Directory Nodes to the Primary Directory Node role or any other role unlike the
Backup Directory Node.

A Replica Directory Node optionally allows selective replication, a form of data synchronization that replicates only
a subset of the domain database. Selective replication in UCS helps with data minimization, domain protection and
permission enforcement.

For example, imagine an organization with office locations in cities like Berlin and Bremen. Each location has a
Replica Directory Node as domain node. The Replica Directory Nodes only replicate domain objects like users,
groups, and printers that are relevant for their respective location. They don’t store objects assigned to other locations.

Replica Directory Nodes are ideally suited as dedicated systems for load intensive services with permanent read
operations to the domain database because the read operations run locally instead of across the computer network.

3.3.4 Managed Node

UCS systems with the role Managed Node don’t have any copy of the domain database. Services on Managed Nodes
read domain information over the network from either the Primary Directory Node or from one of the Backup
Directory Nodes.

1T https://docs.software-univention.de/manual/5.2/en/domain-ldap/backup2master.html#domain-backup2master

10 Chapter 3. Concepts

https://docs.software-univention.de/manual/5.2/en/domain-ldap/backup2master.html#domain-backup2master

Univention Corporate Server 5.2 Architecture, Release 5.2-1

3.3.5 Clients

Clients are systems in the domain’s trust context. They don’t have a special role regarding domain services as the
other roles described before. In most cases they consume services offered by the domain or other systems.

UCS offers dedicated client roles for desktop systems like Ubuntu, other Linux desktops and macOS. UCS manages
IP addresses and DNS entries for systems like network printers and routers with the IP client role.

For Microsoft Windows related systems, UCS offers the roles Domain Trust Account, Windows Domaincontroller and
Windows Workstation / Server.

See also:

UCS system roles™e 1. 12

For more information about the differences of these roles in Univention Corporate Server - Manual for users
and administrators [1]

3.4 Permission concept

The permission concept in UCS specifies who can read and write domain data. Permissions apply to objects in the
domain database like users and systems alike. Policies assign custom permissions to objects. UCS applies default
permissions for systems and predefined users and groups.

3.4.1 System roles

UCS system roles imply certain permissions on domain data. Only the Primary Directory Node can write data to
the domain database. All other system roles have read-only access. Nevertheless, other systems or users have write
permissions for certain operations affecting themselves and they run them on the Primary Directory Node.

For example, when a UCS system joins the domain or an administrator installs an app, the events trigger write
operations on the Primary Directory Node.

3.4.2 Administrator and root

Some user accounts also have implicit permissions on domain data and systems. A UCS system knows two adminis-
trative user accounts: Administrator and root.

Administrator
The user account Administrator is the first domain user and has all domain permissions. The Administrator user
account has permission to join systems to the domain and can work with all modules in the UCS management
system. The account can only be defined once in the domain and must never be renamed.

The Administrator account is only defined once per domain during the installation of the Primary Directory
Node. The account password is set during installation.

Think of Administrator as the primary administrative account for the UCS domain.

root
The user account root is the superuser on the local UCS system and has the user ID of 0. It has all permissions
and is equivalent to the root account known from other GNU/Linux systems.

The root account is defined and the password is set during installation of every UCS system. The account
is only for the local UCS system. On other UCS systems administrators should—of course—define different
passwords for each root account.

Think of root as the primary administrative account for the local UCS system.

The root account has no permissions and is no valid account in the domain context. The account root must not
be created as domain account.

12 https://docs.software-univention.de/manual/5.2/en/domain-1dap/system-roles.html#system-roles

3.4. Permission concept 11

https://docs.software-univention.de/manual/5.2/en/domain-ldap/system-roles.html#system-roles

Univention Corporate Server 5.2 Architecture, Release 5.2-1

3.4.3 Domain users and admins

To simplify the assignment of certain user permissions, UCS has two default user groups in the domain that differ
fundamentally: Domain Users and Domain Admins.

Domain Users
UCS assigns every user to the user group Domain Users per default. The group identifies the user account as
belonging to a person. The user account only has a minimal set of permissions in the domain.

For example, user accounts in the group can read the domain database, but can’t view password hashes. Ad-
ditional apps in the domain such as UCS@school or Fetchmail can alter read and write permissions for
users and systems. User accounts in the Domain Users group also can’t sign in to UCS systems for a remote
shell by default. The UCS management system yields no modules for them either.

Domain Admins
UCS creates one user account called Administrator during the installation of the first UCS system (Primary Di-
rectory Node) in a domain. It’s the first user account and has all permissions for the domain. The Administrator
user account is member of the Domain Admins group.

Users in Domain Admins group have all domain permissions just like the Administrator account. To join a
UCS system to the domain, administrators need a user account that’s member in the groups Domain Admins
and DC Backup Hosts.

See also:

Subsequent domain joins with univention-join"¢ 12 13

For more information about subsequent domain joins in [1]

3.4.4 Machine account

All systems part of the domain are actors in a domain like users. Each system has its own account in the domain
database. The account is called machine account. Depending on the type of system they have different permission
sets.

UCS systems can read data from the domain database with their machine account. Every machine account has
assigned the following default permissions in the UCS domain:

¢ The UCS system can read all object information and password hashes for accounts from the domain database.
Apps like UCS@school and Fetchmail limit the read permissions.

* The UCS system can write only information to the domain database that’s associated with its account, for
example the version of the installed UCS or other apps.

3.4.5 Policies

In addition to the permissions defined for system roles and predefined groups, UCS offers policies for more
fine-grained control on administrative settings.

Policies are administrative settings to help administrators with infrastructure management that can be assigned to
objects in the domain database. Policies use the inheritance principle as it’s known from object oriented software
programming. Inheritance allows to set policies to one object in the structured domain database. The policy then
applies to all objects that are organized in the structure below.

13 https://docs.software-univention.de/manual/5.2/en/domain-1dap/domain- join.html#domain-1dap-subsequent-domain- joins-with-univention- join

12 Chapter 3. Concepts

https://docs.software-univention.de/manual/5.2/en/domain-ldap/domain-join.html#domain-ldap-subsequent-domain-joins-with-univention-join

Univention Corporate Server 5.2 Architecture, Release 5.2-1

3.5 Certificate infrastructure

The certificate infrastructure in a domain operated with UCS ensures the trust context between all participants. The
first domain node creates its own CA (certificate authority) for the domain. For more information, see the Wikipedia
article Certificate authority'*.

UCS uses TLS (Transport Layer Security). The UCS Primary Directory Node creates the CA on behalf of the domain
during its installation and signs certificates for other systems that join the domain. All certificates have an expiration
date. Backup Directory Nodes in the domain repeatedly pull all certificates from the Primary Domain Controller to
allow administrators to promote one of them to a Primary Directory Node any time, if needed.

Services in the UCS domain also use the certificates created by UCS. Administrators can configure alternative cer-
tificates for end-user or internet facing services with certificates issued by third parties, for example Let’s Encrypt!”.

The domain systems use the certificates for secure communication between each other over the computer network,
for example for domain database replication and the web interface of the UCS management system. Communication
clients need to know the public key of the domain’s CA to validate the public key of the certificate.

3.6 Univention app ecosystem

Univention App Center is one of the most important parts of UCS. This section describes the Univention app ecosys-
tem, where UCS is just one part. The Univention app ecosystem consists of actors, an infrastructure, and artifacts.

This section provides information about the following aspects around the App Center:
o App Center purpose (page 14) about the why of the App Center for administrators and app providers.
* App ecosystem actors (page 15) in the context of the App Center ecosystem.
» App artifacts (page 16) for an overview of the content in the App repository.

* Univention app infrastructure (page 19) for the App Center.

Hint: For architecture notation, this part of the document uses ArchiMate® 3.2, a visual language with a set of
default iconography for describing, analyzing, and communicating many concerns of enterprise architectures. For
more information about how the document uses the notation, refer to ArchiMate (page 70).

Continue reading

App Center (page 26)
for the description of the App Center component in UCS.

See also:

App Center service (page 57)
for the architecture of the App Center on UCS

14 hitps://en.wikipedia.org/wiki/Certificate_authority
15 https://letsencrypt.org

3.5. Certificate infrastructure 13

https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Certificate_authority
https://letsencrypt.org

Univention Corporate Server 5.2 Architecture, Release 5.2-1

3.6.1 App Center purpose

Depending on the direction you look at the App Center, it has different purposes and provides different benefits.
First, the App Center provides value to administrators in terms of software management:

* Maintained enterprise software integrated with UCS identity management. The existing integration reduces
the effort for customers to maintain such an integration.

* Software lifecycle management with simplified installation and updating of software applications in a server
infrastructure.

¢ Reliable delivery infrastructure to serve the software lifecycle management.

Fig. 3.3 shows the purposes of the App Center for customers and app providers.

—

Unlventlon App CJ Unlventlon App CJ
infrastructure Center

)

Univention il
g Corporate Server o g

....................... App

Fig. 3.3: Purpose of the App Center

Second, because the App Center is part of UCS, app providers benefit from a good customer base and an enterprise
platform with integrated identity management. With integrated identity management at their fingertips, app providers
don’t have to worry about identity management on their own. They can rely on the offered interfaces such as LDAP,
SAML, and OpenlD Connect.

14 Chapter 3. Concepts

Univention Corporate Server 5.2 Architecture, Release 5.2-1

3.6.2 App ecosystem

On the one hand, the App Center is a user-facing product component in UCS. The App Center service (page 57)
covers the architecture and technology in more detail. On the other hand, the App Center is also an ecosystem with
services, actors, artifacts, and infrastructure.

This section provides an overview of the ecosystem.
App ecosystem actors

Fig. 3.4 shows the actors involved in the Univention App Center ecosystem. For the sake of brevity, the figure shows
a subset of the responsibilities.

Univention 2
App infrastructure 0 Univention £l
° maintainer Corporate Server
Univention App O App provider support (N Univention App O
provider portal Center
service
App developer @ Administrator
App provider % User @
App vendor £ App maintainer % Customer £

Fig. 3.4: Actors in the App Center ecosystem

3.6. Univention app ecosystem 15

Univention Corporate Server 5.2 Architecture, Release 5.2-1

App infrastructure maintainer

Univention fulfills the responsibility of the App infrastructure maintainer and as such is responsible for Univention
App Center. For example, Univention operates the infrastructure so that administrators can install software through
the App Center.

The App infrastructure maintainer also fulfills the responsibilities to operate the Univention App provider portal service
and to provide App provider support. Both serve the App developer during on-boarding and app maintenance.

App provider

The next actor in the App Center ecosystem is the App provider in the following specializations:

App maintainer
The App maintainer doesn’t own the software, but maintains the app with the software in the App Center.

The App Center also contains open source apps. Organizations that act as App maintainer don’t own the open
source software. They invest their knowledge of UCS and the software in an app, its integration with UCS,
and the maintenance of the app for the benefit of customers and to promote open source software.

App vendor
The App vendor owns the software. Organizations that own software and maintain their own app in Univention
App Center act in both ways, as App vendor and App maintainer at the same time.

App developer
The role App developer is the primary role that interacts with the Univention App provider portal service and
uses the App provider support.

Customer

The third actor is the customer in the role of the user and especially the Administrator. They use Univention App
Center with the associated services and apps to cover their software needs for their business.

App artifacts

The artifacts in the App Center are apps. At the technology level an App Center app consists of the parts shown in
Fig. 3.5.

App artifact
Software App integration App metadata
application for app

Fig. 3.5: Parts of an app

Software application for app
Software application for app is the software itself, the binary artifact as provided by the vendor.

App integration
App integration includes scripts and software tailored to the integration needs of the software application and
UCS. They take care of the proper setup so that the app is ideally ready to use after installation. For example,
the integration may consist of :

* Setup for single sign-on configuration between the software application and UCS.

16 Chapter 3. Concepts

Univention Corporate Server 5.2 Architecture, Release 5.2-1

 Configuration to set up the web server.
* Script to populate a database with the database schema and required data.
* Environment setup for configuring the software application.

App metadata
App metadata is the content responsible for properly presenting the app to the user in the App Center. It
includes name, description, logo, and contact information for the app provider.

The App Center recognizes the Software application for app in the form in which the vendor distributes the binary
artifact, as shown in Fig. 3.6.

Software
application for app

[]

Package Docker based
based app app

Fig. 3.6: Kinds of software distribution for the App Center

Package based app
Package based app refers to software distributed using Debian packages (page 3). Apps that extend the core
capabilities of UCS use Debian packages for software distribution. The App Center installs the packages from
dedicated repositories per app and handles the repository configuration.

Docker based app
Docker based app refers to software distributed through Docker images, a data format for containerized soft-
ware. Docker based apps decouple the software runtime from the underlying UCS operating system and reduce
the complexity of app maintenance for app providers.

Important: The App Center prefers Docker based apps over package based apps.

Finally, a Docker based app can be either a Single container app or a Multi container app, as shown in Fig. 3.7.

Docker based
app

[1

Single Multi
container app container app

Fig. 3.7: Kinds of Docker apps

Single container app
Individual single container apps consist of a Docker image. UCS uses the Docker engine to run them.

Multi container app

Multi container apps, on the other hand, consist of more than one Docker image. UCS uses Docker compose'®

16 https://docs.docker.com/compose/

3.6. Univention app ecosystem 17

https://docs.docker.com/compose/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

and the Docker engine to run them. App providers that offer their app as multi container app often provide the
required parts as micro services for better decoupling and dependency control. They also typically offer this
type of deployment anyway, independent of the App Center.

Fig. 3.8 shows the overall model, its parts and what an app consists of. On the application level the App Center
differentiates an App into Package based app and Docker based app and handles both.

Fig. 3.8: Apps as content in the App Center ecosystem

18 Chapter 3. Concepts

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Univention app infrastructure

The App Center requires a dedicated infrastructure consisting of several elements to function properly. Fig. 3.9 shows
the infrastructure, and the description of each element follows.

App provider 2 App developer &Y Software developer @

—D

Univention App o
provider portal
service
ZAN

User @ Administrator @

Customer £

Fig. 3.9: App Center infrastructure model

App developer
An App developer is a software developer who is responsible for creating and maintaining an app. The App
developer belongs to the App provider (page 16).

Univention App provider portal service
The Univention App provider portal Service is the entry point for app developers who create and maintain an
app in the App Center. App developers use the App provider portal that handles authentication and access
rights to the app definitions for app developers. And, it uploads the app software to the App repository.

3.6. Univention app ecosystem 19

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Technically, the App Provider portal is a UMC module (page 52) running on a dedicated UCS system to manage
the App repository.

App repository
The App repository is the storage location for the app artifacts. UCS systems connect to the App repository to
load the app metadata for presentation and to download the app for installation on a UCS system.

The App repository consists of the following parts:

* Production App repository is the location where all UCS systems download the apps. It contains the
publicly available apps.

* App Docker registry is the location for the Docker images of Docker based apps.

o Test App repository is the location for apps under development. Only app developers use it during app
development. After an app release completes, the app appears in the Production App repository.

App Catalog
The App Catalog is part of the Univention website and provides an overview of the available apps and their
descriptions. It’s a representation of the app metadata for user information purposes. The App Catalog loads
the data from the App repository.

App Center
In the context of Fig. 3.9, the term App Center of the ArchiMate application component refers to everything
on a local UCS system that makes up the App Center. The App Center Service loads the app information from
the App repository.

For the architecture of the App Center, refer to App Center service (page 57).

Administrator
The Administrator is the primary User role that interacts with the App Center Service on a UCS system. The
Administrator has the user permissions to install, update, and remove apps on a UCS system.

See also:

Univention App Center¢20: 17

for more information for administrators about how to use the App Center in Univention Corporate Server -
Manual for users and administrators [1].

Univention App Center for App Providers'®
for more information for app developers about how to develop apps for Univention App Center in Univention
App Center for App Providers [2]

App Catalog'’ on the Univention website
for an overview about available apps in the App Center.

