@ univention

be open.

Univention Developer Reference
Release 5.0-10

Mar 11, 2025

The source of this document is licensed under GNU Affero General Public License v3.0 only.

https://spdx.org/licenses/AGPL-3.0-only.html

CONTENTS

Foreword 1
Packaging software 3
2.1 Introduction e e e e e e 3
2.2 Preparations i v e 3
2.3 Example: Re-building an UCS package e 4
2.3.1 Checking out and buildinga UCS package 4
2.4 Example: Creatinganew UCS package 4
2.5 Setup repositOry . . . v v e 8
2.6 Building packages through the openSUSE Build Service 9
Univention Config Registry 11
3.1 Using UCR o e e e e e e e 11
3.1.1 UsingUCR fromshell e 11
3.1.2 Using UCR from Python 12
3.2 Configurationfiles L e 14
3.2.1 debian/package.univention-config-registry. 15
322 debian/package.univention-config-registry-variables. 18
3.23 debian/package.univention-config-registry—-categories 20
324 debian/package.univention-service 20
3.3 UCR Template files conffiles/path/to/file 21
34 Buildintegration e e e e e e 22
3.5 Exampleso e e e 23
3.5.1 Minimal Fileexample L e e e e 23
3,52 Multifileexample L e e e e e 24
353 ServiCeso e e e e e e e e e 25
3.6 Python 3 Migration L. e e e e e e 27
Domain join 29
4.1 JoInSCIIPLS . . . o oo e e e e e 29
42 JOINSEAtUS . . . v vt e e e e e e e e e e e e e 29
4.3 Running join SCIIPLS v v v v e e e e e e e e e e e 30
4.4 Writing JOIN SCTIPES « v v v v v v o e 30
44.1 Basicjoinscriptexample e e e e 30
442 Joinscriptexitcodes e 32
443 Joinscriptlibraries 33
4.5 Writing unjoin SCrPLS . .+« v v v v v v e e e e e e e e e e e e e e e e e 37
Lightweight Directory Access Protocol (LDAP) in UCS 39
5.1 Packaging LDAP Schema Extensions oo 39
5.2 Packaging LDAP ACL EXtensions o v v v v v vttt it e et et e 40
53 LDAPSECIEtS o v vt e e e e e e e e e e 41
5.3.1 Passwordchange e e e e 42
Univention Directory Listener 43

6.1 Structure of Listener Modules L 43
6.1.1 Handle LDAP objects o o i i e e e e e e e e 45
6.1.2 Initializeandclean. e e 45
6.1.3 Suspendandresumeol e 46
6.2 High-level Listener modules API 47
6.3 Low-level Listenermodule L 52
6.4 Listener tasks and examples L. o e e e e e e e e e e e 55
6.4.1 Listener APTexample e e 55
6.42 Basicexample e e e e e e e 56
6.43 Renameandmoveol e e e e e 57
6.4.4 Full example with packaging L 58
6.4.5 Alittle bit more objectoriented e 61
6.5 Technical Details e 64
6.5.1 User-IDand Credentials i e 64
6.52 Internal Cache e e 65
6.5.3 Internal working L. 66
6.54 LDAPSchemahandling. 68
6.5.5 Python3migration e e e e e e e 69
Univention Directory Manager (UDM) 71
7.1 UDMmodules e e e e e e 72
T OVEIVIEW . . o v o e e e e e e e e e e e e e e e 72
7.1.2 Structureof amodule e 72
7.13 Examplemodule. e 77
7.2 UDMSYNAX . . . v v v ot e 83
7.2.1 UDMsyntax override e e 84
722 UDMLDAPsearch e 84
7.3 Package extended attributes L. L L L e e e e e e 88
7.3.1 Selection liSts o e e e e e 91
732 KNOWNISSUES . . . v v v v i it e et e e e e e e e e e e e e e e 93
7.3.3 Extended options e e e e e e e e e e 94
7.3.4 Extended attribute hooks L 95
7.4 Package UDMMhOOKS o e e e e e 97
7.5 Package UDM extensionmodules Lo e 98
7.6 Package UDM syntax extension i 99
7.7 UDMHTTPREST APL e e s 100
7.7.1 Authentication e e e 100
772 APLoverview e 101
7773 APIclients. o o e e e e e e e 101
7.7.4 APlusageexamples e 103
7775 APIError Codes e e 108
7.8 UCS 5.0: Python 3 migration of modules and extensions 108
7.8.1 Compatibility with UCS 4.4 109
7.82 Default option oL e e e e e e e e e 110
7.83 Mappingfunctions L e 110
7.84 Mapping encoding oL e e e e e e e e e e e e e e e 111
7.8.5 object.open () /object._post_unmap () . . . « v v v v v i i 112
7.8.6 object.has_key () . . . o v i i i i e e e e e 112
787 1dentify () . v v i i e e e e e e e e e e 112
7.8.8 _1dap_modlist () . . . v i v i e e e e e e e e e e 113
7.8.9 1o0kUD () v v v v i e e 113
7.8.10 Syntax classes e 113
7.8.11 Hooks 113
Univention Management Console (UMC) 115
8.1 Architecture e e e 115
8.2 Protocol HTTP for UMC e e e e e e e e 116
83 UMCHIes o o e e e e 116

9

8.3.1 debian/package.umc-modulesS v v ittt i e e e e e
8.3.2 UMCmodule declarationfile,
84 Localsystemmodule e e e e e e
8.4.1 Python APL e
8.4.2 UMC module API (Python and JavaScript)
8.4.3 Packaging
85 Domain LDAPmodule
8.6 Disablingamodule e e e e e e e e e
8.7 Python3migration e e e e
Web services
9.1 Extending the OVEIrview page o v i vt i e e e e e e e e e e e e e e
10 App Center
11 Integration of external repositories
11.1 Integrate with Univention Management Console
11.2 Integrate with Univention Configuration Registry
12 Translate UCS
12.1 Translating a single Debian package L o o
12.1.1 Setup of univention-110n-build
12.1.2 UCS package translation workflow
12.2 Create a translation package for UCS o oo
12.2.1 Installneeded tools L e
12.2.2 Obtain a current checkout of the UCS Git repository
12.2.3 Create translation package L. L
12.2.4 Edittranslationfiles L e
12.2.5 Update the translation package
12.2.6 Build the translation package L
12.3 Editing translationfiles L
12.3.1 Editing translation entrieso e e e
12.3.2 Update meta information it e e e e e e e e
13 Univention Updater
13.1 Separate repoSitOries v v v v v e e e e e e e e e e e e e e e e e e
13.2 Updater SCIIPtS . . v v v o o e
13.2.1 Digital signatureo e e e e e e e
13.3 Release update walk-through L
14 Single sign-on: Integrate a service provider into UCS
14.1 Register new service provider throughudm Lo oL,
14.2 Get information required by the service provider oL
14.3 Add direct login link to the UCS Portal page
15 Miscellaneous
15.1 Databases o e e e e e e e e e e
15.1.1 PostgreSQL L e
15.1.2 MariaDB
152 UCSHNnt e
153 Functionlibraries
15.3.1 shell-univention-1lib
15.3.2 python-univention-lib.,
15.4 Loginaccess CONrol vttt e e e e e e e e
15.5 Network packetfilter e e e e e e
15.5.1 Filter rules by Univention Configuration Registry
15.5.2 Local filter rules through iptables commands
15.5.3 Testing Univention Firewall settings
15.6 Active Directory Connection custom mappings « ¢ ¢« v v v v v e e e e e

127
127

129

131
131
132

135
135
135
136
138
139
139
139
139
139
140
140
140
141

143
143
143
144
144

145
145
145
146

147
147
147
147
147
148
149
149
150
150
150
151
151
152

16 Appendix

16.1 Bugreporting o v i i e
16.2 Debian packaging e e e e
16.2.1 Prerequisites and preparation oL Lo
16.2.2 dh_make e e e e e e e e
16.2.3 Debiancontrolfiles L
1624 Building e
16.2.5 Furtherreading e e e e e e
16.3 Bibliography L e e e e e
Bibliography
Python Module Index
Index

153
153
153
154
154
155
163
163
163

165

167

169

CHAPTER
ONE

FOREWORD

This developer guide provides information to extend Univention Corporate Server. It it targeted at third party vendors
who intend to provide applications for the Univention App Center and for power users who wish to deploy locally
built or modified software.

Feedback is very welcome. Please either file a bug (see Bug reporting (page 153)) or send an email to feedback @uni-
vention.de.

mailto:feedback@univention.de
mailto:feedback@univention.de

Univention Developer Reference, Release 5.0-10

2 Chapter 1. Foreword

CHAPTER
TWO

PACKAGING SOFTWARE

This chapter describes how software for UCS is packaged. For more details on packaging software in the Debian
format, see Debian packaging (page 153).

2.1 Introduction

UCS is based on the Debian distribution, that uses the deb format to package software. The program dpkg is used for
handling a set of packages. On installation packages are unpacked and configured, while on un-installation packages
are de-configured and the files belonging to the packages are removed from the system.

On top of that the apt-tools provide a software repository, which allows software to be downloaded from central file
servers.

Package files provide an index of all packages contained in the repository, which is used to resolve dependencies
between packages. While dpkg works on a set of packages given on the command line, apt —get builds that set of
packages and their dependencies before invoking dpkg on this set. apt—get is a command line tool, which is fully
described in its manual page apt —get (8). A more modern version with a text based user interface is aptitude,
while synaptic provides a graphical frontend.

On UCS systems the administrator is not supposed to use these tools directly. Instead all software maintenance can
be done through the UMC, which maps the requests to invocations of the commands given above.

2.2 Preparations

This chapter describes some simple examples using existing packages. For downloading and building them, some
packages must be installed on the system used as a development system:

e git is used to checkout the source files belonging to the packages.
* build-essential must be installed for building the package.
* devscripts provides some useful tools for maintaining packages.

This can be achieved by running the following command:

[$ sudo apt-get install git build-essential devscripts

Univention Developer Reference, Release 5.0-10

2.3 Example: Re-building an UCS package

Source code: UCS source: doc/developer-reference/packaging/testdeb/!

2.3.1 Checking out and building a UCS package

1. Create the top level working directory

$ mkdir work
$ cd work/

|

2. Either fetch the latest source code from the GIT version control system or download the source code of the
currently packaged version.

* Checkout example package from GIT version control system:

$ git clone https://github.com/univention/univention-corporate-server.git
$ cd univention-corporate-server/base/univention-ssh

|

* Fetch the source code from the Univention Repository server:

a. Enable the source repository once:

$ sudo ucr set repository/online/sources=yes
$ sudo apt—get update
.

b. Fetch source code:

-
$ apt-get source univention-ssh
$ cd univention-ssh-*/

3. Increment the version number of package to define a newer package:

[S debchange --local work 'Private package rebuild'

4. Install the required build dependencies

[S sudo apt-get build-dep .

5. Build the binary package

[S dpkg-buildpackage -uc -us -b -rfakeroot

6. Locally install the new binary package

[S sudo apt-get install ../univention-ssh_*_*.deb

2.4 Example: Creating a new UCS package

The following example provides a walk-through for packaging a Python script called testdeb . py. It creates a file
testdeb-DATE-time in the /tmp/ directory.

A directory needs to be created for each source package, which hosts all other files and sub-directories.

$ mkdir testdeb-0.1
$ cd testdeb-0.1

! https://github.com/univention/univention-corporate-server/tree/5.0- 10/doc/developer-reference/packaging/testdeb/

4 Chapter 2. Packaging software

https://github.com/univention/univention-corporate-server/tree/5.0-10/doc/developer-reference/packaging/testdeb/

Univention Developer Reference, Release 5.0-10

The file testdeb. py, which is the program to be installed, will be put into that directory.

#!/usr/bin/python3

mn

Example for creating UCS packages.

mn

from datetime import datetime

if name == "__main_ ":
now = datetime.now ()
filename = "/tmp/testdeb—-{:%y%m2&dHM}" . format (now)
with open(filename, "a") as tmpfile:
pass

In addition to the files to be installed, some metadata needs to be created in the debian/ sub-directory. This
directory contains several files, which are needed to build a Debian package. The files and their format will be
described in the following sections.

To create an initial debian/ directory with all template files, invoke the dh_make (1) command provided by the
package dh-make:

[$ dh_make —--native --single --email user@example.com }

Here several options are given to create the files for a source package, which contains all files in one archive and only
creates one binary package at the end of the build process. More details are given in d/_make (page 154).

The program will output the following information:

Maintainer name : John Doe

Email-Address : user@example.com

Date : Thu, 28 Feb 2013 08:11:30 +0100
Package Name : testdeb

Version : 0.1

License : blank

Type of Package : Single

Hit <enter> to confirm:

J

The package name testdeb and version 0. 1 were determined from the name of the directory testdeb-0. 1,
the maintainer name and address were gathered from the UNIX account information.

After pressing the Enter key some warning message will be shown:

Currently there is no top level Makefile. This may require additional
tuning. Done. Please edit the files in the debian/ subdirectory now.
You should also check that the testdeb Makefiles install into $DESTDIR
and not in /

Since this example is created from scratch, the missing Makefile is normal and this warning can be ignored.
Instead of writing a Makefi le to install the single executable, dh_install will be used later to install the file.

Since the command completed successfully, several files were created in the debian/ directory. Most of them are
template files, which are unused in this example. To improve understandability they are deleted:

$ rm debian/*.ex debian/*.EX
$ rm debian/README* debian/doc

The remaining files are required and control the build process of all binary packages. Most of them don’t need to be
modified for this example, but others must be completed using an editor.

debian/control
The file contains general information about the source and binary packages. It needs to be modified to include
a description and contain the right build dependencies:

2.4. Example: Creating a new UCS package 5

Univention Developer Reference, Release 5.0-10

(2
Source: testdeb

Section: univention
Priority: optional
Maintainer: John Doe <user(@example.com>
Build-Depends:

debhelper-compat (= 12),
Standards-Version: 4.3.0.3

Package: testdeb

Architecture: all

Depends: ${misc:Depends}

Description: An example package for the developer guide
This purpose of this package is to describe the structure of a Debian
packages. It also documents

* the structure of a Debian/Univention package
* installation process.

* content of packages

* format and function of control files

For more information about UCS, refer to:
https://www.univention.de/

(.

debian/rules
This file has a Makefile syntax and controls the package build process. Because there is no special handling
needed in this example, the default file can be used unmodified.

#!/usr/bin/make -f

o°

dh S@

Note: Tabulators must be used for indentation in this file.

debian/testdeb.install
To compensate the missing Makefile, dh_install (1) is used to install the executable. dh_install
is indirectly called by dh from the debian/rules file. To install the program into /usr/bin/, the file
needs to be created manually containing the following single line:

[testdeb.py usr/bin/

Note: The path is not absolute, but relative.

debian/testdeb.postinst
Since for this example the program should be invoked automatically during package installation, this file needs
to be created. In addition to just invoking the program shipped with the package itself, it also shows how
Univention Configuration Registry Variables can be set. For more information, see Using UCR from shell

(page 11).

-
#! /bin/sh
set -e

case "S1" in
configure)
invoke sample program
testdeb.py
Set UCR variable if previously unset
ucr set repository/online/server?https://updates.software—-univention.de/

(continues on next page)

6 Chapter 2. Packaging software

Univention Developer Reference, Release 5.0-10

(continued from previous page)
Force UCR variable on upgrade from previous package only
if dpkg —--compare-versions "$2" lt-nl 0.1-2
then
ucr set timeserverl=time.fu-berlin.de
fi
7
abort-upgrade |abort-remove |abort-deconfigure)
i
*)
echo "postinst called with unknown argument \ S$1'" >&2
exit 1
7

esac
#DEBHELPER#

exit O
(. J

debian/changelog
The file is used to keep track of changes done to the packaging. For this example the file should look like this:

testdeb (0.1-1) unstable; urgency=low
* Initial Release.

—— John Doe <user@example.com> Mon, 21 Mar 2013 13:46:39 +0100

debian/copyright
This file is used to collect copyright related information. It is critical for Debian only, which need this infor-
mation to guarantee that the package is freely re-distributable. For this example the file remains unchanged.

The copyright and changelog file are installed to the /usr/share/doc/testdeb/ directory on
the target system.

debian/source/format
This file control some internal aspects of the package build process. It can be ignored for the moment and are
further described in Debian control files (page 155).

Now the package is ready and can be built by invoking the following command:

[$ dpkg-buildpackage -us -uc

The command should then produce the following output:

dpkg-buildpackage: info: source package testdeb
dpkg-buildpackage: info: source version 0.1-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by John Doe <user@example.com>
dpkg-buildpackage: info: host architecture amdé64
dpkg-source —--before-build
debian/rules clean
dh clean
dh_clean
dpkg-source -b
dpkg-source: info: using source format '1.0'
dpkg-source: warning: source directory 'testdeb' is not <sourcepackage>-
—<upstreamversion> 'testdeb-0.1'
dpkg-source: info: building testdeb in testdeb_0.1-1.tar.gz
dpkg-source: info: building testdeb in testdeb_0.1-1.dsc
debian/rules build
dh build
dh_update_autotools_config

(continues on next page)

2.4. Example: Creating a new UCS package 7

Univention Developer Reference, Release 5.0-10

(continued from previous page)

dh_autoreconf
create-stamp debian/debhelper-build-stamp
debian/rules binary
dh binary
dh_testroot
dh_prep
dh_install
dh_installdocs
dh_installchangelogs
dh_perl
dh_link
dh_strip_nondeterminism
dh_compress
dh_fixperms
dh_missing
dh_installdeb
dh_gencontrol
dh_md5sums
dh_builddeb
dpkg-deb: building package 'testdeb' in '../testdeb_0.1-1_all.deb'.
dpkg-genbuildinfo
dpkg-genchanges >../testdeb_0.1-1_amd64.changes
dpkg-genchanges: info: including full source code in upload
dpkg-source —--after-build
dpkg-buildpackage: info: full upload; Debian-native package (full source is.
—included)

J

The binary package file testdeb_0.1-1_all.deb is stored in the parent directory. When it is installed manu-
ally using dpkg —-i ../testdeb_0.1-2_all.deb as root, the Python script is installed as /usr/bin/
testdeb.py. Itis automatically invoked by the post int script, soafilenamed /tmp/testdeb-date-time
has been created, too.

Congratulations! You've successfully built your first own Debian package.

2.5 Setup repository

Until now the binary package is only available locally. For installation you must manually copy it to each host and
manually install it using dpkg -i.

If the package requires additional dependencies, the installation process cancels, because dpkg doesn’t download
dependencies, but apt does. To support automatic installation and dependency resolution, you must copy the package
to an apt repository, that’s available through HTTP.

The following example creates a repository under /var/www/repository/. All UCS systems with apache2
installed export this directory by default. For compatibility reasons with the UCS Updater, you need to create
several subdirectories inside this directory.

The following commands create a repository for UCS 5.0 with the component name testcomp:

ASE="/var/www/repository/5.0/maintained/component"
TESTCOMP="testcomp/all"

install -m755 -d "SWWW_BASE/STESTCOMP"

install -m644 -t " BASE/STESTCOMP" *.deb

(cd "SV _BASE"

rm —f "STESTCOMP/Packages"*

apt-ftparchive packages "$TESTCOMP" > "Packages"

gzip -9 < "Packages" > "STESTCOMP/Packages.gz"

mv "Packages" "$STESTCOMP/Packages")

«“ v v n

8 Chapter 2. Packaging software

Univention Developer Reference, Release 5.0-10

You can then include this repository on any UCS system by appending the following line to /et c/apt /sources.
1ist, assuming that the FQDN of the host with the repository is repository.example.com.

deb [trusted=yes] http://repository.example.com/repository/5.0/maintained/
—>component testcomp/all/

Important: The directory, from where you run the apt —ft parchive command, must match the first string given
in the sources.list file after the deb prefix. The URL together with the suffix testcomp/all/ not only
specifies the location of the Packages file, but the package manager also uses it as the base URL for all packages
listed in the Packages file.

Instead of editing the sources.list file directly, you can include the repository as a component and configure
it by setting several UCR variables. You can also configure UCR variables through UDM policies, which simplifies
the task of installing packages from such a repository on many hosts. For the repository before you need to set the
following variables:

* repository/online/component/NAME (page 132)

* repository/online/component/NAME/server (page 132)

$ ucr set \
repository/online/component/testcomp=enabled \
repository/online/component/testcomp/server=https://repository.example.com/
—repository

2.6 Building packages through the openSUSE Build Service

The openSUSE Build Service (OBS) is a framework to generate packages for a wide range of distributions. Additional
information can be found at OpenSUSE Build Service?.