17 https://docs.sof tware-univention.de/manual/5.2/en/sof tware/app-center.html#software-appcenter
18 https://docs.software-univention.de/app-center/5.2/en/index.html
19 https://www.univention.com/products/app-catalog/

20 Chapter 3. Concepts

https://docs.software-univention.de/manual/5.2/en/software/app-center.html#software-appcenter
https://docs.software-univention.de/app-center/5.2/en/index.html
https://www.univention.com/products/app-catalog/

CHAPTER
FOUR

PRODUCT COMPONENTS

In this part of the document, you learn about the second, medium, and detail level of the architecture of UCS. You
learn about UCS product components that you face directly when you use UCS. The product components typically
act as entry points for your tasks.

The product components descriptions are intended for administrators and solution architects. For software developers
and system engineers, it provides the context for the architectural details of UCS. Make sure you are familiar with
the Concepts (page 7) behind UCS.

Hint: For architecture notation, this part of the document uses ArchiMate® 3.2, a visual language with a set of
default iconography for describing, analyzing, and communicating many concerns of enterprise architectures. For
more information about how the document uses the notation, refer to ArchiMate (page 70).

The following product components from Fig. 4.1 introduce themselves in the order you most likely encounter them
when you work with UCS:

1. UCS portal (page 22)
2. UCS management system (page 22)
3. App Center (page 26)

User @

Fig. 4.1: User facing product components of UCS

Hint: The section is work in progress. Later updates of the document explain the concepts Command line and File
and print. For the sake of completeness Fig. 4.1 already shows them.

21

Univention Corporate Server 5.2 Architecture, Release 5.2-1

4.1 UCS portal

The UCS portal is the central entry point to UCS and home page for the work place for domain users and adminis-
trators. The web page shows tiles with icons, text, and web links to various services and applications of the domain
and external resources.

Every UCS system can have a portal page, regardless of its system role. A domain can have multiple portal configu-
rations with different content. The portal configuration controls the following aspects:

* Which portal shows up on which UCS system in the domain?
¢ Which user groups see which tile on which UCS system?

Organizations can configure multiple portals. They can brand and customize them individually to specific user groups.

Continue reading

UCS portal service (page 53)
for architecture details about the UCS portal service

See also:

UCS portal page2ee 2220

for instructions about how to configure and customize the UCS portal page in Univention Corporate Server -
Manual for users and administrators [1]

4.1.1 Benefits

For the portal as primary entry point to a UCS domain, users like administrators or end users only need to remember
or bookmark one web address. After login with their web browser, users see their personal portal. Some tiles only
show up after login.

With single sign-on, users provide their credentials onetime per session and can use services and apps without addi-
tional authentication.

4.1.2 Single sign-on for the UCS portal

To use single sign-on with a service, the service needs to support and integrate single sign-on in the UCS domain.
UCS supports the standards SAML and OpenID Connect.

4.2 UCS management system

The UCS management system is the central administration interface for users with administrative tasks to operate a
UCS domain and maintain the UCS systems. It provides different interfaces, for example for web browsers, command
line and programming, although the term UCS management system generally refers to the web interface. Adminis-
trators usually open the management system in their web browser through the UCS portal (page 22) after they sign
in.

The UCS management system provides for the following purposes:

1. Intuitive, easy to use, and central web application for all administrative tasks around identity and IT infrastruc-
ture management

2. Low entrance barrier for system administrators

3. Aggregation and representation of data stored in the domain database

20 https://docs.sof tware-univention.de/manual/5.2/en/central- management-umc/portal. html#central- portal

22 Chapter 4. Product components

https://docs.software-univention.de/manual/5.2/en/central-management-umc/portal.html#central-portal

Univention Corporate Server 5.2 Architecture, Release 5.2-1

4. Management of UCS systems through a web based interface

It consists of the following parts as shown in Fig. 4.2:

[UCS Management system C}

[Domain management D] [System management O Configuration management D}

T

Univention Directory (@) Univention Management O Univention Configuration O
Manager (UDM) Console (UMC) Registry (UCR) Service

Fig. 4.2: Parts of the UCS management system

e Domain management (page 23) to centrally manage the domain settings and objects in the domain database.
 System management (page 24) to manage UCS systems, services and apps.
* Configuration management (page 25) to store configuration settings for each UCS system.

Talking about the UCS management system comprises all previously mentioned parts. Administrators rely on the
UCS management system, because it simplifies their daily work and improves the usability of UCS.

4.2.1 Domain management

Domain management covers all administrative areas related to identities, devices, and services across the domain.

Identities
Identities include users and their collection in user groups. A user can be member of different groups.

Devices
Devices include computers such as other UCS systems, user clients such as notebooks or printers. Furthermore,
it also includes device monitoring.

Services
Services include basic infrastructure services such as networking with DHCP and DNS, infrastructure for ap-
plications and users such as email and file shares, and other domain services such as domain join, directory
manager, and policies.

In UCS, UDM (Univention Directory Manager) is responsible for domain management. You can imagine UDM as
abstraction layer to the domain database. UDM provides modules for each area. Services and apps can extend the
domain management.

As abstraction layer the purposes of UDM are the following:

Data aggregation
Return multiple objects from the domain database as one object in UDM.

Data consistency
Ensure data consistency between different objects in the domain database, such as references between different
objects and ensure that the references are always valid.

Data presentation
Enhance the data from the domain database for appropriate presentation to the user on the command line and
in the web interface.

Atomic operations
Provide a locking mechanism so that operations with multiple actions run as atomic operation. The domain

4.2. UCS management system 23

Univention Corporate Server 5.2 Architecture, Release 5.2-1

database doesn’t support transactions. For example, creating a user with a unique primary email address re-
quires the reservation of username and email address before UDM can create the user object.

Input value validation
Validate user input to ensure correct and consistent data in the domain database. UDM is the interaction layer
between the user and the domain database.

Process logic
Process logic ensures that UDM automatically applies default values to properties when users don’t set values
for properties. In addition, the process logic prevents inconsistent state of data.

User interface enhancements
UDM provides an interface for enhancement with additional properties in UDM. Extended attributes and ex-
tended options provide the interfaces.

Usability
UDM enhances the usability when working with data from the domain database. For example, the domain
database maintains group memberships at the group only. In contrast, in UDM administrators can maintain
group memberships at the group and at the user alike.

Continue reading

Univention Directory Manager (UDM) (page 35) for description of the architecture of UDM.

See also:

Administrators refer to Univention Corporate Server - Manual for users and administrators [1]:
+ User management”' for identity management of users
+ Group management”” for identity management of user groups

See also:

Software developers refer to Univention Developer Reference [3]:
* Package extended attributes>

+ Extended options**

4.2.2 System management

System management includes all administrative tasks related to the underlying UCS system. These tasks include, for
example, UCS system updates, management of apps such as lifecycle, configuration, and certificate handling. The
purpose of system management is to simplify the daily tasks of administrators when managing multiple UCS systems.

The component Univention Management Console (UMC) provides the capabilities for system management on UCS and
is part of the UCS management system. It offers the technology stack for the web interface of the UCS management
system. UMC (Univention Management Console) consists of modules for various management tasks. Apps and
software packages can provide custom UMC modules and extend the UCS management system.

UMC is a central component in UCS for the following reasons:
» UMC provides the technology stack for the web interface of the UCS management system.
¢ UMC provides user authentication interface to the UCS management system and UCS portal service (page 53).
* UMC allows extension of the UCS management system with custom UMC modules.

As component serving the web interface for the UCS management system, UMC involves a web frontend and a
backend as shown in Fig. 4.3.

21 https://docs.sof tware-univention.de/manual/5.2/en/user-management/index.html#users- general

22 https://docs.sof tware-univention.de/manual/5.2/en/groups. html#groups

23 https://docs.software-univention.de/developer-reference/5.2/en/udm/package- extended- attributes. html#udm-ea

24 https://docs.sof tware-univention.de/developer-reference/5.2/en/udm/package-extended-attributes. html#udm-ea-option

24 Chapter 4. Product components

https://docs.software-univention.de/manual/5.2/en/user-management/index.html#users-general
https://docs.software-univention.de/manual/5.2/en/groups.html#groups
https://docs.software-univention.de/developer-reference/5.2/en/udm/package-extended-attributes.html#udm-ea
https://docs.software-univention.de/developer-reference/5.2/en/udm/package-extended-attributes.html#udm-ea-option

Univention Corporate Server 5.2 Architecture, Release 5.2-1

User o

f Univention =)
Management
Console (UMC)
(UMC frontend =)
N Y,
0 UMC backend =)
N >,

Fig. 4.3: UMC web frontend and UMC backend realize Univention Management Console

Continue reading

UMC - Univention Management Console (page 45) for description of the architecture of UMC

See also:
System administrators refer to Univention Corporate Server - Manual for users and administrators [1]:

+ Univention Management Console modules®’ for details about UMC modules

« Expansion of UMC modules with extended attributes®® for details about how to enhance with extended attributes
Software developers and system engineers refer to Univention Developer Reference [3]:

« Univention Management Console (UMC)?’ for technical details about UMC for software developers

4.2.3 Configuration management

Configuration management is a collection of tasks used to configure software systems. For example, changing the
system’s mail relay server requires updates to several configuration text files. With configuration management, an
administrator changes the configuration setting in one place. The change then triggers updates to the associated
configuration files.

The component Univention Configuration Registry (UCR) covers the local configuration management on all Univention
Corporate Server systems. Services, scripts, and apps use UCR as a central configuration store. And administrators
use UCR to adapt their UCS system to their needs.

25 https://docs.software-univention.de/manual/5.2/en/central-management-umc/umc.html#central-user-interface
26 https://docs.sof tware-univention.de/manual/5.2/en/central-management-umc/extended-attributes. html#central-extended-attrs
27 https://docs.software-univention.de/developer-reference/5.2/en/umc/index html#chap-umc

4.2. UCS management system 25

https://docs.software-univention.de/manual/5.2/en/central-management-umc/umc.html#central-user-interface
https://docs.software-univention.de/manual/5.2/en/central-management-umc/extended-attributes.html#central-extended-attrs
https://docs.software-univention.de/developer-reference/5.2/en/umc/index.html#chap-umc

Univention Corporate Server 5.2 Architecture, Release 5.2-1

UCR consists of a non-hierarchical key-value store called UCR variables. It provides a common interface to system
settings. UCR decouples configuration settings from specific file formats such as plain text, XML, or JSON. UCR
also consists of a template system and mechanisms to generate configuration files from templates and UCR variables.

UCS uses UCR variables for all configuration settings on a system. And UCS provides many templates for service
configuration files.

Continue reading

Univention Configuration Registry (UCR) (page 29) for description of the architecture of UCR

See also:

Administration of local system configuration with Univention Configuration Registrye 2628

For information about how to use UCR in Univention Corporate Server - Manual for users and administrators

(1]

Univention Management Console (UMC)%
For detailed information about UCR in Univention Developer Reference [3]

4.3 App Center

Univention App Center is one of the most important parts of UCS. It’s responsible for the lifecycle management of
UCS components and third party applications that add enterprise software to the UCS domain. The App Center
simplifies the installation and integration of software with UCS. In this respect, the App Center is similar in principle
to the app stores on mobile platforms, with the difference that it applies to the server infrastructure.

Apps is short for software applications. Univention offers components for UCS as apps. And third party vendors,
so-called app providers, offer software solutions as apps. Apps consist of software, integration with UCS and meta-
data, such as texts and logos for presentation. A central idea of the apps is the tight integration with UCS, especially
the integration with identity management. For more information about app artifacts, refer to App artifacts (page 16).

Like many other product components, administrators interact with the App Center either through the web based
management system or a terminal as shown in Fig. 4.4.

Administrator 0 " Univention App o Administrator 0
through web Center through CLI
T : 7 , T
HTTP/HTTPS -O App Center O Terminal / SSH -O
Service

Fig. 4.4: Architecture overview of the App Center
Abstractly speaking, the application service App Center Service offers a web interface through HTTP/HTTPS and a
command line interface through Terminal / SSH.
The following list demarcates the App Center from its capabilities. The App Center isn’t:
* atool to distribute software specific to customers or projects.

* a solution for every use case. It has limitations for example in large environments that require setups for a
cluster or load balancing.

28 https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#computers-administration- of -local-system-configuration- with-univention-configuratior
29 https://docs.software-univention.de/developer-reference/5.2/en/umc/index html#chap-umc

26 Chapter 4. Product components

https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#computers-administration-of-local-system-configuration-with-univention-configuration-registry
https://docs.software-univention.de/developer-reference/5.2/en/umc/index.html#chap-umc

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Think of the App Center as a global entity in the UCS domain. The App Center addresses all UCS systems. Admin-
istrators can view and install any available app.

Continue reading

App Center service (page 57)
for the next detail level with description of the architecture of the App Center.

See also:

Univention app ecosystem (page 13)
for information about the Univention app ecosystem.

Univention App Center2e 27 30

for information for administrators about the App Center in Univention Corporate Server - Manual for users and
administrators 1]

Univention App Center for App Providers>!
for information about how to develop apps for Univention App Center in Univention App Center for App
Providers [2]

30 https://docs.software-univention.de/manual/5.2/en/sof tware/app- center.html#sof tware-appcenter
31 https://docs.software-univention.de/app-center/5.2/en/index.html

4.3. App Center 27

https://docs.software-univention.de/manual/5.2/en/software/app-center.html#software-appcenter
https://docs.software-univention.de/app-center/5.2/en/index.html

Univention Corporate Server 5.2 Architecture, Release 5.2-1

28

Chapter 4. Product components

CHAPTER
FIVE

SERVICES

This section covers numerous services that UCS offers to IT infrastructures. It’s for administrators and solution
architects.

Hint: For architecture notation, this part of the document uses ArchiMate® 3.2, a visual language with a set of
default iconography for describing, analyzing, and communicating many concerns of enterprise architectures. For
more information about how the document uses the notation, refer to ArchiMate (page 70).

5.1 Univention Configuration Registry (UCR)

This section describes the architecture of UCR (Univention Configuration Registry). For a general overview about
system management and the role of UCR, refer to System management (page 24).

You find the source code for UCR at UCS source: base/univention-config-registry/>2.

Every UCS system installs UCR per default, regardless of the system role. UCR stores all configuration settings of
a UCS system, and also some other information for quick lookup, for example the validity of certificates. Adminis-
trators set values for configuration settings. Also, packages set configuration values with default values during their
installation. As shown in Fig. 5.1 UCR is an important component used everywhere, for example by UCS Packages,
Services, Scripts and also Apps.

Administrator <

T

Apps 2] Univention Configuration %] UCS Packages %]
Registry (UCR)
Services #] Scripts g]

Fig. 5.1: Consumers of UCR

32 https://github.com/univention/univention-corporate-server/tree/5.2- 1/base/univention-config-registry/

29

https://github.com/univention/univention-corporate-server/tree/5.2-1/base/univention-config-registry/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

5.1.1 UCR architecture

Fig. 5.2 shows the architecture overview of UCR.

User o

Administrator & Administrator 0
through web through CLI

Fig. 5.2: Architecture overview of UCR

UCR provides configuration values to Scripts, Apps, UCS Packages and Services with its various configuration values
from the UCR variables. Users such as administrators use UCR through the web interface of UMC - Univention
Management Console (page 45) with HTTP/HTTPS and through the command line with Terminal / SSH. And UCR
Python API offers a programming interface for UCS components and other Python programs. UCR C API is a small
API in C for only getting and setting UCR variables.

See also:
Administrators, refer to Univention Corporate Server - Manual for users and administrators [1]:
+ Using the Univention Management Console module™
+ Using the command line frontend*
See also:
Software developers and system engineers, refer to Univention Developer Reference [3]:
+ Using UCR from shell®
* Using UCR from Python®®
From Univention Corporate Server Python API 5.2 documentation [4]:

e univention.config registry’’ for UCR Python API

33 https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#computers-using- the-univention- management- console-web-interface
34 https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#computers-using- the- command-line-front-end

35 https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage.html#ucr-usage-shell

36 https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage html#ucr-usage-python

37 https://docs.sof tware-univention.de/ucs- python-api/univention.config_registry.html#module-univention.config_registry

30 Chapter 5. Services

https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#computers-using-the-univention-management-console-web-interface
https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#computers-using-the-command-line-front-end
https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage.html#ucr-usage-shell
https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage.html#ucr-usage-python
https://docs.software-univention.de/ucs-python-api/univention.config_registry.html#module-univention.config_registry

Univention Corporate Server 5.2 Architecture, Release 5.2-1

5.1.2 UCR persistence layer

Fig. 5.3 shows the relation between the active Univention Configuration Registry (UCR) [application component] and
the passive UCR variables, UCR templates and System configuration files.

UCR variables
UCR is independent from any LDAP directory service. Instead, UCR uses plain text files as its storage backend
for UCR variables and saves themin /et c/univention/base*.conf. Most UCR commands read UCR
variables. The UCR set / unset command changes UCR variables.

The variables don’t follow a hierarchy. The slash (/) separator exists for readability.

UCR templates
UCR templates are text file templates for configuration files of various services in UCS. They include place-
holders for the UCR variables. Additionally, they can include Python code for algorithms and more complex
use cases.

The template files locate at /etc/univention/templates/files/.

The mapping between which UCR template uses which UCR variables locates at /etc/univention/
templates/info/.

System configuration files
When UCR variables change or administrators run the UCR commit® command, the UCR configuration
manager determines the affected system configuration files. The manager reads the respective UCR templates,
parses them, replaces the variable placeholders with the values from the UCR variables, and writes System
configuration files. UCR commands like ucr set and ucr unset automatically trigger UCR commit on
all affected System configuration files referencing the changed UCR variables.

UCR usually doesn’t reload services affected by configuration file changes, because only the administrator
knows when configuration tasks are complete and safe for restart.

Exceptions to this behavior exist. For example, changes to UCR variables starting with interfaces/ trigger
a restart of the networking service, unless you set UCR variable interfaces/restart/auto to no.
Also, the Docker service restarts when UCR variables starting with proxy/* change.

Caution: Beware that UCR overwrites any manual changes to configuration files that are under control
of UCR. Such configuration files include a header with a warning. Overwriting can happen during system
updates or other events that trigger a rewriting of configuration files.

Fig. 5.4 shows this general workflow after an administrator sets a UCR variable. Other actors can be UCS Packages,
Scripts, or Services.

The Administrator triggers the event UCR set variable by using the UCR command. UCR set / unset writes one of
the UCR variables and triggers a UCR commit. The UCR commit uses the UCR variable priority, the UCR variables,
and the UCR templates to write and update the System configuration. After UCR commit finished, it triggers the
Configuration written event.

See also:

Administration of local system configuration with Univention Configuration Registry” 3!- 3

for more information about using UCR in Univention Corporate Server - Manual for users and administrators

[1].
See also:
Software developers and system engineers, refer to Univention Developer Reference [3]:

+ Using UCR* for more information about how to extend or develop with UCR

38 https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#cmdoption-ucr-arg-commit
39 https://docs.sof tware-univention.de/manual/5.2/en/computers/ucr.html#computers-administration- of - local-system- configuration-with-univention-configuratior
40 https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage. html#ucr-usage

5.1. Univention Configuration Registry (UCR) 31

https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#cmdoption-ucr-arg-commit
https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#computers-administration-of-local-system-configuration-with-univention-configuration-registry
https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage.html#ucr-usage

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Fig. 5.3: Architecture of Univention configuration registry persistence layer

32 Chapter 5. Services

Univention Corporate Server 5.2 Architecture, Release 5.2-1

[

UCR variable
priority

j

Administrator @ UCR set
variable

D [UCRset/ A UCRcommit | | Configuration D
unset written
C D C D
; : : :
UCR variables |-------- UCR templates | *---- > System

configuration

Fig. 5.4: Workflow after setting a UCR variable

» UCR Template files conffiles/path/to/file*! for more information about writing UCR template files

For more information about how to run code or programs when specific UCR variables change, refer to the following

documentation:

+ Script*? for more information about how to call external programs

« Module* for more information about how to run Python modules

« File*, refer to Preinst, Postinst, and /etc/univention/templates/scripts/.

5.1.3 UCR variable priorities

UCR uses priority layers to determine what value actually becomes effective. The following layers from low priority

to high priority exist:
Default

The lowest priority represents the default value for UCR variables. The package that introduces the UCR
variable sets the default value. This priority layer avoids default values scattered across the program code in

UCS.

New in version 5.0: Default layer added to UCR

Packages must explicitly register a default value in its UCR info file, so that the UCR variables uses the Default

layer.

The package’s postinst may still set the default value of UCR variables using ucr set name?value.
This command stores the UCR variable in the Normal layer.

Changing a UCR variable default value the “old way” without the Default layer requires updates in multiple
code locations resulting in a major drawback with increased effort.

Normal

The priority layer normal becomes effective after an administrator, a package installation or something else
explicitly sets a value for a UCR variable. UCR uses this layer by default, when a role like administrator or
script uses none of the options ——force, ——schedule, or ——1ldap-policy to explicitly use another

layer.

LDAP

By default each UCS system has its own independent UCR. For managing multiple UCS systems, administrators
can define the same UCR policies in LDAP and apply them to several UCS systems consistently. UCS stores
the values of these settings in the priority layer LDAP, which takes precedence over both previous layers.

41 https://docs.software-univention.de/developer-reference/5.2/en/ucr/templates. html#ucr-conffiles

42 https://docs.software-univention.de/developer-reference/5.2/en/uct/configuration.html#ucr-script
43 https://docs.software-univention.de/developer-reference/5.2/en/ucr/configuration. html#ucr-module
4 https://docs.software-univention.de/developer-reference/5.2/en/ucr/configuration. html#ucr-file

5.1. Univention Configuration Registry (UCR)

33

https://docs.software-univention.de/developer-reference/5.2/en/ucr/templates.html#ucr-conffiles
https://docs.software-univention.de/developer-reference/5.2/en/ucr/configuration.html#ucr-script
https://docs.software-univention.de/developer-reference/5.2/en/ucr/configuration.html#ucr-module
https://docs.software-univention.de/developer-reference/5.2/en/ucr/configuration.html#ucr-file

Univention Corporate Server 5.2 Architecture, Release 5.2-1

By default, UCS systems apply UCR policies once per hour, but not at a fixed minute to avoid load peaks on the

LDAP server. You can change the default value of once per hour with the UCR variable 1dap/policy/

CIOH45.

Scheduled
The priority layer scheduled is specific to UCS@school. It temporarily overwrites UCR variables.

Forced
The priority layer forced has the highest priority for a regular UCS system by default. It applies to UCR
variables set with the option ——force.

Custom
The priority layer custom is an internal detail and not used by default. This layer applies only when the envi-
ronment variable UNIVENTION_BASECONF has a value and points to a file. Then the custom layer has the
highest priority for those processes only.

See also:
System administrators refer to Univention Corporate Server - Manual for users and administrators [1]:

* Policy-based configuration of UCR variables*® for more information about how to set UCR variables with a

policy
* Policies*’ for more information about Policies in UCS
See also:
Software developers and system engineers, refer to Univention Developer Reference [3]:

* debian/package.univention-config-registry*® for more information about the UCR info file.

5.1.4 UCR limitations

UCR has the following limitations:
1. UCR variables store and return string values.
2. Values must not contain newlines (\n, \ r) or zero bytes (\0).
3. UCR variable names should be restricted to alpha-numeric characters from the ASCII alphabet.

UCR commands validate the variable name using the function validate_key (), that pro-
hibits using many shell control characters. For more information, refer to UCS source:
base/univention-config-registry/python/univention/config_registry/misc.py#L131%°.

4. It's recommended, that UCR variables shouldn’t exceed the length of 1024 characters counting the length of
the key and the length of the value plus 3: key.length + value.length + 3 <= 1024

The underlying C implementation of UCR is the reason for the limitation. The limit isn’t enforced in the
implementation.

5. Access management:

Write
On the command line, only the user root can change UCR variables. UMC policies can grant proper
rights to users, so that a normal user can also set UCR variables through UMC - Univention Management
Console (page 45).

45 https://docs.software-univention.de/manual/5.2/en/appendix/variables. html#envvar-ldap- policy-cron

46 https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#ucr-templates- policy

47 https://docs.sof tware-univention.de/manual/5.2/en/central- management-umc/policies.html#central- policies

48 https://docs.software-univention.de/developer-reference/5.2/en/ucr/configuration. html#ucr-info

49 https://github.com/univention/univention- corporate-server/blob/5.2- 1 /base/univention- config-registry/python/univention/config_
registry/misc.py#L131

34 Chapter 5. Services

https://docs.software-univention.de/manual/5.2/en/appendix/variables.html#envvar-ldap-policy-cron
https://docs.software-univention.de/manual/5.2/en/appendix/variables.html#envvar-ldap-policy-cron
https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#ucr-templates-policy
https://docs.software-univention.de/manual/5.2/en/central-management-umc/policies.html#central-policies
https://docs.software-univention.de/developer-reference/5.2/en/ucr/configuration.html#ucr-info
https://github.com/univention/univention-corporate-server/blob/5.2-1/base/univention-config-registry/python/univention/config_registry/misc.py#L131
https://github.com/univention/univention-corporate-server/blob/5.2-1/base/univention-config-registry/python/univention/config_registry/misc.py#L131

Univention Corporate Server 5.2 Architecture, Release 5.2-1

See also:

See also the note about the path and access rights in Using UCR from shell®”

Reference [3].

Read
Any user or process on a UCS system can read UCR variables, because /et c/univention/base*.
conf are world-readable.

in Univention Developer

Warning: Don’t access UCR variables directly from the files. Always use the interfaces such as:
¢ For administrators, see Univention Corporate Server - Manual for users and administrators [1]:
— web interface’!
— command line interface’?
¢ For developers, see Univention Developer Reference [3]:
— shell scripts

— Python interface>*

5.2 Univention Directory Manager (UDM)

This section describes the technical details for UDM. For a general overview about the UCS management system and
the role of UDM, see UCS management system (page 22).

You find the source code for UDM at UCS source: management/univention-directory-manager-modules/>.

Other packages in UCS can also define UDM modules. The respective packages include the sources for their UDM
modules. For example, the following packages also provide UDM modules:

* App Center (page 26) at UCS source: management/univention-appcenter/>°
* UCS portal service (page 53) at UCS source: management/univention-portal/>’

 S4 Connector at UCS source: services/univention-s4-connector/>®

5.2.1 UDM architecture

Fig. 5.5 shows the architecture for UDM. A description of the elements follows.

LDAP directory
The data persistence layer consists of the LDAP directory, that provides the domain database, the persistence
layer and data source for UDM. For communication with the LDAP directory, UDM uses the Lightweight
Directory Access Protocol (LDAP).

UDM uses a two layer architecture for abstraction as shown in Fig. 5.5. Except for the LDAP directory, all shown
elements belong to UDM. The first abstraction layer at the bottom is the UDM Python library with the following
elements:

30 https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage. html#ucr-usage-shell

31 https://docs.sof tware-univention.de/manual/5.2/en/computers/ucr.html#computers-using- the-univention-management- console-web-interface

52 https://docs.sof tware-univention.de/manual/5.2/en/computers/ucr.html#computers- using- the-command- line-front-end

33 https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage. html#ucr-usage-shell

34 https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage html#ucr-usage- python

53 https://github.com/univention/univention-corporate-server/tree/S.2- 1 /management/univention-directory-manager-modules/
36 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention-appcenter/

57 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention- portal/

38 https://github.com/univention/univention-corporate-server/tree/5.2- 1/services/univention-s4-connector/

5.2. Univention Directory Manager (UDM) 35

https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage.html#ucr-usage-shell
https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#computers-using-the-univention-management-console-web-interface
https://docs.software-univention.de/manual/5.2/en/computers/ucr.html#computers-using-the-command-line-front-end
https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage.html#ucr-usage-shell
https://docs.software-univention.de/developer-reference/5.2/en/ucr/usage.html#ucr-usage-python
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-directory-manager-modules/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-appcenter/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-portal/
https://github.com/univention/univention-corporate-server/tree/5.2-1/services/univention-s4-connector/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Fig. 5.5: Architecture of UDM

UDM Python library
Provides the library for abstraction and the environment for UDM syntax, UDM modules, and UDM hooks.
UDM Python library uses the LDAP directory. You can imagine something similar to an object relational

mapper for SQL. UDM Python library provides Python modules and classes below univention.admin.
%59.

UDM Syntax
UDM syntax provides the following capability:
» Perform syntax validation on user input data.
¢ Present static values from a predefined list of possible values.
* Calculate possible values dynamically upon use.
 Specify the layout and widget type for presentation in UMC.

UDM modules
UDM modules translate LDAP objects to UDM objects and back. They ensure data consistency, validate user
input, implement process logic and improve the usability of UCS.

* For more information about UDM modules, refer to UDM modules (page 38).
* For more information about UDM data, refer to UDM data (page 38).

UDM hooks
UDM hooks are Python classes with methods that can integrate into existing UDM modules together with
extended attributes. They offer an alternative to customize UDM.

The second abstraction layer in Fig. 5.5 uses the UDM Python library and offers UDM in UMC, UDM HTTP REST
API, the UDM CLI daemon, the UCS@school library, and the UDM Simple API.

UDM in UMC
Runs the UDM modules inside UMC and presents them to the user over HTTP through the web browser. It
creates one process per user session for all UDM modules. UDM in UMC uses the UDM Python library.

UDM HTTP REST API
Provides the UDM HTTP REST API interface to UDM as a separate service. UDM offers HTTP access
through the UDM HTTP REST API to use UDM through a remote interface.

UDM CLI Daemon
Provides the command-line interface to UDM through one system wide process for each user. The process

59 https://docs.software-univention.de/ucs- python-api/univention.admin.html#module-univention.admin

36 Chapter 5. Services

https://docs.software-univention.de/ucs-python-api/univention.admin.html#module-univention.admin
https://docs.software-univention.de/ucs-python-api/univention.admin.html#module-univention.admin

Univention Corporate Server 5.2 Architecture, Release 5.2-1

terminates itself after a default idle time of 10 minutes. The command-line interface uses the UDM Python
library.

UCS @school library
Provides an abstraction in Python for UCS@school. The UCS@school library uses the UDM Python library.

UDM Simple API
Allows to use UDM capability and objects directly in Python programs. For example, UCS portal service

(page 53) uses the API. UDM Simple API provides Python modules and classes below univention.udm.
%60

As mentioned before, UDM is highly customizable to the needs of environments, custom services and apps. Custom
UDM modules, extended attributes and UDM hooks offer different possibilities for the customization of UDM.

See also:

Administrators, refer to Univention Corporate Server - Manual for users and administrators [1]:
+ Expansion of UMC modules with extended attributes®!
+ Command line interface of domain management (Univention Directory Manager)®?

See also:

Software developers and system engineers, refer to Univention Developer Reference [3]:
« UDM syntax®3

From Univention Corporate Server Python API 5.2 documentation [4]:

64

e univention.admin

e univention.udm®

5.2.2 Dependencies for UDM

UDM depends on LDAP. You can resolve the other detailed dependencies with the package manager.
The following services in UCS need UDM:

¢ UCS@school library

¢ Active Directory Connector

* S4 Connector

* UCS portal service (page 53)

Following the chain, UDM in UMC and UDM HTTP REST API wouldn’t work without UDM either. From the items
mentioned in UDM architecture (page 35) and Fig. 5.5, UDM needs the following to work properly:

e UDM Python library
* UDM syntax
o UDM modules
* UDM hooks
And UDM offers its capability to the following items:
e Python UDM API
* UDM CLI daemon

60 https://docs.sof tware-univention.de/ucs- python-api/univention.udm.html#module-univention.udm

61 https://docs.software-univention.de/manual/5.2/en/central-management-umc/extended-attributes. html#central-extended-attrs
62 https://docs.software-univention.de/manual/5.2/en/central- management-umc/udm-command.html#central-udm

63 https://docs.software-univention.de/developer-reference/5.2/en/udm/syntax.html#udm-syntax

64 https://docs.software-univention.de/ucs- python-api/univention.admin html#module-univention.admin

95 https://docs.software-univention.de/ucs- python-api/univention.udm.html#module-univention.udm

5.2. Univention Directory Manager (UDM) 37

https://docs.software-univention.de/ucs-python-api/univention.udm.html#module-univention.udm
https://docs.software-univention.de/ucs-python-api/univention.udm.html#module-univention.udm
https://docs.software-univention.de/manual/5.2/en/central-management-umc/extended-attributes.html#central-extended-attrs
https://docs.software-univention.de/manual/5.2/en/central-management-umc/udm-command.html#central-udm
https://docs.software-univention.de/developer-reference/5.2/en/udm/syntax.html#udm-syntax
https://docs.software-univention.de/ucs-python-api/univention.admin.html#module-univention.admin
https://docs.software-univention.de/ucs-python-api/univention.udm.html#module-univention.udm

Univention Corporate Server 5.2 Architecture, Release 5.2-1

e UCS@school library

5.2.3 UDM modules

UDM modules represent a set of LDAP object classes and their corresponding attributes in UDM objects. They
ensure data consistency, validate user input, implement process logic and improve the usability of UCS.