If OBS is already used to build packages for other distributions, it can also be used for Univention Corporate Server
builds. The build target for UCS 4.4 is called Univention UCS 4.4. Note that OBS doesn’t handle the integration steps
described in later chapters, for example the use of Univention Configuration Registry templates.

2 https://build.opensuse.org/

2.6. Building packages through the openSUSE Build Service 9

https://build.opensuse.org/

Univention Developer Reference, Release 5.0-10

10 Chapter 2. Packaging software

CHAPTER
THREE

UNIVENTION CONFIG REGISTRY

The Univention Configuration Registry (UCR) is a local mechanism, which is used on all UCS system roles to consis-
tently configure all services and applications. It consists of a database, were the currently configured values are stored,
and a mechanism to trigger certain actions, when values are changed. This is mostly used to create configuration files
from templates by filling in the configured values. In addition to using simple place holders its also possible to use
Python code for more advanced templates or to call external programs when values are changed. UCR values can
also be configured through an UDM policy in Univention directory service (LDAP), which allows values to be set
consistently for multiple hosts of a domain.

3.1 Using UCR

Univention Configuration Registry provides two interfaces, which allows easy access from shell scripts and Python
programs.

3.1.1 Using UCR from shell

univention-config-registry (and its alias ucr) can be invoked directly from shell. The most commonly
used functions are:

ucr set [key=value | key?value]
Set Univention Configuration Registry Variable key to the given value. Using = forces an assignment, while
? only sets the value if the variable is unset.

Listing 3.1: Use of ucr set

$ ucr set print/papersize?ad \
variable/name=value

ucr get key
Return the current value of the Univention Configuration Registry Variable key.

Listing 3.2: Use of ucr get

case "$ (ucr get system/role)" in
domaincontroller_*)
echo "Running on a UCS Directory Node"
I
esac

For variables containing boolean values the shell-library-function is_ucr_true key from /usr/
share/univention—-1lib/ucr. sh should be used. It returns O (success) for the values 1, yes, on,
true, enable, enabled, 1 for the negated values 0, no, off, false, disable, disabled. For all
other values it returns a value of 2 to indicate inappropriate usage.

11

Univention Developer Reference, Release 5.0-10

Listing 3.3: Use of is_ucr_true

/usr/share/univention-1lib/ucr.sh
if is_ucr_true update/secure_apt
then
echo "The signature check for UCS packages is enabled."
fi

ucr unset key
Unset the Univention Configuration Registry Variable key.

Listing 3.4: Use of ucr unset

[$ ucr unset print/papersize variable/namme

ucr shell [key ...]
Export some or all Univention Configuration Registry Variables in a shell compatible manner as environment
variables. All shell-incompatible characters in variable names are substituted by underscores (_).

Listing 3.5: Use of command:ucr shell

eval "$(ucr shell)"
case "S$server_role" in
domaincontroller_*)
echo "Running on a UCS Domain Controller serving $ldap_base"
i
esac

It is often easier to export all variables once and than reference the values through shell variables.

Warning: Be careful with shell quoting, since several Univention Configuration Registry Variables contain
shell meta characters. Use eval "$ (ucr shell)".

Note: ucr is installed as /usr/sbin/ucr, which is not on the search path $PATH of normal users. Changing
variables requires root access to /etc/univention/base.conf, but reading works for normal users too, if
/usr/sbin/ucr is invoked directly.

3.1.2 Using UCR from Python

UCR also provides a Python binding, which can be used from any Python program. An instance of univention.
config_registry.ConfigRegistry needs to be created first. After loading the current database state with
load () the values can be accessed by using the instance like a Python dictionary:

Listing 3.6: Reading a Univention Configuration Registry variable in
Python

from univention.config_registry import ConfigRegistry
ucr = ConfigRegistry ()

ucr.load()

print (ucr['variable/name'])

print (ucr.get ('variable/name', '<not set>"'))

Since UCS 5.0 several new APIs are provided to simplify reading UCR settings:

ucr
This is a lazy-loaded shared instance, which only allows reading values. It is implemented as a singleton, so all

12 Chapter 3. Univention Config Registry

Univention Developer Reference, Release 5.0-10

modules using it share the same instance (per process). It can be refreshed by invoking load().

Listing 3.7: Reading a Univention Configuration Registry variable in
Python

from univention.config_registry import ucr
print (ucr["ldap/base"])

ucr_live
In contrast to ucr this shared singleton instance automatically reloads the settings. This is done on each access,
but only happens if the files on disk actually changed.

Listing 3.8: Reading a Univention Configuration Registry variable in
Python

from univention.config_registry import ucr_live
print (ucr_live["version/erratalevel"])

Repeated reads of the same key may return different values due to the live character. Reading multiple keys in
sequence is not atomic as other processes might update UCR in between. Reading many keys is slower due to
the extra check for updated files. To mitigate this a frozen view (a read-only snapshot with auto reload disabled)
is created when this instance is used as a Python context manager:

Listing 3.9: Reading a Univention Configuration Registry variable in
Python

from univention.config_registry import ucr_live
with ucr_live as view:
for key, value in view.items():
print (key, value)

ucr_factory
This function can be used to create a new private instance. All values are already loaded.

Listing 3.10: Reading a Univention Configuration Registry variable in
Python

from univention.config_registry import ucr_factory
ucr = ucr_factory ()
print (ucr["version/erratalevel"])

For variables containing boolean values the methods is_true () and is_false () should be used. The former
returns True for the values 1, yes, on, true, enable, enabled, while the later one returns True for the
negated values 0, no, of f, false,disable, disabled. Both methods accept an optional argument default,
which is returned as-is when the variable is not set.

Listing 3.11: Reading boolean Univention Configuration Registry variables
in Python

if ucr.is_true('update/secure_apt'):

print ("package signature check is explicitly enabled")
if ucr.is_true ('update/secure_apt', True):

print ("package signature check is enabled")
if ucr.is_false ('update/secure_apt') :

print ("package signature check is explicitly disabled")
if ucr.is_false('update/secure_apt', True):

print ("package signature check is disabled")

J

Modifying variables requires a different approach. The function ucr_update () should be used to set and unset
variables.

3.1. Using UCR 13

Univention Developer Reference, Release 5.0-10

Listing 3.12: Changing Univention Configuration Registry variables in
Python

from univention.config_registry.frontend import ucr_update
ucr_update (ucr, |

'foo': 'bar',

'baz': '42"',

'bar': None,

})

The function ucr_update () requires an instance of ConfigRegistry (returned by ucr_factory ()) as
its first argument. The method is guaranteed to be atomic and internally uses file locking to prevent race conditions.

The second argument must be a Python dictionary mapping UCR variable names to their new value. The value must
be either a string or None, which is used to unset the variable.

As an alternative the old functions handler_set () and handler_unset () can still be used to set and un-
set variables. Both functions expect an array of strings with the same syntax as used with the command line tool
ucr. As the functions handler_set () and handler_unset () don’t automatically update any instance of
ConfigRegistry, the method load() has to be called manually afterwards to reflect the updated values.

Listing 3.13: Setting and unsetting Univention Configuration Registry vari-
ables in Python

from univention.config_registry import handler_set, handler_unset
handler_set (['foo=bar', 'baz?42'])
handler_unset (['foo', 'bar'])

Listing 3.14: Getting integer values from Univention Configuration Reg-
istry variables in Python

from univention.config_registry import ucr
print (ucr.get_int ("key"))
print (ucr.get_int ("key", 10))

3.2 Configuration files

Packages can use the UCR functionality to create customized configuration files themselves. UCR diverts files shipped
by Debian packages and replaces them by generated files. If variables are changed, the affected files are committed,
which regenerated their content. This diversion is persistent and even outlives updates, so they are not overwritten by
configuration files of new packages.

For this, packages need to ship additional files:

conffiles/path/to/file
This template file is used to create the target file. There exist two variants:

1. A single file template consists of only a single file, from which the target file is created.
2. A multi file template can consist of multiple file fragments, which are concatenated to form the target file.
For more information, see UCR Template files conffiles/path/to/file (page 21).

debian/package.univention-config-registry
This mandatory information file describes the each template file. It specifies the type of the template and lists
the UCR variable names, which shall trigger the regeneration of the target file.

For more information, see debian/package.univention-config-registry (page 15).

debian/package.univention—-config-registry-variables
This optional file can add descriptions to UCR variables, which should describe the use of the variable, its

14 Chapter 3. Univention Config Registry

Univention Developer Reference, Release 5.0-10

default and allowed values.
For more information, see debian/package.univention-config-registry-variables (page 18).

debian/package.univention-config-registry-categories
This optional file can add additional categories to group UCR variables.

For more information, see debian/package.univention-config-registry-categories (page 20).

debian/package.univention-service
This optional file is used to define long running services.

For more information, see debian/package.univention-config-registry-categories (page 20).

In addition to these files, code needs to be inserted into the package maintainer scripts (see debian/preinst, de-
bian/prerm, debian/postinst, debian/postrm (page 162)), which registers and un-registers these files. This is done by
calling univention—-install-config-registry from debian/rules during the package build bi-
nary phase. The command is part of the univention—-config—dev package, which needs to be added as a
Build-Depends build dependency of the source package in debian/control.

3.2.1 debian/package.univention—-config-registry
This file describes all template files in the package. The file is processed and copied by univention—-in-
stall-config-registryinto /etc/univention/templates/info/ when the package is built.

It can consist of multiple sections, where sections are separated by one blank line. Each section consists of multiple
key-value-pairs separated by a colon followed by one blank. A typical entry has the following structure:

Type: <type>

[Multifile|File]: <filename>>
[Subfile: <fragment-filename>]
Variables: <variablel>

Type specifies the type of the template, which the following sections describe in more detail.

File

A single file template is specified as type £1i1e. It defines a template, were the target file is created from only a single
source file. A typical entry hat the following structure:

Type: file

File: <filename>
Variables: <variablel>
User: <owner>

Group: <group>

Mode: <file-mode>
Preinst: <module>
Postinst: <module>

The following keys can be used:

File (required)
Specifies both the target and source file name, which are identical. The source file containing the template
must be put below the conffiles/ directory. The file can contain any textual content and is processed as
described in UCR Template files conffiles/path/to/file (page 21).

The template file is installed to /etc/univention/templates/files/.

Variables (optional)
This key can be given multiple times and specifies the name of UCR variables, which trigger the file commit

3.2. Configuration files 15

Univention Developer Reference, Release 5.0-10

process. This is normally only required for templates using @ ! @ Python code regions. Variables used in @%@
sections do not need to be listed explicitly, since ucr extracts them automatically.

The variable name is actually a Python regular expression, which can be used to match, for example, all variable
names starting with a common prefix.

User (optional); Group (optional); Mode (optional)

These specify the symbolic name of the user, group and octal file permissions for the created target file. If
no values are explicitly provided, then root : root is used by default and the file mode is inherited from the
source template.

Preinst (optional); Postinst (optional)

These specify the name of a Python module located in /etc/univention/templates/modules/,
which is called before and after the target file is re-created. The module must implement the following two

functions:

def preinst (

config_registry: ConfigRegistry,

changes: Dict([str, Tuple[Optional[str],
) —> None:

pass

def postinst (
config_registry: ConfigRegistry,
changes: Dict([str, Tuple[Optional[str],
) —> None:
pass

Optional[str]ll]l],

Optional[strll],

J

Each function receives two arguments: The first argument config_registry is a reference to an instance
of ConfigRegistry. The second argument changes is a dictionary of 2-tuples, which maps the names

of all changed variables to (01d-value, new-value).

univention-install-config-registry installs the module file to /etc/univention/

templates/modules/.

If ascript /etc/univention/templates/scripts/full-path—-to-file exists, it will be called after
the file is committed. The script is called with the argument post inst. Itreceives the same list of changed variables

as documented in Script (page 17).

Multifile

A multi file template is specified once as type multifile, which describes the target file name. In addition to that
multiple sections of type subfile are used to describe source file fragments, which are concatenated to form the

final target file. A typical multifile has the following structure:

Type: multifile

Multifile: <target-filename>
User: <owner>

Group: <group>

Mode: <file-mode>

Preinst: <module>

Postinst: <module>
Variables: <variablel>

Type: subfile
Multifile: <target-filename>
Subfile: <fragment-filename>

Variables: <variablel>

The following keys can be used:

16

Chapter 3. Univention Config Registry

Univention Developer Reference, Release 5.0-10

Multifile (required)
This specifies the target file name. It is also used to link the multi file entry to its corresponding subfile
entries.

Subfile (required)
The source file containing the template fragment must be put below the conffiles/ directory in the Debian
source package. The file can contain any textual content and is processed as described in UCR Template
files conffiles/path/to/file (page 21). The template file is installed to /etc/univention/templates/
files/.

Common best practice is to start the filename with two digits to allow consistent sorting and to put the file in
the directory named like the target filename suffixed by . d, thatis conffiles/target—filename.d/
00fragment—-filename.

Variables (optional)
Variables can be declared in both the multifile and subfile sections. The variables from all sections
trigger the commit of the target file. Until UCS-2.4 only the multifile section was used, since UCS-3.0
the subfile section should be preferred (if needed).

User (optional); Group (optional); Mode (optional); Preinst (optional); Postinst (optional)
Same as above for file.

The same script hook as above for £i1e is also supported.
Script

A script template allows an external program to be called when specific UCR variables are changed. A typical script
entry has the following structure:

Type: script
Script: <filename>
Variables: <variablel>

The following keys can be used:

Script (required)
Specifies the filename of an executable, which is installed to /etc/univention/templates/
scripts/.

The script is called with the argument generate. It receives the list of changed variables on standard input.
For each changed variable a line containing the name of the variable, the old value, and the new value separated
by @%@ is sent.

Variables (required)
Specifies the UCR variable names, which should trigger the script.

Warning: There is no guarantee that Script is executed after a file has been committed. If this is required
for example for restarting a service place the script instead at the location mentioned at the end of File (page 15).

Note: The script interface is quiet limited for historical reasons. Consider it deprecated in favor of Module (page 18).

3.2. Configuration files 17

Univention Developer Reference, Release 5.0-10

Module

A module template allows a Python module to be run when specific UCR variables are changed. A typical module
entry has the following structure:

Type: module
Module: <filename>
Variables: <variablel>

The following keys can be used:

Module (required)
Specifies the filename of a Python module, which is installed to /etc/univention/templates/
modules/.

The module must implement the following function:

def handler (

config_registry: ConfigRegistry,

changes: Dict[str, Tuple[Optional[str], Optionall[str]]],
) —> None:

pass

The function receives two arguments: The first argument config_registry is a reference to an instance
of ConfigRegistry. The second argument changes is a dictionary of 2-tuples, which maps the names
of all changed variables to (01d-value, new-value).

univention-install-config-registry installs the module to /etc/univention/
templates/modules/.

Variables (required)
Specifies the UCR variable names, which should trigger the module.

Warning: There is no guarantee that Module is executed after a file has been committed. If this is required
for e.g. restarting a service use Preinst or Postinst as mentioned in File (page 15) instead.

3.2.2 debian/package.univention—-config-registry-variables

For UCR variables a description should be registered. This description is shown in the Univention Config Registry
module of the UMCas a mouse-over. It can also be queried by running ucr info variable/name on the
command line.

The description is provided on a per-package basis as a file, which uses the ini-style format. The file is processed and
copied by univention-install-config-registry—-info into /etc/univention/registry.
info/variables/. The command univention-install-config-registry-info is invoked in-
directly by univention-install-config—-registry, which should be called instead from debian/
rules.

For each variable a section of the following structure is defined:

[<variable/name>]
Description[en]=<description>
Description[<language>]=<description>
Type=<type>
Elementtype=<type of all list elements>
Separator=<regular expression for separating list elements>
Min=<type constraint range minimum>
Max=<type constraint range maximum>
Regex=<type constraint regular expression>
Default=<default value>
(continues on next page)

18 Chapter 3. Univention Config Registry

Univention Developer Reference, Release 5.0-10

(continued from previous page)

ReadOnly=<yes|no>
Categories=<category, ...>

[variable/name] (required)
For each variable description one section needs to be created. The name of the section must match the variable
name.

To describe multiple variables with a common prefix and/or suffix, the regular expression . * can be used to
match any sequence of characters. This is the only supported regular expression!

Description[language] (required)
A descriptive text for the variable. It should mention the valid and default values. The description can be given
in multiple languages, using the two-letter-code following ISO 639-1: Alpha-2 code [1].

Type (required)
The syntax type for the value. This is used since UCS 5.0-2 for validating the input. Valid values include:

* str for strings

¢ json for JSON strings

e ipv4address for IPv4 addresses

e ipveaddress for IPv6 addresses

¢ ipaddress for IPv6 addresses

e url_proxy for HTTP/HTTP proxy URLs

* bool for boolean values

e int for integers (-co...00)

e uint for unsigned integers (0...00)

* pint for positive integers (1...00)

e portnumber for TCP/UDP port numbers 0-65535
* 1ist for lists of items separated by some character

Elementtype (required for Type=list)
Specifies the type for all elements of type 1ist.

Separator (optional)
For type 1ist aregular expression used as the separator of the list elements. Default separator is a comma.

Min (optional)
Optional constraint for variables of type int defining the smallest possible value the variable can take.

Max (optional)
Optional constraint for variables of type int defining the largest possible value the variable can take.

Regex (optional)
Optional constraint for variables of type st r defining a valid regular expression the value has to match.

Default (optional)
New in version 5.0-0.

The default value of the UCR variable which is applied if the variable is not set. The default value might be a
UCR pattern referencing other variables, for example Default=@%@another/variable@%Q exam-—
ple.

ReadOnly (optional)
This declares a variable as read-only and prohibits changing the value through UMC. The restriction isn’t
applied when using the command line tool ucr. Valid values are t rue for read-only and false, which is
the default.

3.2. Configuration files 19

Univention Developer Reference, Release 5.0-10

Categories (required)
A list of categories, separated by comma. This is used to group related UCR variables. New cat-
egories don’t need to be declared explicitly, but it is recommended to do so following debian/pack-
age.univention-config-registry-categories (page 20).

3.2.3 debian/package.univention-config-registry—-categories

UCR variables can be grouped into categories, which can help administrators to find related settings.
Categories are referenced from .univention-config-registry-variables files (see debian/pack-
age.univention-config-registry-variables (page 18)). They are created on-the-fly, but can be described further by
explicitly defining them ina .univention-config-registry-categories file.

The description is provided on a per-package basis as a file, which uses the INI-style format. The file is processed and
copied by univention-install-config-registry—-info into /etc/univention/registry.
info/categories/. The command univention-install-config-registry-info is invoked in-
directly by univention-install-config—-registry, which should be called instead from debian/
rules.

For each category a section of the following structure is defined:

[<category-name>]

name [en] =<name>

name [<language>]=<translated-name>
icon=<file-name>

[category—name]
For each category description one section needs to be created.

name [language] (required)
A descriptive text for the category. The description can be given in multiple languages, using the two-letter-code
following ISO 639-1: Alpha-2 code [1].

icon (required)
The filename of an icon in either the Portable Network Graphics (PNG) format or Graphics Interchange Format
(GIF). This is unused in UCS-3.1, but future versions might display this icon for variables in this category.

3.2.4 debian/package.univention-service

Long running services should be registered with UCR and UMC. This enables administrators to control these daemons
using the UMC module System services.

The description is provided on a per-package basis as a file, which uses the ini-style format. The file is
processed and copied by univention-install-service-info into /etc/univention/service.
info/services/. The command univention—-install-service-info is invoked indirectly by uni-—
vention-install-config-registry, which should be called instead from debian/rules.

For each service a section of the following structure is defined:

[<service—name>]
description[<language>]=<description>
start_type=<service-name>/autostart
systemd=<service-name>.service
icon=<service/icon_name>
programs=<executable>
name=<service-name>
init_scipt=<init.name>

[service—name] ; name=service—-name (optional)
For each daemon one section needs to be created. The service-name should match the name of the init-script
in /etc/init.d/. If the name differs, it can be overwritten by the name= property.