UDM modules exist for almost every LDAP object class. For example, UDM objects users/user represent dif-
ferent LDAP object classes like person, organizationalPerson, inetOrgPerson, posixAccount,
or shadowAccount. Another example is the password field at a UDM object users/user, that creates several
password hash types in the different LDAP object classes for users. UDM presents one password to the user. In the
background it ensures password consistency for different services, that need different password hash types.

Python is the programming language for UDM modules. During installation UDM modules register themselves in
the LDAP directory. The UCS domain replicates the UDM modules to UCS systems across the domain. On the
UCS systems, the Univention Directory Listener writes the UDM modules to the systems’ file system. The replication
ensures the availability of all UDM modules in the UCS domain alike.

Domain administrators can grant permission to use particular UDM modules in UMC to other users. UDM modules
access the LDAP directory with the permissions of the user so that LDAP access control lists for read and write
actions apply to the user.

See also:

UDM modules’? 38 66
For information about UDM modules for software developers in Univention Developer Reference [3].

5.2.4 UDM data

Talking about UDM modules requires a distinction between data describing a UDM object and an LDAP object:
¢ The term properties refers to data fields in UDM objects.
 The term artributes refers to data fields in LDAP objects.

UDM modules map between LDAP objects and UDM objects. They format data upon read and write operations to
and from the LDAP directory for representation to the user as shown in Fig. 5.6. UDM modules are in the center
of the data mapping and emphasize their translation role. For example, widgets in UMC show a human readable
representation of the data. Fields that represent a date value offer a calendar widget to the user.

LDAP object ___ UDMmodules N~ {jpM object
[attributes] [properties]
/:’\
v
LDAP directory O LDAP directory
S PRITOES >
data

Fig. 5.6: UDM modules map data between LDAP objects and UDM objects

Extended attributes provide the capability to add and customize properties in UDM. They define a mapping between
UDM properties and LDAP attributes.

See also:

66 https://docs.software-univention.de/developer-reference/5.2/en/udm/udm-modules.html#udm-modules

38 Chapter 5. Services

https://docs.software-univention.de/developer-reference/5.2/en/udm/udm-modules.html#udm-modules

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Expansion of UMC modules with extended attributes?¢ 3% 67

How to use extended attributes, Univention Corporate Server - Manual for users and administrators [1]

5.3 UDM HTTP REST API

This section describes the technical architecture for the UDM HTTP REST API, a JSON (JavaScript Object Notation)
HTTP (Hyper-Text Transfer Protocol) interface to interact with Univention Directory Manager. It follows a RESTful
architecture, adheres to REST (Representational State Transfer) principles and provides an OpenAPI schema.

For a general overview about UDM, see UCS management system (page 22) and Univention Directory Manager (UDM)
(page 35).

For information about how to use the API (application programming interface) as a developer, see UDM HTTP
REST API® in Univention Developer Reference [3].

You find the source code for UDM HTTP REST API at UCS source: man-
agement/univention-directory-manager-rest/’.

Tip: This section uses various concepts of the ArchiMate (page 70) notation. To avoid confusion, have a close
look at the figures and make yourself familiar with the different concepts in the Application layer (page 73) and the
Relationships (page 76) in the appendix.

Fig. 5.7 shows the relation of UDM HTTP REST API down the line from the UCS Product components with the UCS
management system (page 22), and its Domain management (page 23) implemented by Univention Directory Manager
(UDM).

The Univention Corporate Server application component has Product components services assigned to it. Product com-
ponents are an abstract container for the main product building blocks, see Product components (page 21). Product
components consist of the UCS Management system and other application services. UCS Management System appli-
cation service consists of the Domain Management application service and others. Univention Directory Manager
(UDM) application service serves the application services Domain management and UDM HTTP REST APIL.

Hint: Fig. 5.7 isn’t a layer diagram, because it uses composition and aggregation relations between the different
concepts.

5.3.1 Architecture

Fig. 5.9 provides an overview of the architecture of UDM HTTP REST APIL.
The main building blocks are the following concepts:

UDM HTTP REST API application component
The central part of the UDM HTTP REST API is the application component that contains the respective
application services for communication with the outside world, the server, and the gateway.

The package univention-directory—-manager—rest provides this application component and all
the pieces outlined later.

UDM HTTP REST API application service
The application service that the UDM HTTP REST API explicitly exposes. It’s an abstraction of the other
application processes that realize it.

67 https://docs.software-univention.de/manual/5.2/en/central- management-umc/extended-attributes.html#central-extended-attrs
68 https://docs.software-univention.de/developer-reference/5.2/en/udm/rest-api. html#udm-rest-api
%9 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention-directory-manager-rest/

5.3. UDM HTTP REST API 39

https://docs.software-univention.de/manual/5.2/en/central-management-umc/extended-attributes.html#central-extended-attrs
https://docs.software-univention.de/developer-reference/5.2/en/udm/rest-api.html#udm-rest-api
https://docs.software-univention.de/developer-reference/5.2/en/udm/rest-api.html#udm-rest-api
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-directory-manager-rest/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-directory-manager-rest/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Fig. 5.7: UDM HTTP REST API as part of UDM in the domain management

Fig. 5.8: UDM HTTP REST API overview in a nested view

40 Chapter 5. Services

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Gateway for UDM HTTP REST API application process
UDM HTTP REST API launches one Gateway process. It forwards each request from the Reverse Proxy to
the appropriate Server for UDM HTTP REST API process with the required locale.

Server for UDM HTTP REST API application process
Server for UDM HTTP REST API is a dedicated server process for each configured natural language. It serves
the content accordingly.

Reverse proxy application service
The Reverse proxy functions as gateway. It adds HTTP security headers and forwards HTTP requests to the
Gateway for UDM HTTP REST API service. It also handles errors in case the Server for UDM HTTP REST
API is unreachable. It’s part of the web server on UCS.

HTTP JSON interface application interface
UDM HTTP REST API can answer requests in the HAL+JSON format.

Hypertext Application Language (HAL) provides hypermedia controls to navigate the API efficiently and in-
dependently.

openapi. json
The openapi.json describes the HTTP JSON interface in the OpenAPI schema following the OpenAPI spec-
ification. The JSON file allows to auto-generate RPC clients.

5.3.2 Technology
Fig. 5.9 shows the architecture in a non-nested view with some more concepts around the reverse proxy. It also adds
the technology layer with Tornado, Apache HTTP server and Apache module mod_proxy.

Tornado implements the server and the gateway application process for the UDM HTTP REST API. As other services
also use Apache HTTP server, so does the UDM HTTP REST APIL.

API interface

A A [y ‘

Reverse proxy o Gateway for UDM (R UDM REST APl £]
HTTP REST API

< D
AN

[UDM HTTP REST O HTTPJSON -O

HTTPweb R | HTTPreverse R Server for UDM R STERIET
server proxy HTTP REST API :
A e 2
Apache HTTP O Apache module O Tornado o
server < mod_proxy

Fig. 5.9: UDM HTTP REST API and its relation to the web server

You can see in Fig. 5.9, that the UDM HTTP REST API application services is an abstraction for the application
processes Gateway for UDM HTTP REST API and Server for UDM HTTP REST API. All three concepts are
assigned to the UDM HTTP REST API application component.

5.3. UDM HTTP REST API 41

Univention Corporate Server 5.2 Architecture, Release 5.2-1

5.3.3 Request flow

Fig. 5.10 shows the abstract flow of a request through the different concepts to the data store in the domain database
LDAP directory. The flow emphasizes the dependency of the UDM HTTP REST API to UDM. For more information
about the UDM architecture and how UDM Python library relates to it, see UDM architecture (page 35).

Fig. 5.10: Request flow for UDM HTTP REST API

5.3.4 Capabilities

UDM HTTP REST API provides capabilities as shown in Fig. 5.11. Different concepts of the UDM HTTP REST
API realize different capabilities, so that all of them serve a dedicated purpose.

Fig. 5.11: UDM HTTP REST API capabilities

Hint: A capability in ArchiMate (page 75) represents an ability that an active structure element possesses.

42 Chapter 5. Services

Univention Corporate Server 5.2 Architecture, Release 5.2-1

In the Fig. 5.11, you see different relations such as realization, aggregation, and assignment. Be aware of their different
meaning.

OpenAPI schema
The OpenAPI schema provides the definition of the UDM HTTP REST API in a programming language ag-
nostic manner. It uses the OpenAPI specification and helps to transfer the knowledge about the API from the
API provider to the API consumer.

RESTful architecture
For more information, see RESTful architecture (page 43).

Multi-Language support
The UCS management system (page 22) supports multiple languages, such as English and German. UDM
HTTP REST API belongs to the UCS management system and therefore supports the same set of languages.
Language support is important for UDM HTTP REST API to provide localized messages to the client and the
user.

See also:

What is OpenAPI?P22¢ 43,70
for more information about OpenAPI and the specification.

5.3.5 RESTf{ul architecture

The UDM HTTP REST API adheres to the RESTful architecture as defined in Fielding [5]. The term REST stands
for Representation State Transfer and includes six architectural and four interface constraints that make a service
RESTful.

See also:

UCS source: /management/univention-directory-manager-restt README.md - “UDM HTTP APT""!
for a detailed description about the RESTful architecture, the rationale of the constraints, compliance and
compliance violations, and the OpenAPI interface.

Architectural constraints

The six architectural constraints are the following
1. Client-server

The client-server constraint enforces a clear separation between a passive server component and an active client
component. The server component has the authority over the entire service realm and its meaning. The client
component must not make any assumptions about the server logic.

The client-server constraint allows clients and servers to evolve independently, because it supports separation
of concerns and reduces interdependencies. Clients focus on the user interface and hypermedia. Servers focus
on business logic and the representation of resources.

2. Stateless

The stateless constraint enforces a stateless communication between clients and servers. This means that each
request must contain all the information necessary for the server to fully understand and process the request.
The client is responsible for handling all session state. This separation allows scalability by adding server
instances or processes, since each server can handle requests independently.

Stateless communication simplifies the server implementation and enables service scalability.
3. Cache

The cache constraint forces data in a response to be either explicitly or implicitly enabled for caching. Caching
improves performance by reducing the need for repeated requests to the server.

70 https://www.openapis.org/what-is-openapi
71 https://github.com/univention/univention-corporate-server/blob/5.2- 1//management/univention- directory-manager-rest/README.md

5.3. UDM HTTP REST API 43

https://www.openapis.org/what-is-openapi
https://github.com/univention/univention-corporate-server/blob/5.2-1//management/univention-directory-manager-rest/README.md

Univention Corporate Server 5.2 Architecture, Release 5.2-1

4. Uniform interface

The uniform interface constraint requires that components communicate using generic and standardized data
formats that all participating components understand. The interface must satisfy the interface constraints de-
scribed later.

The server must provide the same unified interface that satisfies the data manipulation constraint of all server
data. Clients, servers, or other intermediaries can work seamlessly with the API using the same standardized
interface. The API doesn’t require application-specific data formats or schemas.

The standardized data format JSON focuses on structure and representation of data. The lacks of mechanisms
for semantic and hypermedia interaction make JSON unsuitable as uniform interface.

. Layered system

The layered system constraint extends the client-server constraint by introducing intermediate components that
have the ability to fully understand and manipulate messages. The intermediate components use the principles
of stateless and self-describing messages to extend the architecture. Crucially, each layer operates behind a
unified interface that hides layer specifics from clients and components. This layer opacity gives the system a
remarkable degree of flexibility and adaptability.

. Code-on-demand (optional)

The code-on-demand constraint gives servers the optional ability to extend client functionality by embedding
code in representations. This optional constraint comes with the trade-off of potentially limiting availability to
clients capable of running the embedded code.

Interface constraints

The four interface constraints are the following:

. Identification of resources

The identification of resources constraint means that the server abstracts all information as a resource. Each
resource must have one or more names or identifiers, typically represented by a unique HTTP URI. The server
manages the URIs and has the authority to assign them. URIs serve as straightforward identifiers and don’t
carry any additional semantic information.

Clients access resources using resource identifiers only. Clients should refrain from manually constructing URIs
unless the server provides URI templates. Clients navigate through state transitions using links found within
retrieved representations, allowing them to follow hypermedia links and traverse the API without hardcoded
URIs. The server can change URIs without disrupting clients.

. Manipulation of resources through representations

A resource represents a set of entities that the API reflects through representations or identifies through URIs
when a concrete realization of the concept doesn’t yet exist. This fundamental principle implies that the state
and representation of a resource can change dynamically over time while remaining the same resource.

It’s important to understand that a representation of a resource isn’t the resource itself. The API represents
a resource in various formats, such as HTML, XML, JSON, LDIF representing it’s current state, key-value
pairs representing the wanted state, images, or even error conditions such as 404 Not Found. In REST,
the client achieves state changes by examining the response and the ways the response provides to modify the
representation. This involves selecting a transformation, creating, or modifying a representation, and sending
it back to the server.

. Self-descriptive messages

The self-descriptive message constraint ensures that the API transmits messages as representations consisting
of resource or request data metadata and control data.

The MIME media type of the request data plays a critical role in specifying both the syntax and semantics of
message payloads.

Metadata, presented in the form of key-value pairs, describes how to interpret the message, defines caching
rules, provides authentication information, specifies encodings, languages of representation, and more.

44

Chapter 5. Services

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Control data, a form of metadata, describes metadata, and enables various capability.
Hypermedia as the Engine of Application State

The hypermedia as the engine of application state (HATEOAS) constraint means that representations must not
only convey data, but also contain information to control the state of the application. Each response should
include all available state transfer capabilities, such as HTML forms, state changes links, URI templates, or
other relevant resources.

Hypermedia refers to data formats that can include hyperlinks and other hypermedia elements. Specifications
such as JSON-LD, UBER, SIREN, HAL, Collection+JSON, and Hydra extend JSON to include hypermedia
elements.

HATEOAS has the following requirements:

* The client must know the media type and it must be rich enough to describe all possible client-server
interactions.

e The client should only follow links contained in the representation, and shouldn’t construct identifiers
without user interaction.

5.3.6 Dependencies

You can resolve the other detailed dependencies with the package manager. UDM HTTP REST API depends on the
following elements:

Univention Directory Manager (UDM) (page 35)

UMC - Univention Management Console (page 45) for providing the components for the caching of LDAP
connections

UDM-UMC module, a dedicated UMC module (page 52) that provides the common abstraction of UDM
modules.

Tornado

The following server roles (page 10) need UDM HTTP REST API:

5.4

UCS Primary Directory Node
UCS Backup Directory Node

UMC - Univention Management Console

This section describes the technical architecture of the Univention Management Console (UMC). For a general
overview and its relation to system management, refer to System management (page 24).

You find the source code at the following locations:

+ UCS source: management/univention-management-console/’?

* Web interface presentation layer at UCS source: management/univention-web.

/73

 Packages with UMC modules usually include a umc directory, for example:

— UCS source: base/univention-quota/umc/’*
— UCS source: base/univention-system-setup/umc/”>

— UCS source: base/univention-updater/umc/”®

72 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /management/univention-management-console/
73 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /management/univention-web/

74 https://github.com/univention/univention-corporate-server/tree/5.2- 1/base/univention-quota/umc/

75 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /base/univention-system-setup/umc/

76 https://github.com/univention/univention-corporate-server/tree/5.2- 1/base/univention-updater/umc/

5.4.

UMC - Univention Management Console 45

https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-management-console/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-web/
https://github.com/univention/univention-corporate-server/tree/5.2-1/base/univention-quota/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/base/univention-system-setup/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/base/univention-updater/umc/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

— UCS source: management/univention-appcenter/umc/’’

— UCS source: management/univention-management-console-module-join/umc/’®

— UCS source: management/univention-management-console-module-adtakeover/umc/”

— UCS source: management/univention-management-console-module-diagnostic/umc/%°

— UCS source: management/univention-management-console-module-ipchange/umc/®!
- UCS source: management/univention-management-console-module-reboot/umc/%?

— UCS source: management/univention-management-console-module-services/umc/®?

- UCS source: management/univention-management-console-module-top/umc/®*
— UCS source: management/univention-management-console-module-ucr/umc/®3
- UCS source: management/univention-management-console-module-udm/umc/%¢

— UCS source: management/univention-management-console-module-welcome/umc/%’

— UCS source: management/univention-self-service/umc/%8

— UCS source: management/univention-server-overview/umc/%
— UCS source: management/univention-system-info/umc/*°

— UCS source: services/univention-ad-connector/umc/”!

— UCS source: services/univention-admin-diary/umc/®?

— UCS source: services/univention-pkgdb/umc/??
— UCS source: services/univention-printserver/umc/**

Every UCS system installs UMC and its dependencies per default. UMC consists of the UMC frontend and the
UMC backend. Fig. 5.12 shows the simplified architecture of Univention Management Console and the description
thereafter.

The UMC frontend has the following items:
e UMC web frontend
* UMC client

The UMC backend has the following items:
e Static HTTP server

77 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /management/univention-appcenter/umc/

78 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /management/univention-management-console-module- join/umc/

79 https://github.com/univention/univention- corporate-server/tree/5.2- | /management/univention- management- console- module-adtakeover/
umc/

80 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention- management-console-module- diagnostic/
umc/

81 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention-management-console-module-ipchange/
umc/

82 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention-management-console-module-reboot/
umc/

83 https://github.com/univention/univention-corporate-server/tree/S.2- 1 /management/univention-management-console-module-services/
umc/

84 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /management/univention- management- console- module- top/umc/

85 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention- management-console-module-ucr/umc/

86 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention- management- console- module-udm/umc/

87 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention- management-console-module-welcome/
umc/

88 https://github.com/univention/univention-corporate-server/tree/5.2- | /management/univention-self-service/umc/

89 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention-server-overview/umc/

90 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /management/univention-system-info/umc/

91 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /services/univention-ad-connector/umc/

92 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /services/univention-admin-diary/umc/

93 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /services/univention- pkgdb/umc/

94 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /services/univention-printserver/umc/

46 Chapter 5. Services

https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-appcenter/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-management-console-module-join/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-management-console-module-adtakeover/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-management-console-module-diagnostic/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-management-console-module-ipchange/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-management-console-module-reboot/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-management-console-module-services/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-management-console-module-top/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-management-console-module-ucr/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-management-console-module-udm/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-management-console-module-welcome/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-self-service/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-server-overview/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-system-info/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/services/univention-ad-connector/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/services/univention-admin-diary/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/services/univention-pkgdb/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/services/univention-printserver/umc/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Fig. 5.12: Architecture overview of Univention Management Console

5.4. UMC - Univention Management Console 47

Univention Corporate Server 5.2 Architecture, Release 5.2-1

* Reverse proxy
o UMC server
e UMC modules

The user facing parts of the UMC frontend are the UMC web frontend and the UMC client. Reverse proxy handle and
transform the requests and pass them to the UMC server at the backend.

5.4.1 UMC communication

This section focuses on the communication within UMC. Fig. 5.13 shows the architecture with the communication
interfaces HTTP/HTTPS, HTTP, Terminal/SSH. The following sections describe the interfaces.

HTTP/HTTPS in UMC
The user interacts with the UMC web frontend in their web browser. The UMC web frontend communicates through

HTTP/HTTPS with the UMC backend. The Reverse proxy receives requests, handles SSL/TLS, and forwards the
requests through HTTP to the UMC server.

Terminal and SSH in UMC

The UMC client communicates with UMC backend through HTTP S. Administrators use UMC through the UMC web
frontend or through specific command-line tools.

Caution: Although UMC offers a Command line through Terminal/SSH, only software developers use the in-
terface for example for software testing. Interaction with the interface requires knowledge about the internals of
UMC modules.

5.4.2 Authentication

UMC provides the web and authentication interface of the UCS management system. Users authenticate through a
regular form-based login, basic HTTP authentication or SAML (Secure Authentication Markup Language).

In UMC, the UMC server implements SAML in the SAML service provider role. The UMC server considers SAML
authenticated users as authenticated.

Fig. 5.14 shows how the UMC server handles user authentication.

Successful authentication
UMC server creates a session and returns a session cookie.

Unsuccessful authentication
UMC server denies the connection and answers with a denied request towards the user. The reasons can be
manifold, for example:

¢ Wrong username and password combination

¢ Deactivated user account

» Expired password

* Locked account because of too many failed login attempts

The UMC server uses the PAM (pluggable authentication module) stack on UCS to validate and authenticate users
for usual login and for SAML authentication. UMC server evaluates ACL (access control list)s to grant or deny the
usage of UMC modules. To find the user object for the authenticating user, UMC server runs an LDAP search for the
username. It also allows to authenticate users with their email address. Furthermore, PAM recognizes deactivated
user accounts, expired passwords, and allows to change an expired password during sign-in.

48 Chapter 5. Services

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Fig. 5.13: Architecture of Univention Management Console with communication interfaces

5.4. UMC - Univention Management Console 49

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Fig. 5.14: Authentication chain in UMC

See also:
Administrators, refer to Univention Corporate Server - Manual for users and administrators [1]:

User management module - Account tab"e¢ 3% %3
for information about deactivated and expired user accounts

Automatic lockout of users after failed login attempts”®
for information about failed login attempts and how UCS handles them in Samba, PAM and OpenLDAP

5.4.3 UMC backend

The UMC backend consists of the following items as shown in Fig. 5.12:
* Reverse proxy
* UMC server
* several UMC modules

In Fig. 5.15 you also see the Reverse proxy. In fact, the web server offering the Reverse proxy consists of more parts.

Fig. 5.15: Parts of the UMC backend

Static HTTP server
First is the web server realized by Apache HTTP server. The web server provides the Static HITP server
that delivers the static files for the UMC web frontend. And the Static HTTP server responds with important
HTTP headers for caching rules of the static files and security related headers like for example content security
policy®”.

95 https://docs.software-univention.de/manual/5.2/en/user-management/umc.html#users-management- table-account
96 https://docs.software-univention.de/manual/5.2/en/user-management/user-lockout. html#users-faillog
97 https:/developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CSP

50 Chapter 5. Services

https://docs.software-univention.de/manual/5.2/en/user-management/umc.html#users-management-table-account
https://docs.software-univention.de/manual/5.2/en/user-management/user-lockout.html#users-faillog
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CSP

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Reverse proxy
Second is the reverse proxy capability from the Apache HTTP server with the Apache module mod_proxy. The
Reverse proxy also responds with important HTTP headers similar to the Static HTTP server.

The Reverse proxy redirects the following URI paths to the UMC web server:
e /univention/set/.* asregular expression
e /univention/auth
e /univention/logout
e /univention/saml/.* as regular expression
e /univention/oidc/ . * asregular expression
* /univention/command/.* as regular expression
* /univention/upload/.* as regular expression
e /univention/get/.* asregular expression

UMC server
Further down the chain is the UMC server realized by Tornado, that only allows connections from the Reverse
proxy. For example, it provides session management for signed in users.

The UMC server accepts requests with HTTP. For example, the UMC client uses it as connection end-
point. When a HTTP request reaches the UMC server, the UMC server maps the request to a dedicated
UMC module depending on the URL and answers the request accordingly. The UMC server opens an IPC
(interprocess-communication) socket to the UMC module and they talk HTTP. It handles some requests di-
rectly, for example get/ and set/, and takes care of authentication and the language setting for the web
content.

UMC module processes
UMC modules extend UCS with capability. For the description, refer to UMC modules (page 52).

5.4.4 UMC web frontend

The UMC web frontend is responsible for the presentation layer of UMC and runs in the user’s web browser. It uses
the modular JavaScript framework Dojo Toolkit to create dynamic widgets. And it uses the Bootstrap CSS framework
for responsive designed web pages.

Fig. 5.16 provides a detailed view on the model of the UMC web frontend.

The UMC web frontend consists of static files for JavaScript, HTML and CSS. The UMC backend sends the static
files to the user’s web browser, where the web browser presents UMC as a web application. The following packages
from UCS source: management/univention-web/’® contain the artifacts for the web front user interface:

univention-web-js
Contains the ready-to-use JavaScript files built with Dojo Toolkit.

univention-web-styles
Contains the ready-to-use CSS files for the web design including the graphical theme built with Bootstrap.

univention-management-console-frontend

Contains the HTML files for the UMC web frontend. More packages like univen-
tion-server-overview, univention-management-console-login, univen-
tion-system—-setup, univention-portal and others also contain HTML files for the UCS
management system.

98 https://github.com/univention/univention-corporate-server/tree/5.2- 1 /management/univention-web/

5.4. UMC - Univention Management Console 51

https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-web/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

User -

Fig. 5.16: Model for UMC web frontend

5.4.5 UMC modules

This section covers UMC modules. For the context of UMC modules, refer to UMC backend (page 50).

UMC modules extend UCS with capability. Each UMC module defines its command behavior with a Python imple-
mentation and its web frontend presentation with JavaScript as shown in Fig. 5.17.

Depending on the system role, UCS already installs UMC modules per default during installation. Such modules are
for example the App Center, or Package Management. Furthermore, apps from the App Center can also extend UMC
with additional modules, for example the OX License Manager or Open VPN4UCS.

Every UMC module runs its own module process per user session on UCS with the user permission according to
the requesting user. The encapsulation with separate processes ensures that UMC modules don’t interfere with each
other. One disadvantage is the additional memory consumption of every UMC module process.

UMC module processes don’t run continually. After an idle time of ten minutes and if no open requests exist and no
additional requests came in, module processes stop. The UMC server checks for running UMC module processes for
every request. If the requested process doesn’t run, the UMC server starts the UMC module process.

Tip: Use umc/module/timeout to configure the idle time for the UMC module processes. The default value
is 10 minutes.

See also:

Development and packaging of UMC modules® 52 %

for information about development and packaging for UMC modules in Univention Developer Reference [3]

9 https://docs.software-univention.de/developer-reference/5.2/en/umc/local-system-module. html#umc- module

52 Chapter 5. Services

https://docs.software-univention.de/developer-reference/5.2/en/umc/local-system-module.html#umc-module

Univention Corporate Server 5.2 Architecture, Release 5.2-1

UMC module processes N

i

UMC module process N

UMC module 2]

UMC module Python N

UMC module JavaScript - /
implementation

Fig. 5.17: Architecture of a UMC module

5.5 UCS portal service

This section describes the technical architecture of the UCS portal service. For a general overview, see UCS portal
(page 22).

Every UCS system role installs the UCS portal and its dependencies per default. The UCS portal generates structured
data in the JSON format. The data persistence layer consists of cache files with structured data in the JSON format.
The UCS portal needs information about the tiles on the portal and about user memberships in user groups. Portal
frontend and backend use HTTP for communication.

You find the source code at UCS source: management/univention-portal/!?,
Fig. 5.18 shows the architecture of the UCS Portal and the description below.

The User uses the UCS Portal through a web browser with HTTP/HTTPS. The Portal frontend (page 55) and the
backend together realize the UCS portal. The Portal backend (page 55) validates the user login with the UMC server
and uses structured data from the UCS Portal tile cache and the UCS group cache.

The UCS Portal uses the following technology:

HTTP request handler
The UCS Portal backend uses Tornado to handle the HTTP requests from the frontend and to serve the data
to the frontend. Tornado'®! is a Python web framework and asynchronous networking library.

Single-page application
Vue.js with TypeScript is the technology behind the web frontend of the portal. It serves the single-page
application of the portal to the user. The decision came to Vue.js, because it’s flexible, painless, and not owned
by a company. The implementation began with Vue.js 3, because it has full TypeScript support and many
improvements compared to Vue.js 2.

100 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention- portal/
101 https://www.tornadoweb.org/en/stable/

5.5. UCS portal service 53

https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-portal/
https://www.tornadoweb.org/en/stable/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Fig. 5.18: Architecture of the UCS Portal

54 Chapter 5. Services

Univention Corporate Server 5.2 Architecture, Release 5.2-1

5.5.1 Portal frontend

The portal frontend is a single-page application'?? and renders the UCS portal in the users’ web browser. Users see
for example the portal header, background image, a menu and various tiles consisting of logo, title, and description.

The portal requests the structured data in portal. json about what to render from the Portal backend (page 55).

5.5.2 Portal backend

The portal backend generates the data about what portal the frontend renders for the user.

The portal backend delegates the user authentication to the UMC server. It maintains internal caches for the portal
content and the user group memberships. It doesn’t request LDAP or Univention Directory Manager (UDM) (page 35)
directly.

Fig. 5.19 shows the architecture of the portal backend. A description about the elements and their responsibility
follows.

UCs Portal pﬂ"-User information data for validation-——*(Univention ©
back end J‘ Management

_________ User login status-----------1 Console (UMC)

UCS Portal O UCS group O
tiles cache cache

[Univention Directory Listener C?

Fig. 5.19: Architecture of the UCS Portal backend

UCS Portal tiles cache
Provides structured data about the tiles configured for every portal in the domain. Every tile has assignments
to user groups.

UCS group cache
Provides structured data to resolve a user and its group memberships including nested groups.

UMC server
Validates user authentication for a given user.

Univention Directory Listener
In the context of the UCS Portal, the Univention Directory Listener triggers the update of the UCS portal tile
cache (page 57) and the UCS group cache (page 57).

102 hitps://en.wikipedia.org/wiki/Single-page_application

5.5. UCS portal service 55

https://en.wikipedia.org/wiki/Single-page_application

Univention Corporate Server 5.2 Architecture, Release 5.2-1

User identification

Fig. 5.20 shows the basic model of the user identification. The description follows below.

User @ UCS Portal N
frontend

: 3
User information |

Structured data
|

|
|
v !
Univention D}——User information data for validation -—{ UCS Portal R
Management backend
Console }

————————— User login status ———————————{

Fig. 5.20: User identification in the UCS Portal

1. The user is either an anonymous user or has user information from a login.
The portal frontend sends an HTTP request with user information to the portal backend.
The portal backend delegates the user validation to the UMC server.

The UMC server returns the login status.

A

Based on the login status the portal backend generates the structured data for the portal frontend.

Structured data for portal content

The structured data in portal. json for the portal frontend has information for example about folders in the
menu, categories in the portal main area, portal design, the entries for the menu and the portal tiles. For example, the
anonymous portal data'® from the UCS demo system'®.

The content depends on the user login status:

Anonymous users
Anonymous users see portal content that’s publicly available.

Signed in users
Signed in users see public content and content depending on their group memberships. One user may also see
different tiles than another user.

The portal backend uses the caches in the following sections to generate the structured data.

103 https://demo.univention.de/univention/portal/portal. json
104 https://demo.univention.de/univention/portal/

56 Chapter 5. Services

https://demo.univention.de/univention/portal/portal.json
https://demo.univention.de/univention/portal/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

UCS portal tile cache

The portal tile cache has information about the content of every tile like name, description, logo, and category.
Furthermore, it knows the group assignment for every tile.