20 Chapter 3. Univention Config Registry

Univention Developer Reference, Release 5.0-10

description[language] (required)
A descriptive text for the service. The description can be given in multiple languages, using the two-letter-code
following ISO 639-1: Alpha-2 code [1].

start_type (required)

Specifies the name of the UCR variable, which controls if the service should be started automati-
cally. It is recommended to use the shell library /usr/share/univention-config-registry/
init-autostart.lib to evaluate the setting from the init-script of the service. If the variable is set to
false or no, the service should never be started. If the variable is set to manually, the service is ex-
plicitly not started during system boot. The service can still be started manually. It should be noted that if
other services are started that have a dependency on a service marked as manually, the service marked as
manually will also be started.

systemd (optional)
A comma separated list of systemd service names, which are enabled/disabled/masked when start_type
is used. This defaults to the name of the service plus the suffix . service.

init_script (optional)
The name of the legacy init script below /etc/init.d/. This defaults to the name of the service. This
option should not be used any more in favor of systemd.

programs (required)
A comma separated list of commands, which must be running to qualify the service as running. Each com-
mand name is checked against /proc/*/cmdline. To check the processes for additional arguments, the
command can also consist of additional shell-escaped arguments.

icon (unused)
This is unused in UCS, but future versions might display the icon for the service. The file name of an icon in
either Portable Network Graphics (PNG) format or Graphics Interchange Format (GIF) format.

3.3 UCR Template files conffiles/path/to/file

For each file, which should be written, one or more template files need be to created below the conffiles/
directory. For a single file template (see File (page 15)), the filename must match the filename given in the File:
stanza of the file entry itself. For a multi file template (see Multifile (page 16)), the filename must match the filename
given in the File: stanza of the subfile entries.

Each template file is normally a text file, where certain sections get substituted by computed values during the file
commit. Each section starts and ends with a special marker. UCR currently supports the following kinds of markers:

@%@ variable reference
Sections enclosed in @%@ are simple references to Univention Configuration Registry Variable. The section is
replaced inline by the current value of the variable. If the variable is unset, an empty string is used.

ucr scans all files and subfiles on registration. All Univention Configuration Registry Variables
used in @%@ are automatically extracted and registered for triggering the template mechanism. They
don’t need to be explicitly enumerated with Variables: statements in the file debian/package.
univention-config-registry.

@!@ Python code
Sections enclosed in @ ! @ contain Python code. Everything printed to STDOUT by these sections is inserted
into the generated file. The Python code can access the configRegistry variable, which is an already
loaded instance of ConfigRegistry. Each section is evaluated separately, so no state is kept between
different Python sections.

All Univention Configuration Registry Variables used ina @ ! @ Python section must be manually matched by
aVariables: statement in the debian/package.univention-config-registry file. Other-
wise the file is not updated on changes of the UCR variable.

@$Q@UCRWARNING=%PREFIXQ@%Q; Q5*QUCRWARNING_ASCII=%PREFIX@%Q@
This variant of the variable reference inserts a warning text, which looks like this:

3.3. UCR Template files conffiles/path/to/file 21

Univention Developer Reference, Release 5.0-10

r# Warning: This file is auto—-generated and might be overwritten by]
univention—-config-registry.

Please edit the following file(s) instead:

Warnung: Diese Datei wurde automatisch generiert und kann durch

univention-config-registry tliberschrieben werden.

Bitte bearbeiten Sie an Stelle dessen die folgende (n) Datei (en) :
#

/etc/univention/templates/files/etc/hosts.d/00-base

/etc/univention/templates/files/etc/hosts.d/20-static

/etc/univention/templates/files/etc/hosts.d/90-ipvédefaults

#

It should be inserted once at the top to prevent the user from editing the generated file. For single File templates,
it should be on the top of the template file itself. For multi file templates, it should only be on the top the first
sub-file.

Everything between the equal sign and the closing @%@ defines the PREF I X, which is inserted at the beginning
of each line of the warning text. For shell scripts, this should be # and a space character, but other files use
different characters to start a comment. For files, which don’t allow comments, the header should be skipped.

Warning: Several file formats require the file to start with some magic data. For example shell scripts
must start with a hash-bang (#!) and XML files must start with <?xml version="1.0" encod-
ing="UTF-8" 72> (if used). Make sure to put the warning after these headers!

The UCRWARNING_ASCITI variant only emits 7-bit ASCII characters, which can be used for files, which are
not 8 bit clean or unicode aware.

3.4 Build integration

During package build time univention-install-config-registry needs to be called. This should be
done using the sequence ucr in debian/rules:

o .
0 .

dh $@ —--with ucr

This invocation copies the referenced files to the right location in the binary package staging area debian/
package/etc/univention/. Internally univention-install-config-registry-info and
univention-install-service-info are invoked, which should not be called explicitly anymore.

The calls also insert code into the files debian/package.preinst.debhelper, debian/package.
postinst.debhelper and debian/package.prerm.debhelper to register and de-register the tem-
plates. Therefore it’s important that customized maintainer scripts use the #DEBHELPER# marker, so that the gen-
erated code gets inserted into the corresponding preinst, postinst and prerm files of the generated binary
package.

The invocation also adds univention—-configtomisc:Depends to ensure that the package is available during
package configuration time. Therefore it’s important that $ {misc:Depends} is used in the Depends line of the
package section in the debian/control file.

Package:
Depends: ..., ${misc:Depends},

22 Chapter 3. Univention Config Registry

Univention Developer Reference, Release 5.0-10

3.5 Examples

This sections contains several simple examples for the use of Univention Configuration Registry. The complete source
of these examples is available separately. The download location is given in each example below. Since almost all
Univention Corporate Server packages use UCR, their source code provides additional examples.

3.5.1 Minimal File example

This example provides a template for /etc/papersize, which is used to configure the default paper size. A
Univention Configuration Registry Variable print /papersize is registered, which can be used to configure the
paper size.

Source code: UCS source: doc/developer-reference/ucr/papersize/>

conffiles/etc/papersize
The template file only contains one line. Please note that this file does not start with the “UCRWARNING”,
since the file must only contain the paper size and no comments.

[@%@print/papersize@%@

debian/papersize.univention-config-registry
The file defines the templates and is processed by univention—install-config-registry during
the package build and afterwards by univention—config—-registry during normal usage.

Type: file
File: etc/papersize

debian/papersize.univention-config-registry-variables
The file describes the newly defined Univention Configuration Registry Variable.

[print/papersize]

Description[en]=specify preferred paper size [a4]
Description[de]=Legt die bevorzugte PapiergroRe fest [a4d]
Type=str

Categories=service-cups

debian/papersize.postinst
Sets the Univention Configuration Registry Variable to a default value after package installation.

#!/bin/sh

case "S1" in
configure)
ucr set print/papersize?ad

P
esac

#DEBHELPER#

exit O

.

debian/rules
Invoke univention-install-config-registry during package build to install the files to the ap-
propriate location. It also creates the required commands for the maintainer scripts (see debian/preinst, de-
bian/prerm, debian/postinst, debian/postrm (page 162)) to register and un-register the templates during package
installation and removal.

3 https://github.com/univention/univention-corporate-server/tree/5.0- 10/doc/developer-reference/ucr/papersize/

3.5. Examples 23

https://github.com/univention/univention-corporate-server/tree/5.0-10/doc/developer-reference/ucr/papersize/

Univention Developer Reference, Release 5.0-10

#!/usr/bin/make —-f

dh $@ —--with ucr

Note: Tabulators must be used for indentation in this Makefile-type file.

debian/control
The automatically generated dependency on univention—config is inserted by univention-in-
stall-config-registry through debian/papersize.substvars.

Source: papersize

Section: univention

Priority: optional

Maintainer: Univention GmbH <packages@univention.de>

Build-Depends:
debhelper-compat (= 12),
univention-config-dev (>= 15.0.3),

Standards-Version: 4.3.0.3

Package: papersize

Architecture: all

Depends: ${misc:Depends}

Description: An example package to configure the papersize
This purpose of this package is to show how Univention Config
Registry is used.

For more information about UCS, refer to:
https://www.univention.de/

3.5.2 Multifile example

This example provides templates for /etc/hosts.allow and /etc/hosts.deny, which is used to control
access to system services. See hosts_access. 5 for more details.

Source code: UCS source: doc/developer-reference/ucr/hosts/*

conffiles/etc/hosts.allow.d/0O0header; conffiles/etc/hosts.deny.d/00header
The first file fragment of the file. It starts with @ $QUCRWARNING=# @%@, which is replaced by the warning
text and a list of all sub-files.

@$@UCRWARNING=# @%@
/etc/hosts.allow: 1list of hosts that are allowed to access the system.
See the manual pages hosts_access (5) and hosts_options (5).

conffiles/etc/hosts.allow.d/50dynamic’; conffiles/etc/hosts.deny.d/50dynamic
A second file fragment, which uses Python code to insert access control entries configured through the Uni-
vention Configuration Registry Variables hosts/allow/ and hosts/deny/.

@'a

for key, value in sorted(configRegistry.items()):
if key.startswith ('hosts/allow/"'):
print (value)

@!@

debian/hosts.univention-config-registry
The file defines the templates and is processed by univention—-install-config-registry.

4 https://github.com/univention/univention-corporate-server/tree/5.0- 10/doc/developer-reference/ucr/hosts/

24 Chapter 3. Univention Config Registry

https://github.com/univention/univention-corporate-server/tree/5.0-10/doc/developer-reference/ucr/hosts/

Univention Developer Reference, Release 5.0-10

Type: multifile
Multifile: etc/hosts.allow

Type: subfile
Multifile: etc/hosts.allow
Subfile: etc/hosts.allow.d/00header

Type: subfile

Multifile: etc/hosts.allow

Subfile: etc/hosts.allow.d/50dynamic
Variables: “hosts/allow/.*

Type: multifile
Multifile: etc/hosts.deny

Type: subfile
Multifile: etc/hosts.deny
Subfile: etc/hosts.deny.d/00header

Type: subfile

Multifile: etc/hosts.deny

Subfile: etc/hosts.deny.d/50dynamic
Variables: “hosts/deny/.*

debian/hosts.univention-config-registry-variables
The file describes the newly defined Univention Configuration Registry Variables.

[hosts/allow/.*]
—"ALL: LOCAL"
—LOCAL".

Type=str
Categories=service-net
[hosts/deny/ . *]

—"ALL: ALL".

—ALL".

Type=str
Categories=service-net

Description[de]=Eine erlaubende Zugriffsregel fiir Systemdienste,

Description[de]=Eine verbietende Zugriffsregel fiir Systemdienste,

Description[en]=An permissive access control entry for system services, e.g.

z.B. "ALL:.

Description[en]=An denying access control entry for system services, e.g.

z.B. "ALL:.

3.5.3 Services

This example provides a template to control the atd service through an Univention Configuration Registry Variable

atd/autostart.
Source code: UCS source: doc/developer-reference/ucr/service/?

conffiles/etc/init.d/atd

The template replaces the original file with a version, which checks the Univention Configuration Registry
Variable atd/autostart before starting the at daemon. Please note that the “UCRWARNING” is put

after the hash-bash line.

#! /bin/sh
@$QUCRWARNING=# (@%@

BEGIN INIT INFO

Provides: atd

5 https://github.com/univention/univention-corporate-server/tree/5.0- 10/doc/developer-reference/ucr/service/

(continues on next page)

3.5. Examples

25

https://github.com/univention/univention-corporate-server/tree/5.0-10/doc/developer-reference/ucr/service/

Univention Developer Reference, Release 5.0-10

(continued from previous page)

Required-Start: $syslog Stime Sremote fs

Required-Stop: Ssyslog Stime Sremote_fs

Default-Start: 2 345

Default-Stop: 01 6

Short-Description: Deferred execution scheduler

Description: Debian init script for the atd deferred executions
scheduler

END INIT INFO

pidfile: /var/run/atd.pid

#

Author: Ryan Murray <rmurray@debian.org>
#

PATH=/bin:/usr/bin:/sbin:/usr/sbin
DAEMON=/usr/sbin/atd
PIDFILE=/var/run/atd.pid

test —-x "SDAEMON" || exit O
/lib/1lsb/init-functions

case "S1" in
start)
log_daemon_msg "Starting deferred execution scheduler" "atd"
start_daemon -p "$PIDFILE" "$SDAEMON"
log_end_msg $°?
i
stop)
log_daemon_msg "Stopping deferred execution scheduler" "atd"
killproc -p "SPIDFILE" "SDAEMON"
log_end_msg 57
i
force-reload|restart)
IISO" stop
"SO0" start
i
status)
status_of_proc -p "SPIDFILE" "SDAEMON" atd && exit 0 || exit $°?
i
*)
echo "Usage: $0 {start|stop|restart|force-reload|status}"
exit 1
i
esac

exit O

Note: The inclusion of init-autostart.lib and use of check_autostart.

debian/service.univention-config-registry
The file defines the templates.

Type: file
File: etc/init.d/atd
Mode: 755

Variables: atd/autostart

Note: The additional Mode statement to mark the file as executable.

26 Chapter 3. Univention Config Registry

Univention Developer Reference, Release 5.0-10

debian/service.univention-config-registry-variables
The file adds a description for the Univention Configuration Registry Variable atd/autostart.

[atd/autostart]

Description[en]=Automatically start the AT daemon on system startup [yes]
Description[de]=Automatischer Start des AT-Dienstes beim Systemstart [yes]
Type=bool

Categories=service-at

debian/service.postinst
Set the Univention Configuration Registry Variable to automatically start the atd on new installations.

#!/bin/sh

case "S1" in
configure)
ucr set atd/autostart?yes

I
esac

#DEBHELPER#

exit O

L

debian/control

univention-base-files must be added manually as an additional dependency, since it is used from

within the shell code.

p
Source: service

Section: univention
Priority: optional
Maintainer: Univention GmbH <packages@univention.de>
Build-Depends:

debhelper-compat (= 12),

univention-config-dev (>= 15.0.3),
Standards-Version: 4.3.0.3

Package: service

Architecture: all

Depends: ${misc:Depends},
univention-base-files,

Description: An example package to configure services
This purpose of this package is to show how Univention Config
Registry is used.

For more information about UCS, refer to:
https://www.univention.de/

3.6 Python 3 Migration

In UCS 5.0 all UCR templates and UCR modules must be compatible with Python 2 and Python 3. This must also
be the case for UCS 4.4 and newer, because during the upgrade to UCS 5.0 UCR templates can be evaluated with

either Python version.

Many templates simply use the Python 2 print statement:

[print configRegistry.get ('my/variable')

In Python 3 print () is a function, which requires parenthesis to be added:

3.6. Python 3 Migration

27

Univention Developer Reference, Release 5.0-10

[print(configRegistry.get(’my/variable’)) }

This way the statement is both compatible with Python 2 and Python 3. But it breaks if multiple arguments are
supplied or extra arguments from the Python 3 syntax are used:

print ("one", "two")

Python 2: ('one', 'two')

Python 3: one two

print (configRegistry.get ('my/variable'), file=sys.stderr)
Python 2: SyntaxError

Python 3: Okay

Using from __future__ import print_function is not allowed as Univention Configuration Registry
executes Python code before the template is imported.

The deprecated variable baseConfig has been removed, but configRegistry remains for using.

The API of ConfigRegistry works with str. For Python 2 this equals bytes, while for Python 3 this is a
unicode string.

The testcase /usr/share/ucs-test/03_ucr/37check-ucr-templates-py3-migration-status.
py from the package ucs—test—ucr can be used to check if the UCR template output works with both Python
versions and is idempotent.

UCR modules and scripts have no API changes. They simply need to be migrated to be Python 3 compatible.

28 Chapter 3. Univention Config Registry

CHAPTER
FOUR

DOMAIN JOIN

A UCS system is normally joined into a domain. This establishes a trust relation between the different hosts, which
enables users to access services provided by any host of the domain.

Joining a system into a domain requires write permission to create and modify entries in the Univention directory
service (LDAP). Local root permission on the joining host is not sufficient to get write access to the domain wide
LDAP service. Instead valid LDAP credentials must be entered interactively by the administrator doing the join.

4.1 Join scripts

Packages requiring write access to the Univention directory service can provide so called join scripts. They are
installed into /usr/lib/univention-install/. The name of each join script is normally derived from the
name of the binary package containing it. It is prefixed with a two-digit number, which is used to order the scripts
lexicographically. The filename either ends in .inst or .uinst, which distinguishes between join script and
unjoin script (see Writing unjoin scripts (page 37)). The file must have the executable permission bits set.

4.2 Join status

For each join script a version number is tracked. This is used to skip re-executing join scripts, which already have
been executed. This is mostly a performance optimization, but is also used to find join scripts which need to be run.

The text file /var/univention-join/status is used to keep track of the state of all join scripts. For each
successful run of a join script a line is appended to that file. That record consists of three space separated entries:

[$script_name vSversion successful

1. The first entry contains the name of the join script without the two-digit prefix and without the . inst suffix,
usually corresponding to the package name.

2. The second entry contains a version number prefixed by a v. It is used to keep track of the latest version of the
join script, which has been run successfully. This is used to identify, which join scripts need to be executed
and which can be skipped, because they were already executed in the past.

3. The third column contains the word successful.

If a new version of the join script is invoked, it just appends a new record with a higher version number at the end of
the file.

29

Univention Developer Reference, Release 5.0-10

4.3 Running join scripts

The following commands related to running join scripts exist:

univention-join
When univention-join is invoked, the machine account is created, if it is missing. Otherwise an already
existing account is re-used which allows it to be created beforehand. The distinguished name (dn) of that entry
is stored locally in the Univention Configuration Registry Variable 1dap/hostdn. A random password is
generated, which is stored in the file /etc/machine.secret.

After that the file /var/univention-join/status is cleared and all join scripts located in /usr/
lib/univention—-install/ are executed in lexicographical order.

univention-run-join-scripts
This command is similar to univention—-join, but skips the first step of creating a machine account. Only
those join scripts are executed, whose current version is not yet registered in /var/univention-join/
status.

univention-check-join-status
This command only checks for join scriptsin /usr/lib/univention-install/, whose version is not
yet registered in /var/univention—-join/status.

When packages are installed, it depends on the server role, if join scripts are invoked automatically from the
postinst Debian maintainer script or not. This only happens on Primary Directory Node and Backup Direc-
tory Node system roles, where the local root user has access to the file containing the LDAP credentials. On all
other system roles the join scripts need to be run manually by invoking univention—run-join-scripts or
doing so through UMC.

4.4 Writing join scripts

Similar to the Debian maintainer scripts (see debian/preinst, debian/prerm, debian/postinst, debian/postrm (page 162))
they should be idempotent. They should transform the system from any state into the state required by the package,
that is:

* They should create newly introduced objects in the Univention directory service.
* They should not fail, if the object already exists.

¢ They should be careful about modifying objects, which might have been modified by the administrator in the
past.

Important: Join scripts may be called from multiple system roles and different versions. Therefore, it is important
that these scripts do not destroy or remove data still used by other systems!

4.4.1 Basic join script example

This example provides a template for writing join scripts. The package is called join—-template and just contains
a join and an unjoin script. They demonstrate some commonly used functions.

Source code: UCS source: doc/developer-reference/join/join-template/®

50join-template.inst
The join script in UCS packages is typically located in the package root directory. It has the following base
structure:

6 https://github.com/univention/univention-corporate-server/tree/5.0- 10/doc/developer-reference/join/join-template/

30 Chapter 4. Domain join

https://github.com/univention/univention-corporate-server/tree/5.0-10/doc/developer-reference/join/join-template/

Univention Developer Reference, Release 5.0-10

P

#!/bin/sh

joinscript api: bindpwdfile

VERSION=1
/usr/share/univention-join/joinscripthelper.lib

joinscript_init

SERVICE="MyService"

eval "$(ucr shell)"

/usr/share/univention-1ib/ldap.sh
ucs_addServiceTolLocalhost "SSERVICE" "$S@" || die

udm "computers/$server_role" modify "$@" \
——dn "$ldap_hostdn" \
—-—set reins

create container for extended attributes to be placed in
udm container/cn create "S@" \
——ignore_exists \
——position "cn=custom attributes,cn=univention,$ldap_base" \

—-—-set name="myservice" || die
some extended attributes would be added here

joinscript_save_current_version
exit O

Note the essential argument "$@" when udm is invoked, which passes on the required LDAP credentials
described in LDAP secrets (page 41).

New in version 4.3: Since UCS 4.3 erratum 857, credentials can also be passed through a file to prevent the
password from being visible from the process tree.

To enable this API one of the following comments must be placed inside the join script:

joinscript api: bindpwdfile
The parameters ——binddn and ——bindpwdfile pass the credentials for the commands univen—
tion-joinand univention-run-join-script. When UCS runs the join script on a Primary
Directory Node, it doesn’t use these parameters, because the join script has direct access to the creden-
tials.

Deprecated since version 4.4: The old parameter ——bindpwd secret is no longer supported and
used.