When administrators create or modify a portal in the UMC module LDAP directory, the Univention Directory Listener
reacts on this change and triggers the listener module responsible for the portal tile cache. The module then uses UDM
and recreates the portal tile cache.

The portal tile cache uses structured data, as well. The listener module saves it in a JSON file in the file system of the
UCS system.

UCS group cache

The User identification (page 56) returns information about the user without data about the users’ group memberships
and nested groups. The group cache steps in and provides a mapping for users to their groups.

Running the user’s group resolution on the fly is an expensive operation especially for large environments.

To mitigate the expensive operation, the Univention Directory Listener triggers the respective listener module in the
post-run when no more changes happen to user groups for 15 seconds. The group cache retrieves the necessary
information from the key-value store of the UCS group membership cache.

5.5.3 Dependencies for UCS portal

The UCS portal depends on the Univention Directory Listener, Univention Directory Manager (UDM) (page 35), the
UCS group membership cache, and the UCS Portal tile cache. Table 5.1 lists the depending services and their packages:

Table 5.1: Dependencies for UCS portal

Service Package name

UCS configuration manager univention-config

Univention Directory Listener univention-directory-listener

UCS command-line based administration tools univention-directory-manager-tools
UCS group membership cache univention-group-membership—-cache
UCS management console server (page 45) univention-management-con-

sole—-server

5.6 App Center service

This section describes the architecture of the App Center service focused solely on UCS.

For a general overview of the App Center, its ecosystem, the participating actors, and the infrastructure, see Univen-
tion app ecosystem (page 13). For the overview of the App Center as product component, see App Center (page 26).

You can find the source code at UCS source: management/univention-appcenter/'%.
Fig. 5.21 shows the architecture overview of the App Center on a UCS system.
For the abstract context description about the first two rows in Fig. 5.21, refer to App Center (page 26).

In the notation in Fig. 5.21 the application service App Center Service summarizes all behavior that relates to the App
Center and apps on a UCS system. The center piece for all behavior in the App Center are the App Center actions that
use the Python App Center library to do “stuff” with Apps.

The App Center is a complex component in UCS. As you continue reading, the concepts unfold and reveal their
internal parts.

105 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention-appcenter/

5.6. App Center service 57

https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-appcenter/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Administrator 0 Univention App O Administrator 0
through web Center through CLI

A

HTTP/HTTPS -O App Center o Terminal / SSH -O
Service ‘

y
App Center N
actions

Python App O
Center I|brary

\:/

App

Fig. 5.21: Architecture overview of the App Center on a UCS system

See also:

Python App Center library’2ee>38 106

for detailed information about the Python library for the App Center in Univention Corporate Server Python
API 5.2 documentation [4].

5.6.1 App Center interfaces

First, this section continues with the App Center connections to the external world. Fig. 5.22 shows the interfaces to
the user for the App Center and how the App Center relates to other parts of UCS.

The left side shows the path for the web interface of the App Center. Like many other components, the App Center
uses UMC - Univention Management Console (page 45) for the web interface. The App Center provides the following
UMC modules (page 52):

App Center in UMC
The UMC module App Center in UMC provides the web interface to the user. Administrators can list, show,
install, update, and remove apps. It presents all available apps to the administrator in a nice overview. It’s also
responsible for the app presentation with information like description, screenshots and videos, contact and app
provider information.

Apps in UMC
The UMC module Apps in UMC provides a proper view in the UCS management system for every installed
app. It shows the app description, detailed information and offers actions like update or remove on the app to
the administrator.

The right side shows the path to the command line interface of the App Center.

106 https://docs.sof tware-univention.de/ucs- python-api/univention.appcenter.html#module-univention.appcenter

58 Chapter 5. Services

https://docs.software-univention.de/ucs-python-api/univention.appcenter.html#module-univention.appcenter

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Fig. 5.22: App Center interfaces to the user
The figure extends Fig. 4.4.

5.6. App Center service 59

Univention Corporate Server 5.2 Architecture, Release 5.2-1

The items App Center, Python App Center library, and App in the middle are the core of the App Center. The following
sections describe them in more detail.

See also:

App presentationaee 60 107

for information about how app providers can define the data for app presentation in Univention App Center for
App Providers [2].

UCS source: management/univention-appcenter/umc/'%
for the source code of the UMC module App Center in UMC.

5.6.2 App Center actions

App Center actions are the center piece for all behavior in the App Center. Figure Fig. 5.23 shows the most important
actions.

Fig. 5.23: App Center actions

To get a list of all actions, take a look into the checked out source code in the directory UCS source: man-
agement/univention-appcenter/python/'% of the UCS repository and run the following command:

Listing 5.1: Get a list of available App Center actions from the sources

[S find | grep actions J

The core actions that administrators encounter when working with UCS are actions to manage the app lifecycle and
control their operational status. These are actions such as:

e App install
e App remove
* App upgrade
» App start

* App stop

107 https://docs.sof tware-univention.de/app-center/5.2/en/presentation. html#app- presentation
108 https://github.com/univention/univention-corporate-server/tree/5.2- 1/management/univention-appcenter/umc/
109 https://github.com/univention/univention-corporate-server/tree/S.2- 1 /management/univention-appcenter/python/

60 Chapter 5. Services

https://docs.software-univention.de/app-center/5.2/en/presentation.html#app-presentation
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-appcenter/umc/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-appcenter/python/
https://github.com/univention/univention-corporate-server/tree/5.2-1/management/univention-appcenter/python/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

* App restart
* App update

And the App Center has other actions, for example, they run during installation like the App Center database integra-
tion or handle a listener module dedicated to the app. Furthermore, app developers use the App Center Dev actions
during app development.

The App Center actions’ purpose is manifold:

» They abstract lifecycle actions for apps for the various distribution flavors like Package based app and Docker
based app.

 They hide the complexity of lifecycle management and standardize the needed procedures.
See also:

App artifacts (page 16)
for information about the various distribution flavors Package based app and Docker based app.

5.6.3 App Center apps cache

This section covers the Apps Cache, a part of the App Center that exists on every UCS system. Fig. 5.24 shows the
Apps Cache relationship to the App Center actions.

App
metadata
App Center actions (N §
\V4
App repository ... Appupdate (N . Apps Cache

Fig. 5.24: App Center Apps cache

The App Center has the action App update that downloads information from the App repository and writes the Apps
Cache on a UCS system. It has the following purposes:

e Download all the App metadata from the App repository. For information about the infrastructure, refer to
Univention app infrastructure (page 19).

* Consolidate the app metadata in a JSON file.

The app metadata locates in the directory /var/cache/univention—-appcenter/ on a UCS system. The
data from the Apps Cache is then available to all other App Center actions that need any kind of information related
to apps. For example, the UMC module App Center in UMC reads the data from the Apps Cache to display it in the
web interface.

5.6. App Center service 61

Univention Corporate Server 5.2 Architecture, Release 5.2-1

5.6.4 App integration

The App Center offers various integration points for apps to simplify the app setup and the integration into the UCS
environment.

Web server integration

For apps that offer their own web interface, the App Center provides a web server integration as shown in Fig. 5.25.

Fig. 5.25: App Center web server integration

The App Center web server integration appends the Web server configuration and adds the path to the app’s web inter-
face. The procedure uses Univention Configuration Registry (UCR) (page 29). The App Center web server integration
removes the appended configuration upon app removal.

Apps can also provide a complex web server integration by adding their own configuration to the HTTP web server.
App developers handle the configuration lifecycle on their own in the app.

See also:

Web interfacePee 62 110

for more information about how to expose the app’s web interface in Univention App Center for App Providers

[2].

110 https://docs.software-univention.de/app-center/5.2/en/get_started html#create-app-with-docker-web-interface

62 Chapter 5. Services

https://docs.software-univention.de/app-center/5.2/en/get_started.html#create-app-with-docker-web-interface

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Portal integration

Apps that offer a web interface and use the web server integration (page 62) automatically use the portal integration
to add a tile to the UCS portal (page 53), as shown in Fig. 5.26.

App Center actions A

Y Y

App install (A App R
remove

\ y,

App Center portal integration (. : ucs O

PP P 9 ..., Portaltilefor |

Portal
app

\ y,

Univention Configuration =)
Registry (UCR)

Fig. 5.26: App Center portal integration

Upon installation, the App Center adds a portal tile with the icon, name, and link to the app’s web interface. Upon
removal, the App Center removes the portal tile.

Database integration
For apps that need a RDBMS (relational database management system) like MariaDB or PostgreSOL the App Center
installs the respective packages from the UCS package repository during app installation, as shown in Fig. 5.27.
Apps using the databases provided with UCS benefit from the following advantages:

» Univention maintains the packages for the databases and provides security updates.

¢ The databases integrate with the UCS system. For example, the App Center creates a database for the app
together with a database user and password.

e The App Center provides the connection settings to the app. The app can start with creating the database
schema.

Nevertheless, the App Center database integration has the following limitations:
» UCS installs the RDBMS on the same host as the app and creates one database.
* The App Center doesn’t use the RDBMS on a remote host or in a Docker environment.
* Apps have limited possibilities to configure the RDBMS.

« If the UCS system with the app has multiple apps installed that use a database, they share the RDBMS and its
configuration.

Docker based apps, that need more flexibility, can provide their app as Multi container app and add the RDBMS
as Docker container with the required configuration. The app provider is responsible for maintenance and security
updates for the RDBMS as Docker container.

5.6. App Center service 63

Univention Corporate Server 5.2 Architecture, Release 5.2-1

App Center actions A

i

App install R App N " Database O RDBMS O
remove forapp Y
& L i
g
App (?s::e:aci?c':ibase N - Database for
. J app

Univention Configuration O
Registry (UCR)

Fig. 5.27: App Center database integration

Fig. 5.28 shows the maintenance relations for the RDBMS. Although the model might imply that either role maintains
the database software, it’s not the case. Instead, they cover the distribution of the RDBMS.

See also:

Database}’agc 64,111

for more information about how to configure the app integration in an app in Univention App Center for App
Providers [2].

Identity management integration

Many app providers integrate their app with the identity management in UCS. The identity management integration
consists of the following aspects:

User provisioning
Provisioning means that the app gains knowledge about user account information and can, for example, create
a user account in its own data structure and map it with the user account in the UCS identity management.
Each app handles the mapping individually.

The preferred provisioning method is push. Upon changes in the LDAP directory, the Univention Directory
Listener creates information for the app to handle.

In contrast, the pull method through direct LDAP connection requires periodic pulls. The app must then
identify and handle changes on its own.

User authentication
Authentication means that the app uses one of the different authentication protocols in UCS like for example
Kerberos, LDAP, SAML, or OpenlID Connect.

To use the identity management integration in the app, the app developer can activate it in the app metadata.

Fig. 5.29 shows the App Center generating the listener module upon app installation for user provisioning using the
push method. The key items have a less strong filled background color.

1T https://docs.sof tware-univention.de/app-center/5.2/en/get_started. html#create-app-with-docker-database

64 Chapter 5. Services

https://docs.software-univention.de/app-center/5.2/en/get_started.html#create-app-with-docker-database

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Fig. 5.28: Maintenance of databases for Apps
Consider the OR junction as XOR for the realization relation.

5.6. App Center service 65

Univention Corporate Server 5.2 Architecture, Release 5.2-1

@ ; ; =\
Univention O

Directory Listener
< D

¥

; : a :
LDAP directory O Llstegsrrv?;ce)dule 2. > Listenerdata [5 IDM data for app

JSON for app
A A

v

I — N
Teare VeelE T Installed app &1 Provision users to (N
app

app Y
JAN :

i i

LDAP directory ﬁ Listener module |

App's user database
data for app

L

Register App Q\
directory listener

]

(App install R

< é D

t App Center Q\
actions

<

Fig. 5.29: Register App directory listener for user provisioning with push method

Register App directory listener
Upon app installation, the App Center generates a listener module for the app and starts a service for the
Univention Directory Listener.

* Register App directory listener creates the artifact Listener module for app
e Listener modules for app realizes the service Listener Module for app.

» The service Listener module service runs the listener module for the app and belongs to the service Uni-
vention Directory Listener.

For example, on a UCS system with five installed apps that use the identity management integration, the App
Center generates five listener modules and services.

Listener module service
The listener listens for changes in the LDAP directory service. The listener module consists of two parts:

1. Part one creates change information relevant to the app based on changes in the LDAP directory. Such
changes are, for example, user account created, user account modified, or user account removed.

2. Part two takes the information about the changes and creates a JSON file, the artifact Listener data JSON
for app, with information about the user account and about the kind of change. It periodically looks for
the file from part one to generate the JSON file.

Listener data JSON for app
Is the artifact created by the Listener module service. From an architecture perspective the artifact realizes the
data object IDM data for app.

Provision users to app
Provision users to app reads the IDM data for app, handles them accordingly, and writes the relevant information
to the App'’s user database. For example, the app creates a user account in its database to internally refer to the
user. The Installed app, that has Provision users to app assigned, is responsible to handle the JSON files written
by the Listener module service.

66 Chapter 5. Services

Univention Corporate Server 5.2 Architecture, Release 5.2-1

See also:
For app software developers, refer to the following content in Univention App Center for App Providers [2]:
« Connection with Identity Management''” for information about how to connect an app with the identity man-

agement.

* Provisioning'"?

— Automatically via LDAP connection (Pull)' !4

— Automatically via IDM notifications (Push)'!?

« Authentication'!®

- LDAP!7

— Kerberos!!®

Extended attributes

The App Center uses extended attributes for every app upon installation when the app requires the administrator to
enable user accounts for the app.

Extended attributes require an LDAP schema extension. The App Center creates that schema extension automatically
and registers it in the LDAP directory service. And it also generates the extended attribute accordingly to use the
extra fields added with the schema extension and map them to respective fields in UDM.

For more information about extended attributes from the architecture perspective, refer to UDM data (page 38).

Beyond the default schema extension, the App Center also registers schema extensions provisioned with the app.
Apps that use the LDAP directory as their user database make use of schema extensions and extended attributes to
enable a respective user administration for the system administrator. An LDAP schema extension ensures that the
third party software can use the required LDAP attributes.

See also:

Administrators refer to the following content in Univention Corporate Server - Manual for users and administrators

[1]:

Expansion of UMC modules with extended attributes
How to use extended attributes

Page 67, 119

See also:

App software developers, refer to the following content in Univention App Center for App Providers [2]:

User rights management '’

for more information about user rights management for apps.

112 hitps://docs.software-univention.de/app-center/5.2/en/identity_management.html#connection-idm

113 hitps://docs.software-univention.de/app-center/5.2/en/identity_management.html#provisioning

114 https://docs.sof tware-univention.de/app-center/5.2/en/identity_management.html#provisioning-pull

115 https://docs.sof tware-univention.de/app- center/5.2/en/identity_management.html#provisioning-push

116 https://docs.sof tware-univention.de/app- center/5.2/en/identity_management.html#authentication

117 https://docs.sof tware-univention.de/app-center/5.2/en/identity_management.html#authentication-1dap

118 https://docs.software-univention.de/app-center/5.2/en/identity_management.html#authentication-kerberos

119 https://docs.sof tware-univention.de/manual/5.2/en/central-management-umc/extended-attributes. html#central-extended-attrs
120 https://docs.software-univention.de/app-center/5.2/en/identity_management html#user-rights-management

5.6. App Center service 67

https://docs.software-univention.de/app-center/5.2/en/identity_management.html#connection-idm
https://docs.software-univention.de/app-center/5.2/en/identity_management.html#provisioning
https://docs.software-univention.de/app-center/5.2/en/identity_management.html#provisioning-pull
https://docs.software-univention.de/app-center/5.2/en/identity_management.html#provisioning-push
https://docs.software-univention.de/app-center/5.2/en/identity_management.html#authentication
https://docs.software-univention.de/app-center/5.2/en/identity_management.html#authentication-ldap
https://docs.software-univention.de/app-center/5.2/en/identity_management.html#authentication-kerberos
https://docs.software-univention.de/manual/5.2/en/central-management-umc/extended-attributes.html#central-extended-attrs
https://docs.software-univention.de/app-center/5.2/en/identity_management.html#user-rights-management

Univention Corporate Server 5.2 Architecture, Release 5.2-1

5.6.5 Dependencies for the App Center

As complex component in UCS, the service App Center has the following dependencies:
 Univention Configuration Registry (UCR) (page 29)
* Univention Directory Manager (UDM) (page 35)
e UMC - Univention Management Console (page 45)
 Univention Directory Listener
» UCS portal service (page 53)
 Univention updater

* Docker.io with the Docker Engine and Docker compose

Fig. 5.30 shows the direct dependencies in the model.

Fig. 5.30: Dependencies of the App Center

The dependency to the Univention updater comes from the App Center’s handling of the Package based Apps and for
example the App Center database integration.

68 Chapter 5. Services

CHAPTER
SIX

APPENDIX

The following sections provide additional information to this document. They deliver additional information for the
content.

6.1 Third party software

This section lists the third party software referenced in this document.

Apache HTTP server
The Apache HTTP Server Project is an effort to develop and maintain an open source HT TP server for modern
operating systems. The goal of the project is to provide a secure, efficient and extensible server that provides
HTTP services in sync with the current HTTP standards.

For the website, see Apache HTTP server project'?!.

Apache module mod_proxy
mod_proxy and related modules implement a proxy and gateway for Apache HTTP server, supporting a
number of popular protocols as well as several different load balancing algorithms.

For the website, see Apache module mod_proxy'*?.

Bootstrap
Powerful, extensible, and feature-packed front end toolkit.

For the website, see Bootstrap - The most popular HTML; CSS, and JS library'?*.

Dojo Toolkit
Modular JavaScript framework

For the website, see Dojo Toolkit!?*,

Tornado
Tornado Web Server is a Python web framework and asynchronous networking library.

For the website, see Tornado Web Server'>.

TypeScript
TypeScript is the programming language of choice for the frontend, because it helps to achieve a unified
codebase through typing and linting features. Furthermore, TypeScript avoids common JavaScript mistakes
and helps software developers to write cleaner code.

For the website, see TypeScript: JavaScript with Syntax For Types'?.

Vue. js
Vue. js is a versatile JavaScript framework for building web user interfaces.

121 https://httpd.apache.org/

122 https://httpd.apache.org/docs/current/en/mod/mod_proxy.html
123 https://getbootstrap.com/

124 https://dojotoolkit.org/

125 https://www.tornadoweb.org/en/stable/

126 https://www.typescriptlang.org/

69

https://httpd.apache.org/
https://httpd.apache.org/docs/current/en/mod/mod_proxy.html
https://getbootstrap.com/
https://dojotoolkit.org/
https://www.tornadoweb.org/en/stable/
https://www.typescriptlang.org/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

For the website, see Vue.js - The Progressive JavaScript Framework'?”.

6.2 Architecture notation

A notation helps a lot to understand complex architectures and to explain the software architecture of UCS. A stan-
dardized notation is key to communicate an architecture.

This section describes the notation and elements used in this document. It’s intended to help you as reader to under-
stand the notations. This section tries to duplicate as little content as possible and instead provide deep links to the
corresponding resources on the internet.

6.2.1 C4 model

The document uses the C4 model in the Concepts (page 7) section.

The C4 model is a lean graphical notation technique for modeling the architecture of software systems.
It’s based on a structural decomposition of a system into containers and components and relies on existing
modeling techniques such as the Unified Modeling Language (UML) or Entity Relation Diagrams (ERD)
for the more detailed decomposition of the architectural building blocks.

---Wikipedia contributors, “C4 model”!28 Wikipedia, The Free Encyclopedia, (accessed January 24,
2023).

The C4 model is notation independent and provides:
1. A set of hierarchical abstractions for software systems, containers, components, and code.
2. A set of hierarchical diagrams for system context, containers, components, and code.

The C4 model is a good to learn, developer friendly approach to software architecture diagramming. But, it comes
to limits when it comes to model the architecture. Diagramming tools draw just boxes and lines and can’t answer
questions like “What dependencies does component X have?”

See also:

The C4 model for visualizing software architecture®e 70 129

for a description of the C4 model from Brown [6]

6.2.2 ArchiMate

ArchiMate is a notation and modeling standard for enterprise architecture maintained by The OpenGroup. This
document uses the ArchiMate® specification 3.2'3.

Why ArchiMate?
ArchiMate isn’t about standard boxes and lines, it’s all about a common language that provides the
foundations for a good architecture description.

Using the language without its notation is already of great value as it allows people to understand each
other.

---Jean-Baptiste Sarrodie, “Why ArchiMate?”!3!, 28. September 2018
Regarding the simplified language analogy:

127 https://vuejs.org

128 https://en.wikipedia.org/w/index.php2title=C4_model&oldid=1115745383
129 https://c4model.com/

130 https://pubs.opengroup.org/architecture/archimate32-doc/

131 https://www.archimatetool.com/blog/2018/09/25/why-archimate/

70 Chapter 6. Appendix

https://vuejs.org
https://en.wikipedia.org/w/index.php?title=C4_model&oldid=1115745383
https://c4model.com/
https://pubs.opengroup.org/architecture/archimate32-doc/
https://www.archimatetool.com/blog/2018/09/25/why-archimate/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

* ArchiMate contains a vocabulary that covers most domains of Enterprise Architecture. This document focuses
on technology, application and business.

» ArchiMate uses a grammar similar to natural language with subject, verb, and object to describe what people
or things do, and adds an external, service oriented, view of those activities.

e The ArchiMate default notation is similar to spelling as it provides a way to “save ideas on paper”.
See also:

“ArchiMate”, Wikipedia, The Free Encyclopedia®e¢7!- 132
for an overview of the ArchiMate frameworks, language and viewpoints

ArchiMate reader’s guide

This document uses the ArchiMate concepts element, relationship, and relationship connector mentioned in the later
sections. The following sections provide specific links to the corresponding resources in the ArchiMate specification
with summarized definitions. They help to pick out the parts needed to understand the notation.

To properly read ArchiMate, it’s recommended to read parts of the ArchiMate specification about the following:

1. The ArchiMate Core Framework'?* section, that refers to the layers'** Business, Application, and Technology.
Imagine the layers as rows in a table.

2. The ArchiMate Core Framework section explains the three Aspects. Think of an aspect as columns in a table:

* The Active Structure Aspect represents structural elements, the actors. Think of it as the subject in a
natural language sentence.

e The Behavior Aspect represents behavior performed by actors. Think of it as the verb in a natural language
sentence.

e The Passive Structure Aspect represents objects, the targets of the actors’ behavior. Think of it as the
object in a natural language sentence.

3. You find the ArchiMate concepts used in the document in the sections below, organized by layer. To read a
short definition for each element, follow the links to the corresponding summaries in the specification.

See also:

ArchiMate® specification 3.2'%
for the complete ArchiMate® 3.2 Specification [7]

Free ArchiMate 3.2 Overview PDFs in multiple languages'3°
for overview PDF files about ArchiMate 3.2 in different languages, such as English and German.

Mastering ArchiMate Edition 3.1'%’
for a free PDF excerpt of the book from Wierda [8]

132 https://en.wikipedia.org/wiki/ArchiMate

133 https://pubs.opengroup.org/architecture/archimate32-doc/ch- Language-Structure. html#sec- The- ArchiMate- Core- Framework

134 https://pubs.opengroup.org/architecture/archimate32-doc/ch- Language- Structure.html#sec- Layering- of - the- ArchiMate- Language
135 https://pubs.opengroup.org/architecture/archimate32-doc/

136 https://ea.rna.nl/archimate/free-archimate-overview-pdf/

137 https://ea.rna.nl/mastering-archimate-edition-3- 1/

6.2. Architecture notation 71

https://en.wikipedia.org/wiki/ArchiMate
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Language-Structure.html#sec-The-ArchiMate-Core-Framework
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Language-Structure.html#sec-Layering-of-the-ArchiMate-Language
https://pubs.opengroup.org/architecture/archimate32-doc/
https://ea.rna.nl/archimate/free-archimate-overview-pdf/
https://ea.rna.nl/mastering-archimate-edition-3-1/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Business layer

Business Layer elements model the operational organization of an enterprise in a technology-independent manner.

For the business layer the document uses the ArchiMate concepts as shown in Fig. 6.1.

Business %
Actor

Business 0
Role

: D
Business O
Service

4

Product

Fig. 6.1: ArchiMate business layer concepts used in this document

Meanings in one sentence

Summary of Business Layer Elements

Page 72,

138

for a table with a summary of business layer elements

See also:

ArchiMate business layer'3°

for the specification of the business layer

138 https://pubs.opengroup.org/architecture/archimate32-doc/ch- Business- Layer.html#sec- Summary- of - Business- Layer- Elements
139 https://pubs.opengroup.org/architecture/archimate32-doc/ch- Business- Layer.html

72

Chapter 6. Appendix

https://pubs.opengroup.org/architecture/archimate32-doc/ch-Business-Layer.html#sec-Summary-of-Business-Layer-Elements
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Business-Layer.html

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Application layer

Application Layer elements typically model the application architecture that describes the structure, behavior, and
interaction of the applications of the enterprise.

For the application layer the document uses the ArchiMate concepts as shown in Fig. 6.2.

Fig. 6.2: ArchiMate application layer concepts used in this document

Meanings in one sentence

Summary of Application Layer Elements®¢ 74 140

6.2. Architecture notation 73

https://pubs.opengroup.org/architecture/archimate32-doc/ch-Application-Layer.html#sec-Summary-of-Application-Layer-Elements

Univention Corporate Server 5.2 Architecture, Release 5.2-1

for a table with a summary of application layer elements

See also:

ArchiMate application layer?e 74 141

for the specification of the application layer

Technology layer

The Technology Layer elements typically model the technology architecture of the enterprise, describing the structure
and behavior of the technology infrastructure of the enterprise.

For the technology layer the document uses the ArchiMate concepts as shown in Fig. 6.3.

System Software O

Artifact B

i Technology '=:;
Process

\ 4

i Technology
Function

\ 4

Communication &
Network

Fig. 6.3: ArchiMate technology layer concepts used in this document

Meanings in one sentence

Summary of Technology Layer Elements'+?

for a table with a summary of technology layer elements

See also:

ArchiMate technology layer'*?
for the specification of the technology layer

140 https://pubs.opengroup.org/architecture/archimate32-doc/ch- Application- Layer.html#sec- Summary- of - Application- Layer- Elements
141 https://pubs.opengroup.org/architecture/archimate32-doc/ch- Application- Layer.html
142 https://pubs.opengroup.org/architecture/archimate32-doc/ch- Technology- Layer.html#sec- Summary- of - Technology- Layer- Elements
143 hitps://pubs.opengroup.org/architecture/archimate32-doc/ch-Technology-Layer.html

74 Chapter 6. Appendix

https://pubs.opengroup.org/architecture/archimate32-doc/ch-Application-Layer.html
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Technology-Layer.html#sec-Summary-of-Technology-Layer-Elements
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Technology-Layer.html

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Motivation elements

Motivation elements model the motivations, or reasons, that guide the design or change of an enterprise architecture.

The motivation elements belong to the ArchiMate full framework'**. From the motivation elements the document
uses the ArchiMate concepts as shown in Fig. 6.4.

Fig. 6.4: ArchiMate motivation elements used in this document

Meanings in one sentence

Summary of Motivation Elements" 7> 145

for a table with a summary of motivation elements

See also:

ArchiMate motivation elements!4°

for the specification of the motivation elements

Strategy elements

The strategy elements are typically used to model the strategic direction and choices of an enterprise, as far as it
concerns the impact on its architecture. They express how the enterprise wants to create value for its stakeholders,
the capabilities it needs, the resources needed to support these capabilities, as well as how it plans to configure and
use these capabilities and resources to achieve its aims.

The strategy elements belong to the ArchiMate full framework'#’. From the strategy elements the document uses the
ArchiMate concepts as shown in Fig. 6.5.

Fig. 6.5: ArchiMate strategy elements used in this document

Meanings in one sentence

Summary of Strategy Elements'*

for a table with a summary of strategy elements

144 https://pubs.opengroup.org/architecture/archimate32-doc/ch- Language- Structure. html#sec- The- ArchiMate- Full- Framework
145 https://pubs.opengroup.org/architecture/archimate32-doc/ch-Motivation- Elements.html#sec- Summary-of - Motivation- Elements
146 https://pubs.opengroup.org/architecture/archimate32-doc/ch-Motivation- Elements.html

147 https://pubs.opengroup.org/architecture/archimate32-doc/ch-Language- Structure. html#sec- The- ArchiMate- Full- Framework
148 https://pubs.opengroup.org/architecture/archimate32-doc/ch-Strategy- Layer.html#sec- Summary- of - Strategy- Elements

6.2. Architecture notation 75

https://pubs.opengroup.org/architecture/archimate32-doc/ch-Language-Structure.html#sec-The-ArchiMate-Full-Framework
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Motivation-Elements.html#sec-Summary-of-Motivation-Elements
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Motivation-Elements.html
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Language-Structure.html#sec-The-ArchiMate-Full-Framework
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Strategy-Layer.html#sec-Summary-of-Strategy-Elements

Univention Corporate Server 5.2 Architecture, Release 5.2-1

See also:
ArchiMate strategy elements’e° 76- 149

for the specification of the strategy elements

Relationships

The document uses almost all relations from the ArchiMate Core framework.

As reader you may find views that don’t repeat concepts and relationships in between two concepts in focus. Such
views are abstractions and they use the derivation of relationships. ArchiMate provides derivation rules to create
abstract views.

Meanings in one sentence

Summary of Relationships'>’
for a table with a summary of relationships

See also:

Derivation of Relationships'>'
for an introduction to derivation of relationships

ArchiMate Relationships!'>?
for the specification of relationships

ArchiMate Specification of Derivation Rules'?
for the specification of derivation rules for valid and potential relationships

149 https://pubs.opengroup.org/architecture/archimate32-doc/ch-Strategy-Layer.html

150 https://pubs.opengroup.org/architecture/archimate32-doc/ch- Relationships-and- Relationship- Connectors. html#
sec-Summary-of-Relationships

151 https://pubs.opengroup.org/architecture/archimate32-doc/ch- Relationships-and- Relationship- Connectors. html#
sec-Derivation-of-Relationships

152 https://pubs.opengroup.org/architecture/archimate32-doc/ch- Relationships-and- Relationship- Connectors.html

153 https://pubs.opengroup.org/architecture/archimate32-doc/ch-relationships- Normative.html

76 Chapter 6. Appendix

https://pubs.opengroup.org/architecture/archimate32-doc/ch-Strategy-Layer.html
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Relationships-and-Relationship-Connectors.html#sec-Summary-of-Relationships
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Relationships-and-Relationship-Connectors.html#sec-Derivation-of-Relationships
https://pubs.opengroup.org/architecture/archimate32-doc/ch-Relationships-and-Relationship-Connectors.html
https://pubs.opengroup.org/architecture/archimate32-doc/ch-relationships-Normative.html

Univention Corporate Server 5.2 Architecture, Release 5.2-1

Summary of Relationships

Table 3 gives an overview of the ArchiMate relationships with their definitions.

Table 3: Relationships

the creation, achievement, sustenance, or
operation of a more abstract entity.

Structural Relationships Notation Role Names
Composition Represents that an element consists of one or P — composed of
more other concepts. - composed in
Aggregation Represents that an element combines one or — aggregates
<> . ;
more other concepts. - aggregated in
Assignment Represents the allocation of responsibility, — assigned to
. - *r—r .
performance of behavior, storage, or execution. — has assigned
Realization Represents that an entity plays a critical role in — realizes

— realized by

Dependency Relationships Notation Role Names

Serving Represents that an element provides its X — serves
functionality to another element. - served by

Access Represents the ability of behavior and active « accesses
structure elements to observe or act upon > | — accessed by
passive structure elements. < >

Influence Represents that an element affects the — influences
implementation or achievement of some __j‘_f:_} — influenced by
motivation element.