Changed in version 5.0: This is the default since UCS 5.

joinscript api: nocredentials
The credentials will be stored in three files named:

* /var/run/univention-join/binddn
e /var/run/univention-join/bindpwd
e /var/run/univention—-join/samba-authentication-file

They exist only while univention—-join or univention-run-join-script are running.
Each individual join script will be called with no extra options.

debian/control
The package uses two shell libraries, which are described in more detail in Join script libraries (page 33). Both
packages providing them must be added as additional runtime dependencies.

7 https://errata.software-univention.de/#/?erratum=4.3x85

4.4. Writing join scripts 31

https://errata.software-univention.de/#/?erratum=4.3x85

Univention Developer Reference, Release 5.0-10

The package needs to add univention—-join—dev as build dependency.

L

Source: Jjoin-template
Section: univention
Priority: optional
Maintainer: Univention GmbH <packages@univention.de>
Build-Depends:
debhelper-compat (= 12),
univention-join-dev (>= 12),
Standards-Version: 4.3.0.3

Package: join-template

Architecture: all

Depends: univention-join (>= 5.0.20-1),
shell-univention-1ib (>= 2.0.17-1),
${misc:Depends}

Description: An example package for join scripts
This purpose of this package is to show how
Univention Join scripts are used.

For more information about UCS, refer to:
https://www.univention.de/

debian/rules

During package build time dh—univention—-join-install needs to be called. This should be done
using the sequence univention-joinin debian/rules:

#!/usr/bin/make —f

o°

dh $E@ --with univention-join

This installs the scripts into the right directories. It also adds code fragments to the . debhelper files to call
them. Those calls are inserted into the Debian maintainer scripts at the location marked with # DEBHELPER#.
As many join scripts need to restart services, which depend on configuration files managed through Univention
Configuration Registry, new Univention Configuration Registry Variable should be set before this section.

4.4.2 Join script exit codes

Join scripts must return the following exit codes:

0

The join script was successful and completed all tasks to join the software package on the system into the
domain. All required entries in the Univention directory service were created or do already exist as expected.

The script will be marked as successfully run. As a consequence the join script will not be called again in this
version.

The script did not complete and some tasks to fully join the system into the domain are still pending. Some
entries couldn’t be created in LDAP or exist in a state, which is incompatible with this version of the package.

The script needs to be run again after fixing the problem, either manually or automatically.

Some internal functions were called incorrectly. For example the credentials were wrong.

Run the join script again.

32

Chapter 4. Domain join

Univention Developer Reference, Release 5.0-10

4.4.3 Join script libraries

The package univention-join contains two shell libraries, which provide functions which help in writing join
scripts:

joinscripthelper.lib

The package contains the shell library /usr/share/univention-join/Jjoinscripthelper.lib. It
provides functions related to updating the join status file. It is used by the join script itself.
joinscript_init
This function parses the status file and exits the shell script, if a record is found with a version greater or equal
to value of the environment variable VERSTON (page 33). The name of the join script is derived from $0.

joinscript_save_current_version
This function appends a new record to the end of the status file using the version number stored in the environ-
ment variable VERSTON (page 33).

joinscript_check_any_version_executed
This function returns success (0), if any previous version of the join scripts was successfully executed. Other-
wise it returns a failure (1).

joinscript_check_specific_version_executed version
This function returns success (0), if the specified version version of the join scripts was successfully exe-
cuted. Otherwise it returns a failure (1).

joinscript_check_version_in_range_executed min max
This function returns success (0), if any successfully run version of the join script falls within the range
min.."max", inclusively. Otherwise it returns a failure (1).

joinscript_extern_init join-script
The check commands mentioned above can also be used in other shell programs, which are not join scripts.
There the name of the join script to be checked must be explicitly given. Instead of calling join-—
script_init, this function requires an additional argument specifying the name of the join-script.

joinscript_remove_script_from_status_file name
Removes the given join script from the join script status file /var/univention-join/status. The
name should be the basename of the joinscript without the prefixed digits and the suffix . inst. So if the
joinscript /var/lib/univention—-install/50join-template. inst shall be removed, one has
torun joinscript_remove_script_from_status_file join-template. Primarily usedin
unjoin scripts.

die
A convenience function to exit the join script with an error code. Used to guarantee that LDAP modifications
were successful: some_udm_create_call || die

These functions use the following environment variables:

VERSION

This variable must be set before joinscript_init is invoked. It specifies the version number of the join
script and is used twice:

1. It defines the current version of the join script.

2. If that version is already recorded in the status file, the join script qualifies as having been run successfully
and the re-execution is prevented. Otherwise the join status is incomplete and the script needs to be
invoked again.

The version number should be incremented for a new version of the package, when the join script needs to
perform additional modifications in LDAP compared to any previous packaged version.

The version number must be a positive integer. The variable assignment in the join script must be on its own
line. It may optionally quote the version number with single quotes (') or double quotes ("). The following
assignment are valid:

4.4. Writing join scripts 33

Univention Developer Reference, Release 5.0-10

VERSION=1
VERSION="'2"
VERSION="3"

JS_LAST EXECUTED_VERSION

This variable is initialized by joinscript_init with the latest version found in the join status file. If no
version of the join script was ever executed and thus no record exists, the variable is set to 0. The join script
can use this information to decide what to do on an upgrade.

join.sh

The package contains the shell library /usr/share/univention-1ib/join.sh. It is used by by Debian
maintainer scripts to register and call join scripts. Before UCS 5 the functions were part of /usr/share/
univention—-lib/base. sh provided by the package shell—-univention-1ib.

Since package version >= 2.0.17-1 it provides the following functions:

call_joinscript [--binddn bind-dn [--bindpwdfile filename]]
[XXjoin—-script.inst]
This calls the join script called XXJjoin-script.inst from the directory /usr/lib/
univention-install/. The optional LDAP credentials bind-dn and filename are passed
on as-is.

call_joinscript_on_dcmaster [——binddn bind-dn [—-bindpwdfile filenamel]]
[XXjoin—-script.inst]
Similar to call_joinscript, but also checks the system role and only executes the script on the Primary
Directory Node.

remove_Jjoinscript_status [name]
Removes the given join script name from the join script status file /var/univention—-join/status.
Note that this command does the same as joinscript_remove_script_from_status_file pro-
vided by univention-join (see joinscripthelper.lib (page 33)).

call_unjoinscript [--binddn bind-dn [--bindpwdfile filename]]
[XXunjoin-script.uinst]
Calls the given unjoin script unjoin-script on Primary Directory Node and Backup Directory Node
systems. The filename must be relative to the directory /usr/lib/univention-install. The optional
LDAP credentials bind-dn and bind-password respective £ilename are passed on as-is. Afterwards
the unjoin script is automatically deleted.

delete_unjoinscript [XXunjoin-script.uinst]
Deletes the given unjoin script XXunjoin—-script .uinst, if it does not belong to any package. The file
name must be relative to the directory /usr/lib/univention—-install.

stop_udm_cli_server
When univention-directory-manager is used the first time a server is started automatically that
caches some information about the available modules. When changing some of this information, for example
when adding or removing extended attributes, the server should be stopped manually.

ldap.sh

The package also contains the shell library /usr/share/univention-1ib/ldap.sh. It provides conve-
nience functions to query the Univention directory service and modify objects. For (un)join scripts the following
functions might be important:

ucs_addServiceTolLocalhost servicename [--binddn bind-dn [--bindpwdfile

filename]]
Registers the additional service servicename in the LDAP object representing the local host. The optional

LDAP credentials bind—dn and bind-password respective £ilename are passed on as-is.

34 Chapter 4. Domain join

Univention Developer Reference, Release 5.0-10

Listing 4.1: Service registration in join script

[ucs_addServiceToLocalhost "MyService" "s@"

ucs_removeServiceFromLocalhost servicename [—--binddn bind-dn [—--bindpwdfile

filenamel]]
Removes the service servicename from the LDAP object representing the local host, effectively reverting

an ucs_addServiceToLocalhost call. The optional LDAP credentials bind-dn and bind-pass-—
word respective £ilename are passed on as-is.

Listing 4.2: Service un-registration in unjoin script

[ucs_removeServiceFromLocalhost "MyService" "$S@"

ucs_isServiceUnused servicename [—-binddn bind-dn [—-bindpwdfile filename]]
Returns 0, if no LDAP host object exists where the service servicename is registered with.

Listing 4.3: Check for unused service in unjoin script

if ucs_isServiceUnused "MyService" "S@"
then

uninstall_my_service
fi

ucs_registerLDAPExtension [-—binddn bind-dn --bindpwdfile filename]
{{——schema filename.schema | ——acl filename.acl | —-udm_syntax filename.py |
——udm_hook filename.py ...} | ——udm_module filename.py [—--messagecatalog
filename] [-—umcregistration filename] [—--icon filename] } [-—packagename
packagename] [-—packageversion packageversion] [—-—name objectname]

[-—ucsversionstart ucsversion] [—-—ucsversionend ucsversion]
The shell function ucs_registerLDAPExtension from the Univention shell function library (see Func-

tion libraries (page 148)) can be used to register several extension in LDAP. This shell function offers several
modes:

——schema <filename>.schema

Register one or more LDAP schema extension (see Packaging LDAP Schema Extensions (page 39))
——acl <filename>.acl

Register one or more LDAP access control list (see Packaging LDAP ACL Extensions (page 40))
——udm_syntax <filename>.py

Register one or more UDM syntax extension (see UDM syntax (page 83))
——udm_hook <filename>.py

Register one or more UDM hook (see Extended attribute hooks (page 95))
——udm_module <filename>.py

Register a single UDM module (see UDM modules (page 72))

The modes can be combined. If more than one mode is used in one call of the function, the modes are always
processed in the order as listed above. Each of these options expects a filename as an required argument.

It is possible to register different extensions to different UCS versions:

—-name <name>
The option can be used to supply an object name to be used to store the extension. If not set £i1ename
will be used. If combined with ——udm_module (page 35) the name must include a forward slash.
—-ucsversionstart <ucsversion>

The option can be used to supply the earliest version of UCS to which the UDM extension should be
deployed.

4.4. Writing join scripts 35

Univention Developer Reference, Release 5.0-10

——ucsversionend <ucsversion>

The option can be used to supply the last version of UCS to which the UDM extension should be deployed.
Together with ——ucsversionstart and ——name, it is possible to deploy different versions of a
UDM extension.

The following options can be given multiple times, but only after the option ——udm_module (page 35):

—-messagecatalog <prefix>/<language>.mo

The option can be used to supply message translation files in GNU message catalog format. The language
must be a valid language tag, i.e. must correspond to a subdirectory of /usr/share/locale/.

——umcmessagecatalog <prefix>/<language>-<module_id>-<application_name>.
mo

Similar to the option above this option can be used to supply message translation files in GNU mes-
sage catalog format, but for the UMC. The filename takes the form language-moduleid.mo,
e.g. de—udm.mo, where language must be a valid language tag, i.e. must correspond to a sub-
directory of /usr/share/locale/. The moduleid is specified in the UMC registration file
(see UMC module declaration file (page 117)). The MO files are then placed under /usr/share/
univention-management-console/1i18n/ in asubdirectory with the corresponding language
short code.

——umcregistration <filename>.xml
The option can be used to supply an UMC registration file (see UMC module declaration file (page 117))
to make the UDM module accessible through Univention Management Console (UMC).

—-jicon <filename>

The option can be used to supply icon files (PNG or JPEG, in 16x16 or 50x50, or SVGZ).

Note: UDM extensions will only be deployed to UCS 5 if either ——ucsversionstart or ——ucsver-—
sionend are set.

Called from a joinscript, the function automatically determines some required parameters, like the app identifier
plus Debian package name and version, required for the creation of the corresponding object. After creation
of the object the function waits up to 3 minutes for the Primary Directory Node to signal availability of the
new extension and reports success or failure.

For UDM extensions it additionally checks that the corresponding file has been made available in the local file
system. Failure conditions may occur e.g. in case the new LDAP schema extension collides with the schema
currently active. The Primary Directory Node only activates a new LDAP schema or ACL extension if the
configuration check succeeded.

Note: The corresponding UDM modules are documented in Univention Directory Manager (UDM) (page 71).

Before calling the shell, function the shell variable UNTVENTION_APP_IDENTIFIER should be set to the
versioned app identifier (and exported to the environment of sub-processes). The shell function will then
register the specified app identifier with the extension object to indicate that the extension object is required as
long as this app is installed anywhere in the UCS domain.

The options ——packagename and ——packageversion should usually not be used, as these parameters
are determined automatically. To prevent accidental downgrades the function ucs_registerLDAPEx—
tension (as well as the corresponding UDM module) only execute modifications of an existing object if the
Debian package version is not older than the previous one.

ucs_registerLDAPExtension supports two additional options to specify a valid range of UCS versions,
where an extension should be activated. The options are ——ucsversionstart and -——ucsversionend.
The version check is only performed whenever the extension object is modified. By calling this function from
a joinscript, it will automatically update the Debian package version number stored in the object, triggering
a re-evaluation of the specified UCS version range. The extension is activated up to and excluding the UCS

36

Chapter 4. Domain join

Univention Developer Reference, Release 5.0-10

version specified by ——ucsversionend. This validity range is not applied to LDAP schema extensions,
since they must not be undefined as long as there are objects in the LDAP directory which make use of it.

Listing 4.4: Extension registration in join script

$ export UNIVENTION_APP_TIDENTIFIER="appID-appVersion" ## example
$. /usr/share/univention-lib/ldap.sh
$ ucs_registerLDAPExtension "S@" \

—-schema /path/to/appschemaextension.schema \
—-—acl /path/to/appaclextension.acl \
—-—udm_syntax /path/to/appudmsyntax.py

$ ucs_registerLDAPExtension "s@" \
——udm_module /path/to/appudmmodule.py \
—--messagecatalog /path/to/de.mo \
--messagecatalog /path/to/eo.mo \
—-—umcregistration /path/to/module-object.xml \
——icon /path/to/moduleiconl6x16.png \
——icon /path/to/moduleicon50x50.png

L

ucs_unregisterLDAPExtension [--binddn bind-dn —--bindpwdfile filename] {
—--schema objectname | —--acl objectname | —--udm_syntax objectname |

——udm_hook objectname | ——udm_module objectname ...}
There is a corresponding ues_unregisterLDAPExtension function, which can be used to un-register

extension objects. This only works if no app is registered any longer for the object. It must not be called
unless it has been verified that no object in LDAP still requires this schema extension. For this reason it should
generally not be called in unjoin scripts.

Listing 4.5: Schema un-registration in unjoin script

/usr/share/univention-1lib/ldap.sh
ucs_unregisterLDAPExtension "S@" —--schema appschemaextension

4.5 Writing unjoin scripts

On package removal, packages should clean up the data in Univention directory service. Removing data from LDAP
also requires appropriate credentials, while removing a package only requires local root privileges. Therefore, UCS
provides support for so-called unjoin scripts. In most cases it reverts the changes of a corresponding join script.

Warning: A domain is a distributed system. Just because one local system no longer wants to store some
information in Univention directory service does not mean that the data should be deleted. There might still be
other systems in the domain that still require the data.

Therefore, the first system to come should setup the data, while only the last system to go may clean up the data.

Just like join scripts an unjoin script is prefixed with a two-digit number for lexicographical ordering. To reverse the
order of the unjoin scripts in comparison to the corresponding join scripts, the number of the unjoin script should be
100 minus the number of the corresponding join script. The suffix of an unjoin script is .uinst and it should be
installed in /usr/lib/univention-uninstall/.

On package removal the unjoin script would be deleted as well, while the Univention directory service might
still contain data managed by the package. Therefore, the script must be copied from there to /usr/1ib/
univention-install/ in the prerm maintainer script.

Example:
The package wunivention-fetchmail provides both a join script /usr/lib/
univention-install/9lunivention-fetchmail.inst and the corresponding unjoin script as

4.5. Writing unjoin scripts 37

Univention Developer Reference, Release 5.0-10

/usr/lib/univention-uninstall/0O%univention-fetchmail.uinst.

As of UCS 3.1 .inst and .uinst are not distinguishable in the UMC Join module by the user. Internally join

scripts are always executed before unjoin scripts and then ordered lexicographically by their prefix.

To decide if an unjoin script is the last instance and should remove the data from LDAP, a service can be registered

for each host where the package is installed.

For example the package univention—fetchmail uses ucs_addServiceFromLocalhost "Fetch-
mail" "$Q@" in the join script to register and ucs_removeServiceFromLocalhost "Fetchmail"
"$@" in the unjoin script to un-register a service for the host. The data is removed from LDAP, when in the
unjoin script ucs_isServiceUnused "Fetchmail" "$@" returns 0. As a side effect adding the service

also allows using this information to find and list those servers currently providing the Fetchmail service.

50join-template.uinst
This unjoin script reverts the changes of the join script from Basic join script example (page 30).

g
#!/bin/sh
joinscript api: bindpwdfile

VERSION is needed for some tools to recognize that as a join script
VERSION=1

/usr/share/univention-join/joinscripthelper.lib
joinscript_init

SERVICE="MyService"
eval "$(ucr shell)"

/usr/share/univention-1ib/ldap.sh
ucs_removeServiceFromLocalhost "S$SERV
if ucs_isServiceUnused "$
then

was last server to implement service. now the data

may be removed

univention-directory-manager container/cn remove "S$@" —-—-dn \

"se" || die

TCR" "g@n
2 A

"cn=myservice, cn=custom attributes,cn=univention, $ldap_base"

Terminate UDM server to force module reload
/usr/share/univention-lib/base.sh
stop_udm_cli_server
fi

do NOT call "joinscript_save_current_version"

otherwise an entry will be appended to /var/univention-join/status
instead the join script needs to be removed from the status file
joinscript_remove_script_from_status_file join-template

exit O
.

|| die

38 Chapter 4. Domain join

CHAPTER
FIVE

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) IN UCS

An LDAP server provides authenticated and controlled access to directory objects over the network. LDAP objects
consist of a collection of attributes which conform to so called LDAP schemata. An in depth documentation of
LDAP is beyond the scope of this document. Other resources cover this topic exhaustively, for example https:
/lwww.zytrax.com/books/ldap/ or the manual pages slapd.conf.5and slapd.access. 5.

At least it should be noted that OpenLDAP offers two fundamentally different tool sets for direct access or modifica-
tion of LDAP data:

1. The slap* commands (slapcat, etc.) are very low level, operating directly on the LDAP backend data
and should only be used in rare cases, usually with the LDAP server not running.

2. The 1dap * commands (1dapsearch, etc.) on the other hand are the proper way to perform LDAP op-
erations from the command line and their functionality can equivalently be used from all major programming
languages.

On top of the raw LDAP layer, the Univention Directory Manager offers an object model on a higher level, featuring
advanced object semantics (see Univention Directory Manager (UDM) (page 71)). That level is usually appropriate
for app developers, which should be considered before venturing down to the level of direct LDAP operations. On the
other hand, for the development of new UDM extensions it is important to understand some of the essential concepts
of LDAP as used in UCS.

One essential trait of LDAP as used in UCS, is the strict enforcement of LDAP schemata. An LDAP server refuses
to start if an unknown LDAP attribute is referenced either in the configuration or in the backend data. This makes
it critically important to install schemata on all systems. To simplify this task UCS features a built-in mechanism for
automatic schema replication to all UCS hosted LDAP servers in the UCS domain (see Univention Directory Listener
(page 43)). The schema replication mechanism is triggered by installation of a new schema extension package on the
Primary Directory Node. For redundancy it is strongly recommended to install schema extension packages also on
each Backup Directory Node. This way, a Backup Directory Node can replace a Primary Directory Node in case
the Primary Directory Node needs to be replaced for some reason. To simplify these tasks even further, UCS offers
methods to register new LDAP schemata and associated LDAP ACLs from any UCS system.

5.1 Packaging LDAP Schema Extensions

For some purposes, for example for app installation, it is convenient to be able to register a new LDAP schema
extension from any system in the UCS domain. For this purpose, the schema extension can be stored as a special type
of UDM object. The module responsible for this type of objects is called settings/ldapschema. As these
objects are replicated throughout the UCS domain, the Primary Directory Node and Backup Directory Node systems
listen for modifications of these objects and integrate them into their local LDAP schema directory. As noted above,
this simplifies the task of keeping the schema on the Backup Directory Node systems up to date with those on the
Primary Directory Node.

The commands to create the LDAP schema extension objects in UDM may be put into any join script (see Domain
Jjoin (page 29)). A LDAP schema extension object is created by using the UDM command line interface uni-
vention-directory-manager or its alias udm. LDAP schema extension objects can be stored anywhere in
the LDAP directory, but the recommended location would be cn=1dapschema, cn=univention, below the

39

https://www.zytrax.com/books/ldap/
https://www.zytrax.com/books/ldap/

Univention Developer Reference, Release 5.0-10

LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good idea to add the
——ignore_exists option, which suppresses the error exit code in case the object already exists in LDAP.

The UDM module settings/ldapschema requires several parameters:

name (required)
Name of the schema extension.

data (required)
The actual schema data in bzip2 and base64 encoded format.

filename (required)
The file name the schema should be written to on Primary Directory Node and Backup Directory Node. The
filename must not contain any path elements.

package (required)
Name of the Debian package which creates the object.

packageversion (required)
Version of the Debian package which creates the object. For object modifications the version number needs to
increase unless the package name is modified as well.

appidentifier (optional)
The identifier of the app which creates the object. This is important to indicate that the object is required as
long as the app is installed anywhere in the UCS domain. Defaults to st ring.

active (internal)
A boolean flag used internally by the Primary Directory Node to signal availability of the schema extension
(default: FALSE).

Since many of these parameters are determined automatically by the wucs_registerLDAPExtension (page 35) shell
library function, it is recommended to use the shell library function to create these objects (see join.sh (page 34)).

Listing 5.1: Schema registration in join script

export UNIVENTION_APP_IDENTIFIER="appID-appVersion" ## example
/usr/share/univention-1ib/ldap.sh

ucs_registerLDAPExtension "S@" \
—-schema /path/to/appschemaextension.schema

5.2 Packaging LDAP ACL Extensions

For some purposes, for example for app installation, it is convenient to be able to register a new LDAP ACL extension
from any system in the UCS domain. For this purpose, the UCR template for an ACL extension can be stored as a
special type of UDM object. The module responsible for this type of objects is called settings/ldapacl. As
these objects are replicated throughout the UCS domain, the Primary Directory Node, Backup Directory Node and
Replica Directory Node systems listen for modifications on these objects and integrate them into the local LDAP
ACL UCR template directory. This simplifies the task of keeping the LDAP ACLs on the Backup Directory Node
systems up to date with those on the Primary Directory Node.

The commands to create the LDAP ACL extension objects in UDM may be put into any join script (see Domain
Jjoin (page 29)). A LDAP ACL extension object is created by using the UDM command line interface univen—
tion-directory-manager or its alias udm. LDAP ACL extension objects can be stored anywhere in the
LDAP directory, but the recommended location would be cn=1dapacl, cn=univention, below the LDAP
base. Since the join script creating the attribute may be called on multiple hosts, it is a good idea to add the ——ig-
nore_exists option, which suppresses the error exit code in case the object already exists in LDAP.

The UDM module settings/ldapacl requires several parameters:

name (required)
Name of the ACL extension.

40 Chapter 5. Lightweight Directory Access Protocol (LDAP) in UCS

Univention Developer Reference, Release 5.0-10

data (required)
The actual ACL UCR template data in bzip2 and base64 encoded format.

filename (required)
The filename the ACL UCR template data should be written to on Primary Directory Node, Backup Directory
Node and Replica Directory Node. The filename must not contain any path elements.

package (required)
Name of the Debian package which creates the object.

packageversion (required)
Version of the Debian package which creates the object. For object modifications the version number needs to
increase unless the package name is modified as well.

appidentifier (optional)
The identifier of the app which creates the object. This is important to indicate that the object is required as
long as the app is installed anywhere in the UCS domain. Defaults to st ring.

ucsversionstart (optional)
Minimal required UCS version. The UCR template for the ACL is only activated by systems with a version
higher than or equal to this.

ucsversionend (optional)
Maximal required UCS version. The UCR template for the ACL is only activated by systems with a version
lower or equal than this. To specify validity for the whole 4.1-x release range a value like 4 . 1-99 may be
used.

active (internal)
A boolean flag used internally by the Primary Directory Node to signal availability of the ACL extension on
the Primary Directory Node (default: FALSE).

Since many of these parameters are determined automatically by the wucs_registerLDAPExtension (page 35) shell
library function, it is recommended to use the shell library function to create these objects (see join.sh (page 34)).

Listing 5.2: LDAP ACL registration in join script

export UNIVENTION_APP_IDENTIFIER="appID-appVersion" ## example
/usr/share/univention-1ib/ldap.sh

ucs_registerLDAPExtension "$@" \
-—acl /path/to/appaclextension.acl

5.3 LDAP secrets

The credentials for different UCS domain accounts are stored in plain-text files on some UCS systems. The files are
named /etc/ *.secret. They are owned by the user root and allow read-access for different groups.

/etc/ldap. secret for cn=admin, 1dap_base
This account has full write access to all LDAP entries. The file is only available on Primary Directory Node
and Backup Directory Node systems and is owned by the group DC Backup Hosts.

/etc/machine. secret for 1dap/hostdn
Each host uses its account to get at least read-access to LDAP. Directory Nodes, for example Domain con-
trollers, in the container cn=dc, cn=computers, ldap_base get additional rights to access LDAP at-
tributes. The file is available on all joined system roles and is readable only by the local root user and group.

During package installation, only the maintainer scripts (see debian/preinst, debian/prerm, debian/postinst, de-
bian/postrm (page 162)) on Primary Directory Node and Backup Directory Node can use their root permission
to directly read /etc/1ldap.secret. Thus only on those roles, the join scripts get automatically executed when
the package is installed. On all other system roles, the join scripts need to be executed manually. This can either
be done through the UMC Join module or through the command line tool univention-run—-join-scripts.
Both methods require appropriate credentials.

5.3. LDAP secrets 41

Univention Developer Reference, Release 5.0-10

5.3.1 Password change

To reconfirm the trust relation between UCS systems, computers need to regularly change the password associated
with the machine account. This is controlled through the Univention Configuration Registry Variable server/
password/change®. For UCS servers this is evaluated by the script /usr/1ib/univention-server/
server_password_change, which is invoked nightly at 01:00 by cron. 8. The interval is controlled through
a second Univention Configuration Registry Variable server/password/interval?, which defaults to 21
days.

The password is stored in the plain text file /etc/machine.secret. Many long running services read these
credentials only on startup, which breaks when the password is changed while they are still running. Therefore, UCS
provides a mechanism to invoke arbitrary commands, when the machine password is changed. This can be used for
example to restart specific services.

Hook scripts should be placed in the directory /usr/lib/univention-server/
server_password_change.d/. The name must consist of only digits, upper and lower ASCII characters,
hyphens and underscores. The file must be executable and is called through run-parts.8. It receives one
argument, which is used to distinguish three phases:

1. Each script will be called with the argument prechange before the password is changed. If any script
terminates with an exit status unequal zero, the change is aborted.

2. A new password is generated locally using makepasswd. 1. It is changed in the Univention directory service
through UDM and stored in /etc/machine.secret. The old password is logged in /etc/machine.
secret.old.

If anything goes wrong in this step, the change is aborted and the changes need to be rolled back.
3. All hook scripts are called again.

 If the password change was successful, postchange gets passed to the hook scripts. This should
complete any change prepared in the prechange phase.

* If the password change failed for any reason, all hook scripts are called with the argument nochange.
This should undo any action already done in the prechange phase.

Install this file to /usr/lib/univention-server/server_password_change.d/.

Listing 5.3: Server password change example

#!/bin/sh

case "S1" in

prechange)
nothing to do before the password is changed
exit O
i

nochange)
nothing to do after a failed password change
exit O
i

postchange)
restart daemon after password was changed
deb-systemd-invoke restart my-daemon
i

esac

init-scripts should only be invoked indirectly through deb-systemd-invoke. 1p. This is required for chroot
environments and allows the policy layer to control starting and stopping in certain special situations like during an
system upgrade.

8 https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-server-password-change
9 https://docs.software-univention.de/manual/5.0/en/appendix/variables. html#envvar-server- password- interval

42 Chapter 5. Lightweight Directory Access Protocol (LDAP) in UCS

https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-server-password-change
https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-server-password-change
https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-server-password-interval

CHAPTER
SIX

UNIVENTION DIRECTORY LISTENER

Replication of the directory data within a UCS domain is provided by the Univention Directory Listener/Notifier
mechanism:

¢ The Univention Directory Listener service runs on all UCS systems.

* On the Primary Directory Node (and possibly existing Backup Directory Node systems) the Univention Di-
rectory Notifier service monitors changes in the LDAP directory and makes the selected changes available to
the Univention Directory Listener services on all UCS systems joined into the domain.

The active Univention Directory Listener instances in the domain connect to a Univention Directory Notifier ser-
vice. If an LDAP change is performed on the Primary Directory Node (all other LDAP servers in the domain are
read-only), this is registered by the Univention Directory Notifier and reported to the listener instances.

Each Univention Directory Listener instance hosts a range of Univention Directory Listener modules. These modules
are shipped by the installed applications; the print server package includes, for example, listener modules which
generate the CUPS configuration.

Univention Directory Listener modules can be used to communicate domain changes to services which are not
LDAP-aware. The print server CUPS is an example of this: The printer definitions are not read from the LDAP,
but instead from the file /etc/cups/printers.conf. Now, if a printer is saved in the printer management of
the Univention Management Console, it is stored in the LDAP directory. This change is detected by the Univention
Directory Listener module cups-printers and an entry gets added to, modified in or deleted from /etc/cups/
printers.conf based on the modification in the LDAP directory.

By default the Listener loads all modules from the directory /usr/1lib/
univention-directory-listener/system/. Other directories can be specified using the option
—m when starting the univention—-directory-listener daemon.

6.1 Structure of Listener Modules

Listener modules can be implemented using the High-level Listener modules API (page 47) or the Low-level Listener
module (page 52).

New in version 4.2: New implementations should be based on the newer high-level API, which is available since UCS
4.2 erratum 31119,

Each listener module must declare several string constants. They are required by the Univention Directory Listener
to handle each module.

your_module.name: str!'l

(optional)
This name is used to uniquely identify the module. It defaults to the filename containing this listener

module without the .py suffix. The name is used to keep track of the module state in /var/lib/
univention-directory-listener/handlers/.

10 https://errata.software-univention.de/#/?erratum=4.2x311
11 https://docs.python.org/3/library/stdtypes. html#str

43

https://errata.software-univention.de/#/?erratum=4.2x311
https://errata.software-univention.de/#/?erratum=4.2x311
https://docs.python.org/3/library/stdtypes.html#str

Univention Developer Reference, Release 5.0-10

your_module.get_name ()

Return type
str!?

For description, see name (page 43).

your_module.description: str!’

(required)
A short description. It is currently unused and displayed nowhere.

your_module.get_description ()

Return type
strl4

For description, see description (page 44).
your_module.filter: str?
(required)

Defines a LDAP filter which is used to match the objects the listener is interested in. This filter is similar to
the LDAP search filter as defined in RFC 2254'°, but more restricted:

e it is case sensitive
* it only supports equal matches

your_module.get_ldap_filter ()

Return type
strl7

For description, see £1i1ter (page 44).

your_module.ldap_filter: str'®

(high-level API)

For description, see £i1ter (page 44).
your_module.attributes: List [str'9]

(optional)

A Python list of LDAP attribute names which further narrows down the condition under which the listener
module gets called. By default the module is called on all attribute changes of objects matching the filter. If
the list is specified, the module is only invoked when at least one of the listed attributes is changed.

your_module.get_attributes()

Return type
List[str?°]

For description, see att ributes (page 44).

your_module.modrdn: str’!

(low-level API, optional)

Setting this variable to the string 1 changes the signature of the function handler (). It receives an additional
forth argument, which specifies the LDAP operation triggering the change.

12 https://docs.python.org/3/library/stdtypes.html#str
13 https://docs.python.org/3/library/stdtypes. html#str
14 https://docs.python.org/3/library/stdtypes.html#str
15 https://docs.python.org/3/library/stdtypes.html#str
16 hitps://datatracker.ietf.org/doc/html/rfc2254.html
17 https://docs.python.org/3/library/stdtypes. html#str
18 https://docs.python.org/3/library/stdtypes.html#str
19 https://docs.python.org/3/library/stdtypes.html#str
20 https://docs.python.org/3/library/stdtypes.html#str

44 Chapter 6. Univention Directory Listener

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://datatracker.ietf.org/doc/html/rfc2254.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Univention Developer Reference, Release 5.0-10

your_module.handle_every_delete: bool??

(low-level API, optional)

The Listener uses its cache (page 65) to keep track of objects, especially their previous values and which mod-
ules handles which objects. The Univention Configuration Registry Variable 1istener/cache/filter
can be used to prevent certain objects from being stored in the cache. But then the Listener no longer knows
which module must be called when such an object is deleted. Setting this variable to True will make the
Listener call the function handler () of this module whenever any object is deleted. The function then must
use other means to determine itself if the deleted object is of the appropriate type as o1d will be empty dict.

your_module.priority: £loat?’

(optional)

This variable can be used to explicitly overwrite the default order in which the modules are executed. By default
modules are executed in random order. replication.py defaults to 0. 0 as it must be executed first, all
other modules default to 50. 0.

your_module.get_priority ()

Return type
float?*

For description, see priority (page 45).

6.1.1 Handle LDAP objects

For handling changes to matching LDAP objects a handler must be implemented. This function is called for different
events:

when the object is first created.

when attributes of an existing object are changed.

when the object is moved to a different location within the LDAP tree.
when the object is finally removed.

when a LDAP schema change happens.

The low-level API requires writing a single function handler () to handle all those cases. The high-level API
already splits this into separate methods create (), modify () and remove (), which are easier to overwrite.

6.1.2 Initialize and clean

Each module gets initialized once by calling its function initialize () (page 45). This state of each module is
tracked in a file below /var/lib/univention-directory-listener/handlers/.

your_module.initialize ()

Return type
None
(optional)

The function initialize() (page 45) is called once when the Univention Directory Listener
loads the module for the first time. This is recorded persistently in the file /var/lib/
univention-directory-listener/name, where name equals the value from the header.

If for whatever reason the listener module should be reset and re-run for all matching objects, the state can be
reset by running the following command:

21 https://docs.python.org/3/library/stdtypes.html#str

22 https://docs.python.org/3/library/functions.html#bool
23 https://docs.python.org/3/library/functions.htm#float
24 https://docs.python.org/3/library/functions.html#float

6.1. Structure of Listener Modules 45

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Univention Developer Reference, Release 5.0-10

[$ univention-directory-listener-ctrl resync S$Sname }

In that case the function initialize () (page 45) will be called again.

your_module.clean ()

Return type
None

(optional)

The function clean () (page 46) is only called when the Univention Directory Listener is initialized for the
first time or is forced to re-initialize from scratch using the option —g, —1i, or —P. The function should purge
all previously generated files and return the module into a clean state.

Afterwards the module will be re-initialized by calling the function initialize () (page 45).

6.1.3 Suspend and resume

For efficiency reasons the API provides two functions, which resumes and suspends modules when no transactions are
processed for 15 seconds. All modules start in the state suspended. Before a suspended modules is called to
handle a change, the function prerun () (page 46) is called for that module. If no transactions happen within a time
span of 15 seconds the Listener suspends all active modules by calling the function postrun () (page 46). This
mechanism is most often used to batch changes by collecting multiple changes and applying them only on suspend.

your_module.prerun ()

Return type
None

(optional);

For optimization the Univention Directory Listener does not keep open an LDAP connection all time. Instead
the connection is opened once at the beginning of a change and closed only if no new change arrives within 15
seconds. The opening is signaled by the invocation of the function prerun () (page 46) and the closing by
postrun () (page 46).

The function postrun () (page 46) is most often used to restart services, as restarting a service takes some
time and makes the service unavailable during that time. It’s best practice to use the handler () only to
process the stream of changes, set UCR variables or generate new configuration files. Restarting associated
services should be delayed to the postrun () (page 46) function.

your_module.postrun ()

Rytpe
None

For description, see prerun () (page 46).

Warning: The function postrun () (page 46) is only called, when no change happens for 15 seconds.
This is not on a per-module basis, but globally. In an ever changing system, where the stream of changes
never pauses for 15 seconds, the functions may never be called!

46

Chapter 6. Univention Directory Listener

Univention Developer Reference, Release 5.0-10

6.2 High-level Listener modules API

Univention Directory Listener ships with a template in UCS source: manage-
ment/univention-directory-listener/examples/listener_module_template.py>>. This should be wused
as a starting point for new modules. The more complex example in UCS source: manage-

26 can also be used.

ment/univention-directory-listener/examples/complex_handler.py
Alternatively the implementation can start from scratch:
1. Create a subclass of univention.listener.ListenerModuleHandler.

2. Add an inner class called Configuration which at least has the attributes name (page 47), descrip—
tion (page 47)and 1dap_filter (page 47).

The inner class Configuration is used to configure global module settings. For most properties a corresponding
method exists, which just returns the value of the property by default. The methods can be overwritten if values
should be computed once on module load.

high_level.get_name ()

Return type
str?’

(optional)
The internal name of the handler, see name (page 43).

high_level.name: str?8

The internal name of the handler, see name <your_module.name<.
high_level.get_description ()

A descriptive text, see description (page 44).
high_level.description: str?

A descriptive text, see description (page 44).
high_level.get_ldap_filter ()

The LDAP filter string, see £1i1ter (page 44).
high_level.ldap_filter: str¥

The LDAP filter string, see £1i1ter (page 44).
high_level.get_attributes ()

The list of attributes, for when they are changed, the module is called; see at t ributes (page 44).
high_level.attributes: str!

The list of attributes, for when they are changed, the module is called; see at t ributes (page 44).
high_level.get_priority ()

The priority for ordering; see priority (page 45).
high_level.priority: float?’

The priority for ordering; see priority (page 45).

25 https://github.com/univention/univention- corporate-server/blob/5.0- 10/management/univention- directory- listener/examples/listener_
module_template.py

26 https://github.com/univention/univention- corporate-server/blob/5.0- 10/management/univention- directory- listener/examples/complex
handler.py

27 https://docs.python.org/3/library/stdtypes. html#str

28 https://docs.python.org/3/library/stdtypes.html#str

29 https://docs.python.org/3/library/stdtypes. html#str

30 https://docs.python.org/3/library/stdtypes.html#str

31 https://docs.python.org/3/library/stdtypes.html#str

32 https://docs.python.org/3/library/functions.html#float

6.2. High-level Listener modules API 47

https://github.com/univention/univention-corporate-server/blob/5.0-10/management/univention-directory-listener/examples/listener_module_template.py
https://github.com/univention/univention-corporate-server/blob/5.0-10/management/univention-directory-listener/examples/listener_module_template.py
https://github.com/univention/univention-corporate-server/blob/5.0-10/management/univention-directory-listener/examples/complex_handler.py
https://github.com/univention/univention-corporate-server/blob/5.0-10/management/univention-directory-listener/examples/complex_handler.py
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Univention Developer Reference, Release 5.0-10

high_level.get_listener_module_instance ()

Return type
ListenerModuleHandler

This creates an instance of the handler module and returns it.

high_level.get_listener_module_class ()

Return type
List**[ListenerModuleHandler]

(optional)
Class that implements the module. Will be set automatically by the handlers meta-class.

high_level.listener_module_class: List’ [ListenerModuleHandler]
high_level.get_active ()

Return type

bool®

This returns the value of the Univention Configuration Registry Variable 1istener/module/name/
deactivate as a boolean. Setting the variable to False will prevent the module from being called for
all changes.

Note: Re-enabling the module will not result in the module being called for all previously missed changes.
For this the module must be fully resynchronized.

The handler itself should inherit from univention.listener.ListenerModuleHandler and then over-
write some methods to provide its own implementation:

high_level.create (dn: st°, new: Dict’ [str8, List°[byzes40 1D

Parameters
e dn(str*) -
* new (Dict"‘2 [str®, List™ [bytes45]]))—

Return type
None

Called when a new object was created.
high_level .modify (dn: str*, new: Dict* [st*®, List™[bytes]], old: Dicr'[str2, List3 [byles54 1], old_dn:
0[)[i()rza155 [st°0])
Parameters
e dn(str’)—

e new (Dict®[str?, List®[bytes®]])-

33 https://docs.python.org/3/library/typing. html#typing.List
34 https://docs.python.org/3/library/typing html#typing. List
35 https://docs.python.org/3/library/functions.html#bool

36 https://docs.python.org/3/library/stdtypes.html#str

37 https://docs.python.org/3/library/typing html#typing.Dict
38 https://docs.python.org/3/library/stdtypes. html#str

39 https://docs.python.org/3/library/typing. html#typing.List
40 https://docs.python.org/3/library/stdtypes.html#bytes

41 https://docs.python.org/3/library/stdtypes.html#str

42 https://docs.python.org/3/library/typing html#typing.Dict
43 https://docs.python.org/3/library/stdtypes.html#str

4 https://docs.python.org/3/library/typing. html#typing. List
4 https://docs.python.org/3/library/stdtypes.html#bytes

48 Chapter 6. Univention Directory Listener

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes

Univention Developer Reference, Release 5.0-10

e 01d (Dict?[str®, List™[bytes®]])-
* old_dn (Optional® [str]))-

Return type
None

Called when a new object was modified or moved. In case of a move o1d_dn is set. During a move attributes
may be modified, too.

high_level.remove (dn: str98, old: Dict® [str’°, List!'[l)yles72 1h

Parameters
e dn(str’?)—
e old (Dict™ [str?, List®[bytes’]])-

Return type
None

Called when a new object was deleted.

high_level.initialize ()

Return type
None

Called once when the module is not initialized yet.

high_level.clean()

Return type
None

Called once before a module is resynchronized.