Association Represents an unspecified relationship, or one associated with
that is not represented by another ArchiMate — associated to
relationship. - associated from

Dynamic Relationships Notation Role Names

Triggerin Represents a temporal or causal relationshi — triggers

ggering p P p - » 188
between elements. — triggered by

Flow Represents transfer from one elementto | > — flows to
another. — flows from

Other Relationships Notation Role Names

Specialization | Represents that an element is a particular kind » — specializes
of another element. - specialized by

Relationship Connectors Notation Role Names

Junction Used to connect relationships of the same type. e

(And) Junction
@]
Or Junction

Fig. 6.6: Screenshot from the table with a summary of relationships in the ArchiMate specification
For a link, refer to Summary of Relationship in the See also box.

6.2. Architecture notation

77

Univention Corporate Server 5.2 Architecture, Release 5.2-1

78

Chapter 6. Appendix

BIBLIOGRAPHY

[1] Univention Corporate Server - Manual for users and administrators. Univention GmbH, 2021. URL.: https://docs.
software-univention.de/manual/5.2/en/.

[2] Univention App Center for App Providers. Univention GmbH, 2021. URL: https://docs.software-univention.de/
app-center/5.2/en/.

[3] Univention Developer Reference. Univention GmbH, 2021. URL: https://docs.software-univention.de/
developer-reference/5.2/en/.

[4] Univention Corporate Server Python API 5.2 documentation. Univention GmbH, 2021. URL: https://docs.
software-univention.de/ucs-python-api/.

[5]1 Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000. URL: https://ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[6] Simon Brown. The C4 model for visualising software architecture. 2018. URL: https://c4model.com/.

[7] ArchiMate® 3.2 Specification. The Open Group, Oct 2022. URL: https://pubs.opengroup.org/architecture/
archimate32-doc/_archimate_3_2_specification.html.

[8] Gerben Wierda. Mastering ArchiMate Edition 3.1: A serious introduction to the ArchiMate® enterprise ar-
chitecture modeling language. R&A, second edition, 2021. ISBN 978-90-831434-0-8. URL: https://ea.rna.nl/
mastering-archimate-edition-3-1/.

79

https://docs.software-univention.de/manual/5.2/en/
https://docs.software-univention.de/manual/5.2/en/
https://docs.software-univention.de/app-center/5.2/en/
https://docs.software-univention.de/app-center/5.2/en/
https://docs.software-univention.de/developer-reference/5.2/en/
https://docs.software-univention.de/developer-reference/5.2/en/
https://docs.software-univention.de/ucs-python-api/
https://docs.software-univention.de/ucs-python-api/
https://ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://c4model.com/
https://pubs.opengroup.org/architecture/archimate32-doc/_archimate_3_2_specification.html
https://pubs.opengroup.org/architecture/archimate32-doc/_archimate_3_2_specification.html
https://ea.rna.nl/mastering-archimate-edition-3-1/
https://ea.rna.nl/mastering-archimate-edition-3-1/

Univention Corporate Server 5.2 Architecture, Release 5.2-1

80

Bibliography

A

actor
app maintainer, 16
app provider, 16
app vendor, 16
customer, 16
apache
http server,5l
mod_proxy, 51
Apache HTTP server, 69
Apache module mod_proxy, 69
app
docker based app, 16
integration, 16
metadata, 16, 61
multi container app, 16
package based app, 16
presentation, 58
single container app, 16
software application, 16
app actions
available actions, 60
install, 60
remove, 60
restart, 60
start, 60
stop, 60
update, 60, 61
upgrade, 60
app catalog, 19
app center
apps cache, 61
architecture overview, 57
benefits, 14
command univention-app, 58
dependency, 68
http/https, 58
interfaces, 58
provider portal, 19
purpose, 14
python app center library, 57
repository, 19
terminal / ssh, 58
app center actor, see actor
app center integration
database, 63

INDEX

directory listener, 64
extended attributes, 67
identity management, 64
MariaDB, 63
PostgreSQL, 63
proxy server, 62
user authentication, 64
user provisioning, 64
web server, 62
app center role, seerole
app infrastructure maintainer
role, 16
app maintainer
actor, 16
app provider
actor, 16
app provider portal, see provider portal
app vendor
actor, 16
apps cache
cache, 61
archimate
active structural aspect,71
application layer,73
architecture notation, 70
aspects, 71
behavior aspect, 7l
business layer,72
core framework, 71
further reading, 70
mastering, 70
motivation elements, 75
passive structure aspect, 71
reading, 70
relationships, 76
strategy elements, 75
technology layer, 74
why, 70
architecture notation
archimate, 70
c4 model, 70
authentication
basic http, 48
form-based login, 48
saml, 48
successful, 48

81

Univention Corporate Server 5.2 Architecture, Release 5.2-1

umc, 48
unsuccessful, 48

B

Backup Directory Node, 10
benefits

app center, 14
Bootstrap, 69
bootstrap, 51

C

c4 model
architecture notation, 70

cache
/var/cache/univention-appcenter, 61
apps cache, 61
command univention-app update, 61
group cache, 55

command
univention-app, 58

configuration management
ucr, 25

customer
actor, 16

D

dependency
app center, 68
ucs portal, 57
udm, 37
directory
/etc/univention/templates/files, 31
/etc/univention/templates/info, 31
/var/cache/univention-appcenter, 61
directory listener
app center, 60
app center integration, 64
ucs portal, 55
udm modules, 38
docker
custom database integration, 63
multi container app, 16
single container app, 16
Dojo Toolkit, 69
dojo toolkit, 5l
domain
service,7
domain management
udm, 23
domain roles
Backup Directory Node, 10
Managed Node, 10
Primary Directory Node, 10
Replica Directory Node, 10

E

environment variable
interfaces/, 31

interfaces/restart/auto, 31

ldap/policy/cron, 34

proxy/*, 31

umc/module/timeout, 52

UNIVENTION_BASECONF, 34
extended attributes, 24, 38

app center integration, 67
extended options, 24

F

file formats, see JSON
files
portal.json, 55, 56

G

group
user group, 7/

Fl

hooks
udm, 36
http
ucr, 30
umc, 48
https
ucr, 30
umc, 48

identity management

app center integration, 64

definition,4

maintenance effort,4

pull method, 64

push method, 64

system, 7
integration, see app center integration

database, 63

web server, 62
interfaces

http/https, 30, 58

terminal / ssh, 30,58
interfaces/, 31
interfaces/restart/auto, 31
IPC socket, 50

J

JSON
app directory listener, 66
app metadata, 61
portal tile cache, 57
portal. json, 56

L

ldap
objects, 38

ldap directory
udm, 35

82

Index

Univention Corporate Server 5.2 Architecture, Release 5.2-1

ldap/policy/cron, 34 proxy/*, 31
lifecycle management, 60 python
listener udm, 35
app directory listener, 66 udm modules, 38
python library
M app center, 57
maintenance effort udm, 35
database, 63 R
identity management, 4
Managed Node, 10 Replica Directory Node, 10
MariaDB repository
app center integration, 63 app center, 19
maintenance, 63 reverse proxy
model udm http rest api, 39
apps, 30 umc, 46
ldap directory, 35 role
ldap object, 38 administrator, 19,31, 33
scripts, 30 app developer, 19
services, 30 app infrastructure maintainer, 16
system configuration, 31 app provider, 19
ucr ¢ api, 30 user, 16, 19, 56
ucr commit, 31
ucr python api, 30 S
ucr set / unset, 3l saml
ucr templates, 31 service provider role,48
ucr variable priority, 3l umc authentication, 48
ucr variables, 31 service, 4,7
ucs group cache, 53 single sign-on
ucs portal, 53 ucs portal, 22
ucs portal backend, 53 software application
ucs portal frontend, 53 app, 16
ucs portal tiles cache, 53 software updates
ucs@school library, 37 umc, 24
udm cli daemon, 36 stakeholder
udm hooks, 36 administrator, 14
udm http rest api, 36 app developer, 14
udm in umc, 36 static http server
udm modules, 36, 38 umc, 46
udm objects, 38 system management
udm python library, 35 umc, 24
udm simple api, 37 system updates
udm syntax, 36 umc, 24
ume, 46
umc backend, 50 T
umc communication, 48 technology
umc modules, 52 apache http server, 50
umc web frontend, 51 bootstrap, 51
univention configuration registry, dojo toolkit,5l
30, 31 http request handler for Python, 53
single page application,53
P tornado, 51, 53
portal, see ucs portal typescript, 53
PostgreSQL vue.js, 53
app center integration, 63 Tornado, 69
maintenance, 63 tornado
Primary Directory Node, 10 ucs portal, 53
provider portal udm http rest api, 39
app center, 19 trust context,’7

Index 83

Univention Corporate Server 5.2 Architecture, Release 5.2-1

TypeScript, 69 ucs source:
typescript base/univention-config-registry/,
ucs portal, 53 29
UcCs source:
LJ base/univention-config-registry/python/uni:
ucr 34
apps, 25 Uucs source:
architecture, 30 base/univention—-quota/umc/,
ascii, 34 45
base*.conf, 31 ucs source:
configuration management, 25 base/univention-system—setup/umc/,
configuration setting,25 45
limitations, 34 ucs source:
persistence layer, 31 base/univention-updater/umc/,
plain text, 25 45
priority custom, 33 ucs source: manage-
priority default, 33 ment/univention—-appcenter/umc/,
priority forced, 33 60
priority LDAP, 33 UucCs source: manage-
priority normal, 33 ment/univention-appcenter/,
priority scheduled, 33 35,57
read access, 34 UucCs source: manage—
scripts, 25 ment/univention-appcenter/python/,
service restart, 31 60
services, 25 UcCs source: manage-—
templates, 31 ment/univention-appcenter/umc/,
trigger write, 25 46
variable length, 34 ucs source: manage-
variable names, 34 ment/univention-directory-manager-modules/,
variable priorities, 33 35
variables, 31 UcCs source: manage-—
write access, 34 ment/univention-directory-manager-rest/
write configuration files,?25 39
ucs group cache, 55 UucCs source: manage-—
ucs portal, 53 ment/univention-management-console/,
architecture model, 53 45
architecture model backend, 55 Uucs source: manage-
backend, 55 ment/univention-management—-console-module-
data, 56 46
dependency, 57 Ucs source: manage-—
directory listener,55 ment/univention-management-console-module—
frontend, 55 46
group cache, 57 UcCsS source: manage-—
identification flow, 56 ment/univention-management-console-module-
portal. json, 56 46
single sign-on, 22 UcCs source: manage-—
tile cache, 57 ment /univention-management-console-module-
tiles cache, 55 46
tornado, 53 UucCsS source: manage—
typescript, 53 ment/univention-management-console-module-:
ucs group cache, 55 46
user identification, 56 ucs source: manage-—
vue.js, 53 ment/univention-management-console-module-
UCS source code 46
ucCs source: /manage- ucs source: manage-—
ment /univention-directory-manager-rest /&xbMiniignt ion-management-console-module—
43 46
UucCs source: manage-—
84 Index

Univention Corporate Server 5.2 Architecture, Release 5.2-1

ment /univention-management-console-maddupbython/dnbtary, 35

46 UDM simple API, 37
UcCs source: manage-— umc, 35
ment /univention-management-consoldmmddpéedadmyumc/,
46 udm hooks, 37
uUcCs source: manage-— udm modules, 37
ment /univention-management-console-maddu pythehcdndiany/ 37
46 udm syntax, 37
ucs source: manage— udm http rest api
ment/univention-portal/, 35, reverse proxy, 39
53 tornado, 39
Ucs source: manage-— udm, 36
ment/univention-self-service/umcddm modules, 36, 38
46 directory listener, 38
ucs source: manage-— python, 38
ment /univention-server-overview/umc,/45
46 administration, 24
UCs source: manage-— architecture, 46
ment/univention-system—-info/umc/, authentication, 48
46 authentication chain,48
UcCs source: manage-— authentication successful, 48
ment/univention-web/, 45,51 authentication unsuccessful, 48
UcCs source: ser— backend, 46, 50
vices/univention—-ad-connector/umc/, backend architecture, 50
46 backend model, 50
ucs source: ser— client, 46,48
vices/univention—-admin-diary/umc/, command line,48
46 communication, 48
UCs source: ser— frontend, 46
vices/univention-pkgdb/umc/, http, 48
46 https, 48
uUcCs source: ser— module processes, 50
vices/univention-printserver/umc/, modules, 46,52
46 modules architecture, 52
ucs source: ser— reverse proxy, 46,51
vices/univention—-s4-connector/, saml, 48
35 server, 46, 48, 51, 52
udm software updates, 24

architecture, 35
attributes, 38

CLI, 36

dependency, 37
devices, 23

domain management, 23
extended attributes, 38
hooks, 36
identities, 23

ldap directory, 35
ldap objects, 38
mapping, 38
objects, 38
properties, 38
purposes, 23
services, 23

static http server, 46,50
system management, 24
system updates, 24
technology stack, 24
terminal, 48
udm, 35
univention-management-console-frontend,
51
univention-web-js, 51
univention-web-styles, 51
web frontend, 46, 48, 51
web frontend model, 51
web interface, 24

UMC modules

app center in UMC, 58
Apps in UMC, 58

syntax, 36

ucs@school library, 37
udm http rest api, 36
udm in umc, 36

umc modules, 24, 46

umc server, 5l
umc/module/timeout, 52
umcp

Index

85

Univention Corporate Server 5.2 Architecture, Release 5.2-1

umc backend, 50
univention configuration registry, see
ucr
univention configuration variable, see
ucr
univention directory manager, see udm
univention management console, see umc
UNIVENTION_BASECONF, 34
univention-app
update, 61
univention-management-console-frontend
umc, 51
univention-web-js
umc, 51
univention-web-styles
umc, 51
user, 4,7
role, 16
user group
group, 7
user provisioning
app center integration, 64

Vv

Vue. js, 69
vue.js
ucs portal, 53

W

web interface
umc, 24

86

Index

	Introduction
	Audience
	Learning objectives
	How to use the document

	Positioning in the IT world
	Origin
	History
	Packages

	Identity management
	Infrastructure management
	Connection to the world around

	Concepts
	Domain concept
	Replication concept
	Role concept
	Primary Directory Node
	Backup Directory Node
	Replica Directory Node
	Managed Node
	Clients

	Permission concept
	System roles
	Administrator and root
	Domain users and admins
	Machine account
	Policies

	Certificate infrastructure
	Univention app ecosystem
	App Center purpose
	App ecosystem
	App ecosystem actors
	App infrastructure maintainer
	App provider
	Customer

	App artifacts
	Univention app infrastructure

	Product components
	UCS portal
	Benefits
	Single sign-on for the UCS portal

	UCS management system
	Domain management
	System management
	Configuration management

	App Center

	Services
	Univention Configuration Registry (UCR)
	UCR architecture
	UCR persistence layer
	UCR variable priorities
	UCR limitations

	Univention Directory Manager (UDM)
	UDM architecture
	Dependencies for UDM
	UDM modules
	UDM data

	UDM HTTP REST API
	Architecture
	Technology
	Request flow
	Capabilities
	RESTful architecture
	Architectural constraints
	Interface constraints

	Dependencies

	UMC - Univention Management Console
	UMC communication
	HTTP/HTTPS in UMC
	Terminal and SSH in UMC

	Authentication
	UMC backend
	UMC web frontend
	UMC modules

	UCS portal service
	Portal frontend
	Portal backend
	User identification
	Structured data for portal content
	UCS portal tile cache
	UCS group cache

	Dependencies for UCS portal

	App Center service
	App Center interfaces
	App Center actions
	App Center apps cache
	App integration
	Web server integration
	Portal integration
	Database integration
	Identity management integration
	Extended attributes

	Dependencies for the App Center

	Appendix
	Third party software
	Architecture notation
	C4 model
	ArchiMate
	Why ArchiMate?
	ArchiMate reader’s guide
	Business layer
	Application layer
	Technology layer
	Motivation elements
	Strategy elements
	Relationships

	Bibliography
	Index