46 https://docs.python.org/3/library/stdtypes.html#str

47 https://docs.python.org/3/library/typing. html#typing.Dict
48 https://docs.python.org/3/library/stdtypes.html#str

49 https://docs.python.org/3/library/typing htmM#typing. List
30 https://docs.python.org/3/library/stdtypes.html#bytes

31 https://docs.python.org/3/library/typing html#typing.Dict
52 https://docs.python.org/3/library/stdtypes.html#str

33 https://docs.python.org/3/library/typing html#typing. List
34 https://docs.python.org/3/library/stdtypes.html#bytes

33 https://docs.python.org/3/library/typing.html#typing.Optional
36 https://docs.python.org/3/library/stdtypes.html#str

57 https://docs.python.org/3/library/stdtypes.html#str

38 https://docs.python.org/3/library/typing html#typing.Dict
39 https://docs.python.org/3/library/stdtypes.html#str

60 https://docs.python.org/3/library/typing. html#typing.List
61 https://docs.python.org/3/library/stdtypes.html#bytes

62 https://docs.python.org/3/library/typing html#typing.Dict
63 https://docs.python.org/3/library/stdtypes.html#str

64 https://docs.python.org/3/library/typing html#typing. List
95 https://docs.python.org/3/library/stdtypes.html#bytes

96 https://docs.python.org/3/library/typing.html#typing. Optional
67 https://docs.python.org/3/library/stdtypes.html#str

68 https://docs.python.org/3/library/stdtypes.html#str

%9 https://docs.python.org/3/library/typing html#typing.Dict
70 https://docs.python.org/3/library/stdtypes.html#str

71 https://docs.python.org/3/library/typing html#typing. List
72 https://docs.python.org/3/library/stdtypes.html#bytes

73 https://docs.python.org/3/library/stdtypes.html#str

74 https://docs.python.org/3/library/typing html#typing.Dict
75 https://docs.python.org/3/library/stdtypes.html#str

76 https://docs.python.org/3/library/typing. html#typing. List
77 https://docs.python.org/3/library/stdtypes.html#bytes

6.2. High-level Listener modules API 49

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes

Univention Developer Reference, Release 5.0-10

high_level.pre_run ()

Return type
None

Called once each time before a batch of transactions is processed.

high_level.post_run ()

Return type
None

Called once each time after a batch of transactions is processed.
In addition to those handler functions the class also provides several convenience functions:

high_level.as_root ()

Return type
None

A context manager to temporarily change the effective UID of the current to 0. Also see listener.
SetUID () described in User-ID and Credentials (page 64).

high_level.dif£ (old: Dict’®[str’®, List® [bytes®!]], new: Dict® [str®3, List*[bytes®]], keys:
Optional*®[Tterable®’ [str88]], ignore_metadata: bool®)
Parameters
e old (Dict [str®, List?[bytes®]])-
e new (Dict™[str®, List™[bytes’]])-
* typing.Optional [typing.Iterable[str]]keys -
+ ignore_metadata (boo1”®) -

Return type
Dict” [str'% Tuple'®' [Optional'%[List'* [bytes'94]], Optional'% [List'*[bytes'*71]1]

Calculate difference between old and new LDAP attributes. By default all attributes are compared, but this can
be limited by naming them via keys. By default operational attributes are excluded unless ignore_meta-
data is enabled.

50 Chapter 6. Univention Directory Listener

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes

Univention Developer Reference, Release 5.0-10

high_level.error_handler (dn: str'®, old: Dict'®[str''0, List'" [bytes''?]], new: Dict'!3 [str'14,
List'B[bytesl 1711, command: str''7, exc_type:
Optional' '8 [Type''” [BaseException'*]], exc_value:
Optional 121y BaseException 1221 exc_traceback:
Optional'® [types. TracebackType'**]

Parameters
e dn(str'®)-
e old (Dict [str'?, List'® [bytes'®]])-
e new (Dict™ strBl, 1istB? [bytes!B]]) -
 command (st r'?*) -
 exc_type (Optional'® [Type'*® [BaseException]])—
» exc_value (Optional'®® [BaseException'?’])-

» exc_traceback (Optional® [types. TracebackType'*]) -

Return type
None

This method will be called for unhandled exceptions in create/modify/remove. By default it logs the exception
and re-raises it.

78 https://docs.python.org/3/library/typing html#typing. Dict

79 https://docs.python.org/3/library/stdtypes.html#str

80 https://docs.python.org/3/library/typing html#typing. List

81 https://docs.python.org/3/library/stdtypes. html#bytes

82 https://docs.python.org/3/library/typing html#typing.Dict

83 https://docs.python.org/3/library/stdtypes.html#str

84 https://docs.python.org/3/library/typing. html#typing.List

85 https://docs.python.org/3/library/stdtypes.html#bytes

86 https://docs.python.org/3/library/typing.html#typing.Optional
87 https://docs.python.org/3/library/typing html#typing.Iterable
88 https://docs.python.org/3/library/stdtypes.html#str

89 https://docs.python.org/3/library/functions.html#bool

90 https://docs.python.org/3/library/typing.html#typing. Dict

91 https://docs.python.org/3/library/stdtypes.html#str

92 https://docs.python.org/3/library/typing html#typing List

93 https://docs.python.org/3/library/stdtypes.html#bytes

94 https://docs.python.org/3/library/typing html#typing.Dict

95 https://docs.python.org/3/library/stdtypes.html#str

96 https://docs.python.org/3/library/typing htmM#typing List

97 https://docs.python.org/3/library/stdtypes.html#bytes

98 https://docs.python.org/3/library/functions.html#bool

9 https://docs.python.org/3/library/typing.html#typing. Dict

100 https://docs.python.org/3/library/stdtypes.html#str

101 https://docs.python.org/3/library/typing. html#typing. Tuple
102 hitps://docs.python.org/3/library/typing. html#typing.Optional
103 https://docs.python.org/3/library/typing. html#typing. List

104 hitps://docs.python.org/3/library/stdtypes.html#bytes

105 https://docs.python.org/3/library/typing.html#typing.Optional
106 https://docs.python.org/3/library/typing.html#typing.List

107 https://docs.python.org/3/library/stdtypes.html#bytes

6.2. High-level Listener modules API 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/types.html#types.TracebackType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/types.html#types.TracebackType

Univention Developer Reference, Release 5.0-10

property high_ level.lo: univention.uldap.access

This property returns a LDAP connection object to access the local LDAP server.

property high_level.po: univention.uldap.position
This property returns a LDAP position object for the LDAP base DN.

Any instance also has the following variables:

high_level.logger: logging. Logger'#
An instance of 1logging.Logger.

high_level.ucr: univention.config_registry.ConfigRegistry

A reference to the shared instance 1istener.configRegistry.

6.3 Low-level Listener module

Each Listener module is implemented as a plain Python module. The required variables and functions must be

declared at the module level.

description : str = "Module description"
filter : str = " (! (objectClass=lock))"
attributes : List([str] = ["objectClass"]
modrdn : str = "1"

On top of the description in Structure of Listener Modules (page 43) the following extra notes apply:

low_level.filter: str'®

(required)

108 https://docs.python.org/3/library/stdtypes. html#str

109 https://docs.python.org/3/library/typing.html#typing.Dict

110 https://docs.python.org/3/library/stdtypes. html#str

1T https://docs.python.org/3/library/typing. html#typing.List

112 https://docs.python.org/3/library/stdtypes.html#bytes

113 https://docs.python.org/3/library/typing. html#typing. Dict

114 hitps://docs.python.org/3/library/stdtypes.html#str

115 https://docs.python.org/3/library/typing. html#typing List

116 https://docs.python.org/3/library/stdtypes.html#bytes

7 https://docs.python.org/3/library/stdtypes. html#str

118 https://docs.python.org/3/library/typing.html#typing.Optional

119 https://docs.python.org/3/library/typing. html#typing. Type

120 https://docs.python.org/3/library/exceptions.html#BaseException
121 https://docs.python.org/3/library/typing. html#typing. Optional
122 https://docs.python.org/3/library/exceptions.html#BaseException
123 https://docs.python.org/3/library/typing.html#typing.Optional

124 https://docs.python.org/3/library/types.html#types. Traceback Type
125 https://docs.python.org/3/library/stdtypes.html#str

126 https://docs.python.org/3/library/typing. html#typing. Dict

127 https://docs.python.org/3/library/stdtypes. html#str

128 https://docs.python.org/3/library/typing. html#typing.List

129 https://docs.python.org/3/library/stdtypes.html#bytes

130 https://docs.python.org/3/library/typing. html#typing.Dict

131 https://docs.python.org/3/library/stdtypes. html#str

132 https://docs.python.org/3/library/typing. html#typing.List

133 https://docs.python.org/3/library/stdtypes.html#bytes

134 https://docs.python.org/3/library/stdtypes.htmlé#str

135 https://docs.python.org/3/library/typing. html#typing.Optional

136 https://docs.python.org/3/library/typing. html#typing. Type

137 https://docs.python.org/3/library/exceptions.html#BaseException
138 https://docs.python.org/3/library/typing. html#typing. Optional

139 https://docs.python.org/3/library/exceptions.html#BaseException
140 https://docs.python.org/3/library/typing. html#typing.Optional

141 https://docs.python.org/3/library/types.html#types. Traceback Type
142 https://docs.python.org/3/library/logging. html#logging Logger

52

Chapter 6. Univention Directory Listener

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str

Univention Developer Reference, Release 5.0-10

Note: The name filter (page 52) has the drawback that it shadows the Python built-in function £i1-
ter () ', butits use has historical reasons. If that function is required for implementing the listener module,
an alias-reference may be defined before overwriting the name or it may be explicitly accessed through the
Python __builtin__ module.

In addition to the static strings, a module must implement several functions. They are called in different situations of

the lifecycle of the module.

def initialize () —> None:
pass

def handler (
dn: str,

new: Dict[str, List[bytesl]],
old: Dict[str, List[bytes]],

command: str = ,

) —> None:
pass

def clean() —> None:
pass

def prerun() —-> None:
pass

def postrun() —-> None:
pass

def setdata (key: str, value:
pass

str) —> None:

low_level.handler (dn: st'®, new: Dict[str'*°, List[bytes'*"]], old: Dict[str'*®, List[bytes'*]], command:

str!30 =)

Parameters

e dn(strPh -

e new (Dict [str'9?, List[bytes'®]])-

e old (Dict [str*, List[bytes™]])-

e command (st r'%) —

Return type
None

(required)

This function is called for each change matching the filter and attributes as declared in the header of
the module. The distinguished name (dn) of the object is supplied as the first argument dn.

Depending on the type of modification, o1d and new may each independently either be None or reference a
Python dictionary of lists. Each list represents one of the multi-valued attributes of the object. The Univention
Directory Listener uses a local cache to store the values of each object as it has seen most recently. This cache
is used to supply the values for o1d, while the values in new are those retrieved from that LDAP directory
service which is running on the same server as the Univention Directory Notifier (Primary Directory Node or
Backup Directory Node servers in the domain).

If and only if the global modrdn setting is enabled, command is passed as a fourth argument. It contains
a single letter, which indicates the original type of modification. This can be used to further distinguish an
modrdn operation from a delete operation followed by a create operation.

m (modify)
Signals a modify operation, where an existing object is changed. o1d contains a copy of the previously

143

https://docs.python.org/3/library/stdtypes.html#str

144 https://docs.python.org/3.7/library/functions. html#filter

6.3. Low-level Listener module

53

https://docs.python.org/3.7/library/functions.html#filter
https://docs.python.org/3.7/library/functions.html#filter
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

Univention Developer Reference, Release 5.0-10

values from the listener cache. new contains the current values as retrieved from the leading LDAP
directory service.

a (add)
Signals the addition of a new object. 01d is None and new contains the latest values of the added object.

d (delete)
Signals the removal of a previously existing object. o1d contains a copy of the previously cached values,
while new is None.

r (rename: modification of distinguished name through modrdn)

Signals a change in the distinguished name, which may be caused by renaming the object or moving the
object from one container into another. The module is called with this command instead of the delete
command, so that modules can recognize this special case and avoid deletion of local data associated
with the object. The module will be called again with the add command just after the modrdn command,
where it should process the rename or move operation. Each module is responsible for keeping track of
the rename-case by internally storing the previous distinguished name during the modrdn phase of this
two phased operation.

n (new or schema change)
This command can signal two changes:

 If dnis cn=Subschema, it signals that a schema change occurred.

 All other cases signal the creation of a new intermediate object, which should be handled just like a
normal add () operation. This happens when an object is moved into a new container, which does
not yet exists in the local LDAP service.

Important: The listener only retrieves the latest state and passes it to this function. Due to stopped processes
or due to network issues this can lead to multiple changes being aggregated into the first change. This may
cause command to no longer match the values supplied through new. For example, if the object has been
deleted in the meantime, the function is called once with new=None and command="m". This can also lead
to the function being called multiple times with o1d being equal to new.

157 158)

low_level.setdata (key: str'”’, value: str

Parameters

e key (str')—

» value (str'%)—

Return type
None

(optional)

This function is called up to four times by the Univention Directory Listener main process to pass configuration
data into the modules. The following keys are supplied in the following order:

basedn
The base distinguished name the Univention Directory Listener is using.

145 https://docs.python.org/3/library/stdtypes.html#str
146 https://docs.python.org/3/library/stdtypes.html#str
147 https://docs.python.org/3/library/stdtypes.html#bytes
148 https://docs.python.org/3/library/stdtypes.html#str
149 https://docs.python.org/3/library/stdtypes. html#bytes
150 https://docs.python.org/3/library/stdtypes.html#str
151 hitps://docs.python.org/3/library/stdtypes. html#str
152 https://docs.python.org/3/library/stdtypes. html#str
153 https://docs.python.org/3/library/stdtypes.html#bytes
154 https://docs.python.org/3/library/stdtypes.html#str
155 https://docs.python.org/3/library/stdtypes.html#bytes
156 https://docs.python.org/3/library/stdtypes.html#str

54 Chapter 6. Univention Directory Listener

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Univention Developer Reference, Release 5.0-10

binddn
The distinguished name the Univention Directory Listener is using to authenticate to the LDAP server
(through simple bind).

bindpw
The password the Univention Directory Listener is using to authenticate to the LDAP server.

ldapserver
The hostname of the LDAP server the Univention Directory Listener is currently reading from.

Note: It’s strongly recommended to avoid initiating LDAP modifications from a listener module. This poten-
tially creates a complex modification dynamic, considering that a module may run on several systems in parallel
at their own timing.

6.4 Listener tasks and examples

All changes trigger a call to the function handler (). For simplicity and readability it is advisable to delegate the
different change types to different sub-functions.

6.4.1 Listener APl example

The following boilerplate code uses the newer listener API.

Source code: UCS source: management/univention-directory-listener/examples/listener_module_template.py!®!

SPDX-FileCopyrightText: 2017-2024 Univention GmbH
SPDX-License-Identifier: AGPL-3.0-only

from typing import Dict, Optional, List

from univention.listener import ListenerModuleHandler

class ListenerModuleTemplate (ListenerModuleHandler) :

class Configuration (object) :

name = 'unique_name'
description = 'listener module description'
ldap_filter = ' (& (objectClass=inetOrgPerson) (uid=example))"
attributes = ['sn', 'givenName']
def create(self, dn: str, new: Dict[str, List[bytes]]) -> None:
self.logger.debug('dn: ', dn)
def modify (
self,
dn: str,

old: Dict[str, List[bytes]],
new: Dict[str, List[bytes]],
old_dn: Optional[str],

) —> None:

(continues on next page)

157 https://docs.python.org/3/library/stdtypes.html#str

158 https://docs.python.org/3/library/stdtypes. html#str

159 https://docs.python.org/3/library/stdtypes.html#str

160 https://docs.python.org/3/library/stdtypes.html#str

161 https://github.com/univention/univention-corporate-server/blob/5.0- 10/management/univention-directory-listener/examples/listener_
module_template.py

6.4. Listener tasks and examples 55

https://github.com/univention/univention-corporate-server/blob/5.0-10/management/univention-directory-listener/examples/listener_module_template.py

Univention Developer Reference, Release 5.0-10

(continued from previous page)

self.logger.debug('dn: 2r', dn)
if old_dn:
self.logger.debug('it is (also) a move! old_dn: %r', old_dn)
self.logger.debug('changed attributes: $%r', self.diff (old, new))
def remove(self, dn: str, old: Dict[str, List[bytes]]) —-> None:
self.logger.debug('dn: %r', dn)

6.4.2 Basic example

The following boilerplate code delegates each change type to a separate function. It does not handle renames and
moves explicitly, but only as the removal of the object at the old dn and the following addition at the new dn.

Source code: UCS source: doc/developer-reference/listener/simple.py'®?

from typing import Dict, List

def handler (
dn: str,
new: Dict[str, List[bytes]],
old: Dict([str, List[bytes]],
) —> None:
if new and not old:
handler_add(dn, new)
elif new and old:
handler_modify(dn, old, new)
elif not new and old:
handler_remove (dn, old)
else:
pass # ignore

def handler_add(dn: str, new: Dict[str, List[bytes]]) -> None:
"""Handle addition of object.'"""
pass # replace this

def handler_modify (
dn: str,
old: Dict[str, List[bytes]],
new: Dict[str, List[bytes]],
) —> None:
"""Handle modification of object."""
pass # replace this

def handler_remove(dn: str, old: Dict[str, List[bytes]]) —-> None:
"""Handle removal of object.'"""
pass # replace this

162 https://github.com/univention/univention-corporate-server/blob/5.0- 10/doc/developer-reference/listener/simple. py

56 Chapter 6. Univention Directory Listener

https://github.com/univention/univention-corporate-server/blob/5.0-10/doc/developer-reference/listener/simple.py

Univention Developer Reference, Release 5.0-10

6.4.3 Rename and move

In case rename and move actions should be handled separately, the following code may be used:

Source code: UCS source: doc/developer-reference/listener/modrdn.py'®3

from typing import Dict, List
modrdn = "1"

_delay = None

def handler (
dn: str,
new: Dict[str, List[bytes]],
old: Dict[str, List[bytesl]],
command: str = "",

) —> None:
global _delay

if _delay:
old_dn, old = _delay
_delay = None
if "a" == command and old['entryUUID'] == new['entryUUID']:
handler_move (old_dn, old, dn, new)
return

handler_remove (old_dn, old)

if "n" == command and "cn=Subschema" == dn:
handler_schema (old, new)
elif new and not old:
handler_add(dn, new)
elif new and old:
handler_modify (dn, old, new)
elif not new and old:
if "r" == command:
_delay = (dn, old)
else:
handler_remove (dn, old)
else:
pass # ignore, reserved for future use

def handler_add(dn: str, new: Dict[str, List[bytes]]) —> None:
"""Handle creation of object.'"""
pass # replace this

def handler_modify (
dn: str,
old: Dict[str, List[bytesl]],
new: Dict[str, List[bytesl]],
) —> None:
"""Handle modification of object."""
pass # replace this

def handler_remove(dn: str, old: Dict[str, List[bytes]]) —-> None:
"""Handle removal of object.'"""
pass # replace this

(continues on next page)

163 https://github.com/univention/univention-corporate-server/blob/5.0- 10/doc/developer-reference/listener/modrdn. py

6.4. Listener tasks and examples 57

https://github.com/univention/univention-corporate-server/blob/5.0-10/doc/developer-reference/listener/modrdn.py

Univention Developer Reference, Release 5.0-10

(continued from previous page)

def handler_ move (
old_dn: str,
old: Dict[str, List[bytesl]],
new_dn: str,
new: Dict[str, List[bytes]],
) —> None:
"""Handle rename or move of object."""
pass # replace this

def handler_schema (
old: Dict[str, List[bytesl]],
new: Dict[str, List[bytes]],
) —> None:
"""Handle change in LDAP schema."""
pass # replace this

Warning: Please be aware that tracking the two subsequent calls for mod rdn in memory might cause duplicates,
in case the Univention Directory Listener is terminated while such an operation is performed. If this is critical,
the state should be stored persistently into a temporary file.

6.4.4 Full example with packaging

The following example shows a listener module, which logs all changes to users into the file /root /UserList.
txt.

Source code: UCS source: doc/developer-reference/listener/printusers/!'%*

mrn

Example for a listener module, which logs changes to users.

mn

import errno

import os

from collections import namedtuple
from typing import Dict, List

import univention.debug as ud
from listener import SetUID

name = 'printusers'
description = 'print all names/users/uidNumbers into a file'
filter = '"'.join("""\

(&
(1
(&
(objectClass=posixAccount)
(objectClass=shadowAccount)
)
(objectClass=univentionMail)
(objectClass=sambaSamAccount)
(objectClass=simpleSecurityObject)
(objectClass=inetOrgPerson)
)

(! (objectClass=univentionHost))

(continues on next page)

164 https://github.com/univention/univention- corporate-server/tree/5.0- 10/doc/developer-reference/listener/printusers/

58 Chapter 6. Univention Directory Listener

https://github.com/univention/univention-corporate-server/tree/5.0-10/doc/developer-reference/listener/printusers/

Univention Developer Reference, Release 5.0-10

(continued from previous page)

(! (uidNumber=0))

(! (uid=*3))
)""".Split())
attributes = ['uid', 'uidNumber', 'cn']
_Rec = namedtuple('_Rec', 'uid uidNumber cn')
USER_LIST = '/root/UserList.txt'

def handler (dn: str, new: Dict[str, List[bytes]], old: Dict[str, List[bytes]]) —->_
—None:
Write all changes into a text file.
This function is called on each change.
if new and old:
_handle_change (dn, new, old)
elif new and not old:
_handle_add (dn, new)
elif old and not new:
_handle_remove (dn, old)

def _handle_change(dn: str, new: Dict[str, List[bytes]], old: Dictl[str,.
—List [bytes]]) -> None:

mn

Called when an object is modified.
mrn

o_rec = _rec(old)
n_rec = _rec (new)
ud.debug (ud.LISTENER, ud.INFO, 'Edited user "$%s"' $ (o_rec.uid,))

(
_writeit (o_rec, u'edited. Is now:'")
_writeit(n_rec, u'')

def _handle_add(dn: str, new: Dict[str, List[bytes]]) -> None:

mn

Called when an object is newly created.

n_rec = _rec (new)
ud.debug (ud.LISTENER, ud.INFO, 'Added user "$s"' % (n_rec.uid,))
_writeit (n_rec, u'added')

def _handle_remove(dn: str, old: Dict[str, List[bytes]]) —-> None:

men

Called when an previously existing object is removed.

o_rec = _rec(old)
ud.debug (ud.LISTENER, ud.INFO, 'Removed user "$s"' & (o_rec.uid,))
_writeit (o_rec, u'removed')

def _rec(data):
type: (Dict[str, List[str]]) —-> _Rec

mn

Retrieve symbolic, numeric ID and name from user data.
mrrn

return _Rec (* (data.get (attr, (None,)) [0] for attr in attributes))

(continues on next page)

6.4. Listener tasks and examples 59

Univention Developer Reference, Release 5.0-10

(continued from previous page)

def _writeit (rec, comment) :
type: (_Rec, str) —> None

mn

Append CommonName, symbolic and numeric User-IDentifier, and comment to file.

mn

nuid = u'*****' if rec.uid in ('root', 'spam') else rec.uidNumber
indent = '\t' if comment is None else ''
try:

with SetUID() :
with open (USER_LIST, 'a') as out:

(
print (u'%sName: "%s"' & (indent, rec.cn), file=out)
print (u'?%sUser: "5%s"' & (indent, rec.uid), file=out)
print (u'%sUID: "$s"' $ (indent, nuid), file=out)
if comment:
print (u' ' % (indent, comment,), file=out)
except IOError as ex:
ud.debug (
ud.LISTENER, ud.ERROR,
'Failed to write " LS ' % (USER_LIST, ex))

def initialize():
type: () —> None
Remove the log file.
This function is called when the module is forcefully reset.
try:
with SetUID () :
os.remove (USER_LIST)

ud. debug (
ud.LISTENER, ud.INFO,
'Successfully deleted "%s"' % (USER_LIST,))
except OSError as ex:
if errno.ENOENT == ex.errno:
ud . debug (
ud.LISTENER, ud.INFO,
'File "%s" does not exist, will be created' % (USER_LIST,))
else:
ud. debug (
ud.LISTENER, ud.WARN,
'Failed to delete file "$%s": ' % (USER_LIST, ex))

Some comments on the code:

» The LDAP filter is specifically chosen to only match user objects, but not computer objects, which have a uid
characteristically terminated by a $-sign.

* The attribute filter further restricts the module to only trigger on changes to the numeric and symbolic
user identifier and the last name of the user.

¢ To test this run a command like tail —f /root/UserList.txt &. Then create a new user or modify
the lastmame of an existing one to trigger the module.

For packaging the following files are required:

debian/printusers.install
The module should be installed into the directory /usr/lib/univention-directory-listener/
system/.

[printusers.py usr/lib/univention-directory-listener/system/

debian/printusers.postinst

60 Chapter 6. Univention Directory Listener

Univention Developer Reference, Release 5.0-10

The Univention Directory Listener must be restarted after package installation and removal:

#!/bin/sh
SEE =@

case "S1" in

configure)
deb-systemd-invoke restart univention-directory-listener
i

abort-upgrade|abort-remove |abort-deconfigure)
i

*)
echo "postinst called with unknown argument \ $1'" >&2
exit 1
i

esac

#DEBHELPER#

exit O

debian/printusers.postrm

#!/bin/sh
set -e

case "S1" in

remove)
deb-systemd-invoke restart univention-directory-listener
i

purge |upgrade | failed-upgrade |abort-install |abort-upgrade|disappear)
i

*)
echo "postrm called with unknown argument \'$1'" >g2
exit 1
P

esac

#DEBHELPER#

exit O
“ J

6.4.5 A little bit more object oriented

For larger modules it might be preferable to use a more object oriented design like the following example, which logs
referential integrity violations into a file.

Source code: UCS source: doc/developer-reference/listener/obj.py'®

import os
from pwd import getpwnam
from typing import Dict, List, Optional, Tuple

import ldap
import univention.debug as ud
from listener import SetUID

name = "refcheck"
description = "Check referential integrity of unigueMember relations"

(continues on next page)

165 https://github.com/univention/univention-corporate-server/blob/5.0- 10/doc/developer-reference/listener/obj.py

6.4. Listener tasks and examples 61

https://github.com/univention/univention-corporate-server/blob/5.0-10/doc/developer-reference/listener/obj.py

Univention Developer Reference, Release 5.0-10

(continued from previous page)

filter = " (uniqueMember=*)"
attribute = ["uniqueMember"]
modrdn = "1"

class Localldap (object) :
PORT = 7636

def _ init_ (self) —> None:
self.data: Dict[str, str] = {}
self.con: Optional[ldap.ldapobject.LDAPObject] = None

def setdata(self, key: str, value: str):
self.datalkey] = value

def prerun(self) -> None:
try:
self.con = ldap.initialize('ldaps://%s:%d' % (self.data["ldapserver"],.
—self .PORT))
self.con.simple_bind_s(self.data["binddn"], self.data["bindpw"])
except ldap.LDAPError as ex:
ud.debug (ud.LISTENER, ud.ERROR, str(ex))

def postrun(self) -> None:

if not self.con:
return

try:
self.con.unbind()
self.con = None

except ldap.LDAPError as ex:
ud.debug (ud.LISTENER, ud.ERROR, str(ex))

class LocalFile (object):

USER = "listener"
LOG = "/var/log/univention/refcheck.log"
def initialize(self) —> None:

try:

ent = getpwnam(self.USER)
with SetUID () :
with open (self.LOG, "w"):
pass
os.chown (self.LOG, ent.pw_uid, -1)
except OSError as ex:
ud.debug (ud.LISTENER, ud.ERROR, str(ex))

def log(self, msg) —-> None:
with open(self.LOG, 'a') as log:
print (msg, file=log)

def clean(self) —> None:
try:
with SetUID() :
os.remove (self.LOG)
except OSError as ex:
ud.debug (ud.LISTENER, ud.ERROR, str (ex))

class ReferentiallIntegrityCheck (Localldap, LocalFile):
MESSAGES = {

(continues on next page)

62 Chapter 6. Univention Directory Listener

Univention Developer Reference, Release 5.0-10

def

def

(continued from previous page)

(False, False): "Still invalid: ",

(False, True): "Now valid: ",

(True, False): "Now invalid: ",

(True, True): "Still valid: ",

__init_ (self) —-> None:

super (ReferentialIntegrityCheck, self)._ _init__ ()

self._delay: Optional[Tuple[str, Dict[str, List[bytes]]]] = None

handler (

self,

dn: str,

new: Dict[str, List[bytes]],
old: Dict[str, List[bytes]],
command: str = "',

) —> None:

def

def

if self._delay:
old_dn, old = self._delay
self._delay = None

if "a" == command and old['entryUUID'] == new|['entryUUID']:
self.handler_move (old_dn, old, dn, new)
return

self.handler_remove (old_dn, old)

if "n" == command and "cn=Subschema" == dn:
self.handler_schema (old, new)
elif new and not old:
self.handler_add(dn, new)
elif new and old:
self.handler_modify(dn, old, new)
elif not new and old:
if "r" == command:
self._delay = (dn, old)
else:
self.handler_remove (dn, old)
else:
pass # ignore, reserved for future use

handler_add(self, dn: str, new: Dict[str, List[bytes]]) -> None:
if not self. validate (new) :
self.log("New invalid object: " + dn)

handler_modify (

self,

dn: str,

old: Dict[str, List[bytes]],
new: Dict[str, List([bytesl]],

) —> None:

def

def

valid = (self._validate(old), self._validate (new))
msg = self . MESSAGES[valid]
self.log(msg + dn)

handler_remove (self, dn: str, old: Dict[str, List[bytes]]) —-> None:
if not self._validate (old):
self.log("Removed invalid: " + dn)

handler_move (

self,

old_dn: str,

old: Dict[str, List[bytesl]],

(continues on next page)

6.4. Listener tasks and examples 63

Univention Developer Reference, Release 5.0-10

(continued from previous page)

new_dn: str,
new: Dict[str, List[bytes]],

) —> None:
valid = (self._validate(old), self._validate (new))
msg = self.MESSAGES([valid]
self.log(" => " % (msg, old_dn, new_dn))

def handler_schema (
self,
old: Dict[str, List[bytes]l],
new: Dict[str, List[bytes]],
) —> None:
self.log("Schema change")

def _validate(self, data: Dict[str, List[bytes]]) —-> bool:
assert self.con
try:
for dn in data["unigqueMember"]:
self.con.search_ext_s(dn, ldap.SCOPE_BASE, attrlist=[],.

—attrsonly=1)
return True
except ldap.NO_SUCH_OBJECT:
return False
except ldap.LDAPError as ex:
ud.debug (ud.LISTENER, ud.ERROR, str(ex))
return False

_instance = ReferentiallIntegrityCheck ()

initialize = _instance.initialize
handler = _instance.handler

clean = _instance.clean

prerun = _instance.prerun

postrun = _instance.postrun
setdata = _instance.setdata

6.5 Technical Details

6.5.1 User-ID and Credentials

The listener runs with the effective permissions of the user listener. If root-privileges are required,
listener.SetUID () can be used as a context manager or method wrapper to switch the effective UID.

from listener import SetUID

@SetUID ()
def prerun() —-> None:
pass

def postrun() —-> None:
with SetUID(0) :
pass

64 Chapter 6. Univention Directory Listener

Univention Developer Reference, Release 5.0-10

6.5.2 Internal Cache

The directory /var/lib/univention-directory-listener/ contains several files:

cache/cache .mdb, cache/lock.mdb
Starting with UCS 4.2, the LMDB cache database contains a copy of all objects and their attributes. It is used
to supply the old values supplied through the o1d parameter, when the function handler () is called.

The cache is also used to keep track, for which object which module was called. This is required when a new
module is added, which is invoked for all already existing objects when the Univention Directory Listener is
restarted.

On domain controllers the cache could be replaced by doing a query to the local LDAP server, before the new
values are written into it. But Managed Node doesn’t have a local LDAP server, so there the cache is needed.
Also note that the cache keeps track of the associated listener modules, which is not available from the LDAP.

It also contains the KB 13149 - CacheMaslerEnlryW‘, which stores the notifier and schema ID.

cache.lock
Starting with UCS 4.2, this file is used to detect if a listener opened the cache database.

cache.db, cache.db.lock
Before UCS 4.2, the BDB cache file contained a copy of all objects and their attributes. With the update to
UCS 4.2, it gets converted into an LMDB database.

notifier_id
This legacy file contains the last notifier ID read from the Univention Directory Notifier.

handlers/
For each module the directory contains a text file consisting of a single number. The name of the file is derived
from the values of the variable name as defined in each listener module. The number is to be interpreted as a
bit-field of HANDLER_INITIALIZED=0x1 and HANDLER_READY=0x2. If both bits are set, it indicates
that the module was successfully initialized by running the function initialize () (page 45). Otherwise
both bits are unset.

The package univention—-directory-listener contains several commands useful for controlling and de-
bugging problems with the Univention Directory Listener. This can be useful for debugging listener cache inconsis-
tencies.

univention-directory-listener-ctrl

The command univention-directory—-listener—-ctrl status shows the status of the Listener. This
includes the transaction from the Primary Directory Node in comparison to the last processes transaction. It also
shows a list of all installed modules and their status.

The command univention-directory-listener—-ctrl resync $name can be used to reset and
re-initialize a module. It stops any currently running listener process, removes the state file for the specified module
and starts the listener process again. This forces the functions cl1ean () (page46)and initialize () (page45)
to be called one after the other.

166 https://help.univention.com/t/13149

6.5. Technical Details 65

https://help.univention.com/t/13149

Univention Developer Reference, Release 5.0-10

univention-directory-listener—-dump

The command univention-directory-listener—dump can be used to dump the cache file /var/1ib/
univention-directory-listener/cache.db. The Univention Directory Listener must be stopped first
by invoking systemctl stop univention-directory-listener. It outputs the cache in format com-
patible to the LDAP Data Interchange Format (LDIF).

univention-directory-listener-verify

The command univention-directory-listener-verify can be used to compare the content of the
cachefile /var/lib/univention-directory-listener/cache.db tothe content of an LDAP server.
The Univention Directory Listener must be stopped first by invoking systemctl stop univention-di-
rectory-listener. LDAP credentials must be supplied at the command line. For example, the following
command would use the machine password:

$ univention-directory-listener-verify \
-b "$(ucr get ldap/base)" \
-D "$(ucr get ldap/hostdn)" \
-y /etc/machine.secret

get_notifier_id.py

The command /usr/share/univention-directory-listener/get_notifier_id.py can be
used to get the latest ID from the notifier. This is done by querying the Univention Directory Noti-
fier running on the LDAP server configured through the Univention Configuration Registry Variable 1dap/
master'®. The returned value should be equal to the value currently stored in the file /var/lib/
univention-directory-listener/notifier_id. Otherwise, the Univention Directory Listener might
still be processing a transaction or it might indicate a problem with the Univention Directory Listener

6.5.3 Internal working

The Listener/Notifier mechanism is used to trigger arbitrary actions when changes occur in the LDAP directory ser-
vice. In addition to the LDAP server slapd it consists of two other services: The Univention Directory Notifier
service runs next to the LDAP server and broadcasts change information to interested parties. The Univention Di-
rectory Listener service listens for those notifications, downloads the changes and runs listener modules performing
arbitrary local actions like storing the data in a local LDAP server for replication or generating configuration files for
non-LDAP-aware local services.

On startup the listener connects to the notifier and opens a persistent TCP connection to port 6669. The host can be
configured through several Univention Configuration Registry Variables:

e If notifier/server is explicitly set, only that named host is used. In addition, the Univention Configura-
tion Registry Variable notifier/server/port can be used to explicitly configure a different TCP port
other then 6669.

¢ Otherwise, on the Primary Directory Node and on all Backup Directory Nodes, only the host named in 1dap/
master!'% is used.

¢ Otherwise, on all other system roles a host is chosen randomly from the combined list of names in 1dap/
master'® and 1dap/backup.

This list of Backup Directory Nodes stored in the Univention Configuration Registry Variable 1dap/backup
is automatically updated by the listener module 1dap_server.py.

The following steps occur on changes:

167 https://docs.sof tware-univention.de/manual/5.0/en/appendix/variables. html#envvar-Idap-master
168 https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-Idap-master
169 https://docs.software-univention.de/manual/5.0/en/appendix/variables. html#envvar-1dap- master

66 Chapter 6. Univention Directory Listener

https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-ldap-master
https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-ldap-master
https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-ldap-master
https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-ldap-master
https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-ldap-master
https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-ldap-master

Univention Developer Reference, Release 5.0-10

listener/listener

[replication] (emmd Idap cn=translog
rhw
printers.conf
write

smb.conf

schemal/id — schemalid

6—‘\‘_‘ TCP:?aag

WL st id

%

ppend é

write

cache
schema_id
notifier_id

—> listener/listener.priv
e

write

read/delete

B

read/append

notify/transaction

Fig. 6.1: Listener/Notifier mechanism

. An LDAP object is modified on the Primary Directory Node. Changes initiated on all other system roles are
re-directed to the Primary Directory Node.

. The UCS-specific overlay-module translog assigns the next transaction number. It uses the file /var/
lib/univention-ldap/last_id to keep track of the last transaction number.

As a fallback the transaction number of the last entry from the file /var/lib/univention-ldap/
listener/listener or /var/lib/univention-ldap/notify/transaction is used. The
module appends the transaction ID, DN and change type to the file /var/lib/univention-ldap/
listener/listener.

Referred to as FILE_NAME_LISTENER, TRANSACTION_FILE in the source code.

. The Univention Directory Notifier watches that file and waits until it becomes non empty. The file
is then renamed to /var/lib/univention-ldap/listener/listener.priv (referred to as
FILE_NAME_NOTIFIER_PRIV) and the original files is re-created empty. The transactions from the
renamed file are processed line-by-line and are appended to the file /var/lib/univention-ldap/
notify/transaction (referred to as FILE_NAME_TF in the source code), including the DN. Since
protocol version 3 the notifier also stores the same information within the LDAP server by creating the entry
regSession=ID, cn=translog. After successful processing the renamed file is deleted. For efficient
access by transaction ID the index t ransaction. index is updated.

. All listeners get notified of the new transaction. Before UCS 4.3 erratum 427'7" the information already

included the latest transaction ID, DN and the change type. With protocol version 3 only the transaction ID is
included.

. Each listener opens a connection to the LDAP server running on the UCS system which was used to query the
Notifier. With protocol version 3 the listener first queries the LDAP server for the missing DN and change
type information by retrieving the entry reqSession=ID, cn=translog. With that it retrieves the latest
state of the object identified through the DN. If access is blocked, for example, by selective replication, the
change is handled as a delete operation instead.

. The old state of the object is fetched from the local Internal Cache (page 65) located in /var/lib/
univention-directory-listener/cache/.

170 https://errata.software-univention.de/#/ ?erratum=4.3x427

6.5. Technical Details 67

https://errata.software-univention.de/#/?erratum=4.3x427

Univention Developer Reference, Release 5.0-10

7.

10.

11.

12.

For each module it is checked, if either the old or new state of the object matches the filter and at-
tributes specified in the corresponding Python variables. If not, the module is skipped. By default
replication.py isalways called first to guarantee that the data is available from the local LDAP server for
all subsequent modules. Since UCS 5.0 erratum 164!7! the order of how modules are called can be configured
using the per module property priority (page 45).

If the function prerun () (page 46) of module was not called yet, this is done to signal the start of changes.

The function handler () (page 53) specified in the module is called, passing in the DN and the old and new
state.

The main listener process updates its cache with the new values, including the names of the modules which
successfully handled that object. This guarantees that the module is still called, even when the filter criteria
would no longer match the object after modification.

On a Backup Directory Node the Univention Directory Listener writes the transaction data to the file /var/
lib/univention-ldap/listener/listener (referredtoas FILE_NAME_LISTENER, TRANS—
ACTION_FILE in the source code) to allow the Univention Directory Notifier to be cascaded. This is con-
figured internally with the option —o of univention—-directory-1listener and is done for load bal-
ancing and failover reasons.

The transaction ID is written into the legacy local file /var/lib/
univention-directory-listener/notifier_id. It also is written into the master record
of the listener cache.

After 15 seconds of inactivity the function postrun () (page 46) is invoked for all prepared modules. This signals
a break in the stream of changes and requests the module to release its resources and/or start pending operations.

6.5.4 LDAP Schema handling

The LDAP Schema is managed on the Primary Directory Node. Extensions must be made available there first. All
other systems running LDAP replica download it from there using the Univention Directory Notifier / Univention
Directory Listener mechanism.

1.

6.

On the Primary Directory Node the LDAP Schema is extracted by the script /etc/init.d/slapd on
each start. The MD5 hash is stored in /var/lib/univention-1dap/schema/md5.

On each change the counter in file /var/lib/univention-1ldap/schema/id/1id is incremented.

Univention Directory Notifier monitors that file and makes the value available over the network. It can
be queried by running /usr/share/univention-directory-listener/get_notifier_id.

Py -s.
Univention Directory Listener retrieves the value during each transaction. It is stored in the local file /var/
lib/univention-ldap/schema/id/id and in the CacheMasterEntry of the Internal Cache
(page 65).

On change the Listener downloads the current Schema from the LDAP server of the Primary Directory Node,

saves it to the local schema file /var/lib/univention-ldap/schema.conf and restarts the local
service slapd.

The Listener then continues processing transactions.

171 https://errata.software-univention.de/#/?erratum=5.0x 164

68

Chapter 6. Univention Directory Listener

https://errata.software-univention.de/#/?erratum=5.0x164

Univention Developer Reference, Release 5.0-10

6.5.5 Python 3 migration

Since UCS 5.0 the Univention Directory Listener uses Python 3 to execute listener modules.

For a successful migration all functions must be migrated to work with Python 3. There is no change in the module
variables (name, description, filter, ...) necessary.

The data structure of the arguments new and old given to the handler () (page 53) function now explicitly
differentiates between byte strings (bytes'’?) and unicode strings (st r'7*). The dictionary keys are strings while
the LDAP attribute values are list of byte strings:

{

'associatedDomain': [b'example.net'],
'krb5RealmName’': [b'EXAMPLE.NET'],
'de': [b'example'],
'nisDomain': [b'example.net'],
'objectClass': [

b'top',

b'krb5Realm',
b'univentionPolicyReference',
b'nisDomainObject’,
b'domainRelatedObject',
b'domain',
b'univentionBase',
b'univentionObject'

]I

'univentionObjectType': [b'container/dc'],

While in UCS 4 handler () (page 53) typically looked like:

def handler (
dn: # type: str,
new, # type: Dict[str, List[str]]
old, # type: Dict[str, List[str]]
I # type: (...) —> None
if new and 'myObjectClass' in new.get ('objectClass', []):
value = new|['myAttribute'][0]

In UCS 5 it would look like:

from typing import Dict, List

def handler (
dn: str,
new: Dict[str, List[bytesl]],
old: Dict([str, List[bytes]],
) —> None:
if new and b'myObjectClass' in new.get ('objectClass', []):
value = new|['myAttribute'][0].decode ('UTE-8")

172 https://docs.python.org/3/library/stdtypes.html#bytes
173 https://docs.python.org/3/library/stdtypes. html#str

6.5. Technical Details 69

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

Univention Developer Reference, Release 5.0-10

70

Chapter 6. Univention Directory Listener

CHAPTER
SEVEN

UNIVENTION DIRECTORY MANAGER (UDM)

The Univention Directory Manager (UDM) is a wrapper for LDAP objects. Traditionally, LDAP stores objects as a
collection of attributes, which are defines by so called schemata. Modifying entries is slightly complicated, as there
are no high-level operations to add or remove values from multi-valued attributes, or to keep the password used by
different authentication schemes such as Windows NTLM-hashes, Unix MD5 hashes, or Kerberos tickets in sync.

The command line client udm provides different modes of operation.
udm [--binddn bind-dn --bindpwd bind-password] [module] [mode] [options]

Creating object
udm module create —--set property=value ..

$ eval "$(ucr shell)"
$ udm container/ou create —-position "S$ldap_base" --set name="xxx"

Multiple ——sets may be used to set the values of a multi-valued property.

The equivalent LDAP command would look like this:

$ eval "$(ucr shell)"

$ ldapadd -D "cn=admin, $ldap_base" -y /etc/ldap.secret <<__ _EOT___
dn: uid=xxx, $ldap_base

objectClass: organizationalRole

cn: XXX
_ EOT___
List object
udm module list [--dn dn | —-—-filter property=value]
[5 udm container/ou list —-filter name="xxx" }
[$ univention-ldapsearch cn=xxx]
Modify object
udm module modify [--dn dn | —-—-filter property=value] [-—-set prop-
erty=value | —-—-append property=value | —--remove property=value ..]
[S udm container/ou modify —--dn "cn=xxx,$ldap_base" —--set name="xxx" }

For multi-valued attributes ——append and ——remove can be used to add additional values or remove exist-
ing values. ——set overwrites any previous value, but can also be used multiple times to specify further values.
—-—set and ——append should not be mixed for any property in one invocation.

Delete object
udm module remove [-—-dn dn | —-—-filter property=value]
[S udm container/ou delete —--dn "cn=xxx,$ldap_base" }

If ——filter is used, it must match exactly one object. Otherwise udm refuses to delete any object.

7

Univention Developer Reference, Release 5.0-10

This chapter has the following content:

7.1 UDM modules

Univention Directory Manager uses a flexible and extensible structure of Python modules to manage the directory
service data. Additional modules are automatically recognized after being saved to the file system and made available
for use at the command line and web interface. The development of custom modules enables the flexible extension
of the Univention Directory Manager beyond the scope of extended attributes.

7.1.1 Overview

Univention Directory Manager (UDM for short) uses its own module structure to map LDAP objects. Usually one
of these UDM modules corresponds to an LDAP object (for example a user, a group or a container).

The modules are stored in the /usr/lib/python3/dist-packages/univention/admin/
handlers/ directory and organized by task. The modules for managing the various computer objects are
located below the computers/ folder, for example. It can be addressed by the command line interface through
computers/windows.

Custom modules should, if possible, be placed in their own subdirectory to avoid conflicts with any standard modules
that may later be integrated into UCS. For the modules to be initialized, a __init__ .py file must exist in the
directory.

7.1.2 Structure of a module

Modules contain the definition of the UDM properties and the definition of a class named ob ject, which is derived
from univention.admin.handlers.simpleLdap.

Note: The default name of the base class object has historical reasons. It must be kept despite the name collision
with the Python type object!’,

This section will begin with a detailed description of the variables to be defined. The The Python class object (page 76)
takes a closer look at the object class and lists necessary definitions and functions within the class.

Global variables

The global variables with specific meanings in a Univention Directory Manager module are described below. Manda-
tory and optional variables are separated into mandatory variables and optional arguments.

Mandatory variables

udm_modules_globals.module

A string matching the name of the UDM module, for example computers/computer.

udm_modules_globals.operations
A list of strings which contains all LDAP operations allowed with this object. Available operations are add,
edit, remove, search, subtree_move, and copy.
udm_modules_globals.short_description

This description is displayed as the name in the Univention Management Console. Within the UMC module
LDAP navigation it is displayed in the selection list for possible object types.

174 https://docs.python.org/3/library/functions.html#object

72 Chapter 7. Univention Directory Manager (UDM)

https://docs.python.org/3/library/functions.html#object

Univention Developer Reference, Release 5.0-10

udm_modules_globals.long_description

A detailed description of the module.

udm_modules_globals.childs

Indicates whether this LDAP object is a container. If so, this variable is set to the value True, and otherwise
toFalse.

udm_modules_globals.options
Variable opt ions is a Python dictionary and defines various options that can either be set manually or left at
default. These options can be changed later.

For example through the web interface of the UDM using the Options tab. If an option is activated, one or
more LDAP object classes (given by parameter objectClass) are added to the object and further fields
and/or tabs are activated in the Univention Management Console tabs (for example the groupware option for
users). The dictionary assigns a unique string to each option (as property_descriptions (page 73)).

Each instance has the following parameters:

options.short_description

A short description of the option, used for example in the Univention Management Console as descriptive
text about the input fields.

options.long_description

A longer description of the option.
options.default

defines whether the option is enabled by default: True means active and False inactive.
options.editable

Defines whether this option can be set and removed multiple times, or always remains set after having
been activated once.

options.objectClasses

A list of LDAP object classes, which the LDAP entry must consist of so that the option is enabled for
the object.

Example:

e N\
options = {

'optl': univention.admin.option (
short_description=_('short description'),
default=True,
objectClasses=['classl'],

)

}

L

udm_modules_globals.property_descriptions

This Python dictionary contains all UDM properties provided by the module. They are referenced using a
unique string as a key (in this case as univention.admin.property objects). Usually, this kind of
UDM property corresponds to an LDAP attribute, but can also be obtained or calculated from other sources.

Example:
property_descriptions = {
'propl': univention.admin.property (
short_description=_('name'),
long_description=_('long description'),

syntax=univention.admin.syntax.string,
multivalue=False,

required=True,

may_change=True,

identifies=False,

(continues on next page)

7.1. UDM modules 73

Univention Developer Reference, Release 5.0-10

(continued from previous page)
dontsearch=True,
default=('default value'),
options=['optl'],
) 14

A short explanation of the parameters seen above:

property_descriptions.short_description: str!”

A short description used for instance in the Univention Management Console as descriptive text to the
input fields.

property_descriptions.long_description: str!®

A detailed description used in the Univention Management Console for the tooltips.

property_descriptions.syntax: type!”’
This parameter specifies the property type. Based on these type definitions, the Univention Directory
Manager can check the specified values for the property and provide a detailed error message in case of
invalid values. A list of syntax classes is available in UDM LDAP search (page 84).
property_descriptions.multivalue: bool 178

Accepts the values True or False. If set to True the properties value is a list. In this case, the syntax

parameter specifies the type of elements within this list.
property_descriptions.required: bool!”

If this parameter is set to True, a value must be specified for this property.

property_descriptions.may_change: bool!®’
If set to True, the properties value can be modified at a later point, if not, it can only be specified once
when the object is created.
property_descriptions.editable: bool'd!
If set to False, the properties value can’t even be specified when the object is created. This is usually
only interesting or useful for automatically generated or calculated values.
property_descriptions.identifies: bool!®’
This option should be set to True if the property uniquely identifies the object (through the LDAP DN).
In most cases it should be set for exactly one property of a module.
property_descriptions.dontsearch: bool'83

If set to False, the property is not searchable.

property_descriptions.default: Any
The default value of a property, when the object is created through the Univention Management Console.

property_descriptions.options: List[str!%*]
A list of keywords identifying options with which this property can be shown or hidden.

udm_modules_globals.layout

The UDM properties of an object can be arranged in groups. They are represented as tabs in the Univention
Directory Manager for example. For each tab, an instance of univention.admin.layout#Tab must
be created in the array layout. The name, a description for the tab and a list of rows are expected as

175 https://docs.python.org/3/library/stdtypes.html#str

176 https://docs.python.org/3/library/stdtypes. html#str

177 https://docs.python.org/3/library/functions.html#type
178 https://docs.python.org/3/library/functions.html#bool
179 https://docs.python.org/3/library/functions.html#bool
180 https://docs.python.org/3/library/functions.html#bool
181 https://docs.python.org/3/library/functions.html#bool
182 https://docs.python.org/3/library/functions.html#bool
183 https://docs.python.org/3/library/functions.html#bool
184 https://docs.python.org/3/library/stdtypes.html#str

74 Chapter 7. Univention Directory Manager (UDM)

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Univention Developer Reference, Release 5.0-10

parameters. A line can contain up to two properties, for each of which an instance of univention.admin.
layout#Group must be created. The UDM property name from property_descriptions (page73)
is expected as a parameter for each instance.

-
from univention.admin.layout import Tab, Group

layout = [
Tab(_('Tab header'), _('Tab description'), layout=][
Group ('Group', 'group description', [
['propl', 'prop2']
['prop3', 1
1)

], advanced=True),

The optional advanced=True setting controls whether the tab should be displayed on the Advanced settings
by default.
udm_modules_globals.mapping

Maps the UDM properties to LDAP attributes. Usually, a mapping is registered for each property, linking the
name of a UDM property (udm_name) to the associated LDAP attribute (1dap_name):

mapping.register (udm_name, ldap_name)
mapping.register (udm_name, ldap_name, map_value, unmap_value)

Two functions are available to convert the values between UDM properties and LDAP attribute. To convert
from UDM — LDAP, map_value () is used, while unmap_value () is used to convert in the opposite
direction (LDAP — UDM). The second function is necessary for all single-valued UDM properties, since these
are always implemented as null or one-element lists within LDAP. The default implementation univention.
admin.mapping.ListToString () always returns the first entry of the list and can therefore generally
be specified as a unmap_value () function for all single-valued attributes. For map_value () (UDM —
LDAP), it is sufficient to specify None, which ensures that any existing value, if present, is converted to a
single-element list.

Warning: UDM properties always contain either a string (single-valued attributes) or a list of strings
(multi-valued attributes), never just a number or any other Python type!

Optional arguments

The following specifications are optional and only need to be defined if a module has these special properties:

udm_modules_globals.virtual

Modules that set this variable to True are a kind of helper module for other modules that have no associated
LDAP objects. An example of this is the computers/computer module, which is an auxiliary module
for all types of computers.

udm_modules_globals.template

A module that sets this variable to another UDM module (e.g. settings/usertemplate), gains the
ability to define default values for UDM properties from other modules. An example of this is the user template
(more specifically the settings/usertemplate module). Such a template can for example be selected
when creating a user so that the values defined in it are taken over as defaults in the input masks.

7.1. UDM modules 75

Univention Developer Reference, Release 5.0-10

The Python class object

The Python class object of a module provides the interface between Univention Directory Manager and the LDAP
operations triggered when an object is created, modified, moved or deleted. It supports the Univention Directory
Manager in mapping the UDM module and its properties to LDAP objects and attributes.

This requires adhering to the predefined API of the class. The base class univention.admin.handlers.
simpleLdap provides the essential functionality for simple LDAP objects, so usually only a few adjustments are
necessary. An instance (self) encapsulates all information of an object, which can be accessed in various ways:

class udm_modules_globals.object

self.dn — String
Distinguished Name in the LDAP DIT

self.position —» univention.admin.uldap#Position
Container element in the LDAP DIT

self ['UDM-property—-name'] — [values,...]
Wrapper around self . info which also checks the value against the syntax when assigned and returns default
values when read.

self.info['UDM-property—-name'] — [values,...]
Dictionary with the currently set values of the UDM properties. Direct access to it allows the initialization of
editable=False properties and skips any syntax checks.

self.oldinfo['UDM-property—name'] — [values, ...]
Dictionary of the originally read values converted to UDM property names. It is primarily needed to internally
propagate changes to the Python object back to the corresponding entry in the LDAP.

self.oldattr['LDAP-Attributname'] — [values,...]
Dictionary of the attributes originally read from LDAP.

self.oldpolicies — [Policy-DNs,...]
Copy of the list of DN of the referenced univentionPolicyReference

self.policies — [Policy-DNs,...]
List of DNs of the referenced univentionPolicyReference

self.policyObjects[Policy-DN] — univention.admin.handlers#SimplePolicy
Dictionary of the loaded policies.

self.extended_udm_attributes — [univention.admin#Extended_attribute,...]
Complete list of the objects extended attributes

The simpleLdap class also provides the possibility of additional customization before and after the LDAP oper-
ation by calling functions. For example, before creating an LDAP object the function _ldap_pre_create ()
is called and after the operation the function _1ldap_post_create () is called. Such pre- and post-functions
similarly exist for the modify (), move () and remove () functions. The following table lists all used functions
in calling order from top to bottom:

76 Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

Table 7.1: LDAP actions and hooks

Description Create Modify Remove
Before validation _ldap_pre_re
Validates, that all required attributes are set ready ()
_ldap_pre_cr _ldap_pre_mc _ldap_pre_re-
ate () ify () move ()
Policy Copy-on-Write _up-— _up-
date_poli- date_poli-
cies () cies ()

Extension point for Extended Attribute

hook_ldap_pzr hook_ldap_pz:

hook_ldap_pre_re-

ate () ify () move ()
Returns initial list of (LDAP-attribute-name, value)- _ldap_ad-
resp. (LDAP-attribute-name, [values]) tuples dlist ()

Calculates difference between self.oldinfo and
self.info
Extension point for Extended Attribute

_ldap_modlist ()

hook_ldap_ac hook_ldap_mc

dlist () list ()

Real action ADD MODIFY DELETE
_ldap_post_c _ldap_post_n _ldap_post_re-—
ate () ify () move ()

Extension point for Extended Attribute hook_ldap_pc hook_ldap_pc hook_ldap_post_re-
ate () ify () move ()

The functions hook_1dap_* are described in Extended attribute hooks (page 95).

The identify () and lookup () functions

These functions are used to find the corresponding objects for search queries from the Univention Management
Console (Lookup ()) and to assign LDAP objects to a Univention Directory Manager module. For simple LDAP
objects, no modifications are necessary. They can be assigned to the generic objects class methods:

lookup = object.lookup
lookup_filter = object.lookup_filter
identify = object.identify

7.1.3 Example module

The following is an example module for the Univention Directory Manager which is also available as a package.
(univention—directory—manager—module—-example) The complete source code is available at UCS
source: packaging/univention-directory-manager-module-example/!3>.

The directory contains a source package in Debian format, from which two binary packages are created during package
build through . /debian/rules binary: A schema package, which must be installed on the Primary Directory
Node, and the package containing the UDM module itself. The sample code also includes a ip—phone—tool script
that shows an example of using the UDM Python API in a Python script.

A Univention Directory Manager module almost always consists of two components:
* The Python module, which contains the implementation of the interface to the Univention Directory Manager.

¢ A LDAP schema, which defines the LDAP object to be managed. Both parts are described below, with the
focus lying on the creation of the Python module.

The following module for the Univention Directory Manager demonstrates the rudimentary administration of IP
telephones. It tries to show as many possibilities of a Univention Directory Manager module as possible within a
simple example.

185 https://github.com/univention/univention-corporate-server/tree/5.0- 10/packaging/univention-directory-manager-module-example/

7.1. UDM modules 77

https://github.com/univention/univention-corporate-server/tree/5.0-10/packaging/univention-directory-manager-module-example/
https://github.com/univention/univention-corporate-server/tree/5.0-10/packaging/univention-directory-manager-module-example/

Univention Developer Reference, Release 5.0-10

Python code of the example module

Before defining the actual module source code, some basic Python modules need to be imported, which are always
necessary:

import re

import univention.admin.handlers

import univention.admin.syntax

import univention.admin.localization
from univention.admin.layout import Tab

This list of Python modules can of course be extended. As described in Global variables (page 72), some necessary
global variables are defined at the beginning of a Univention Directory Manager module, which provide a description
of the module:

module = 'test/ip_phone'

childs = False

short_description = _ ('IP-Phone')

long_description = _ ('An example module for the Univention Directory Manager')
operations = ['add', 'edit', 'remove', 'search', 'move', 'copy']

Another global variable important for the Univention Management Console, is Zayout (page 74).

layout = [
Tab (_('General'), _('Basic Settings'), layout=]
["name", "active"],
["ip", "protocol"],
["priuser"],
1)
Tab (_ ('"Advanced'), _('Advanced Settings'), layout=[

["users"],

1, advanced=True),

Tab (_('Redirect'), _('Redirect Option'), layout=]
["redirect_user"],

1, advanced=True),

It structures the layout of the objects individual properties on the tabs. The list consists of elements whose type
isunivention.admin.layout . Tab, each determining the content of a tab. In this case there are the Gen—
eral,AdvancedandRedirect tabs. Next, the options (opt i ons (page 73)) and properties (property._de-—
scriptions (page 73)) of the module should be defined. In this case, the default and redirection options
are created, whose functions will be explained later. To configure the parameters, the univention.admin.
option object is passed to the short_description option for a short description. default defines the
pre-configuration. True activates the option while False deactivates it.

options = {

'default': univention.admin.option (
short_description=short_description,
default=True,
objectClasses=['top', 'testPhone'],

) 4

'redirection': univention.admin.option (
short_description=_('Call redirect option'),
default=True,
editable=True,
objectClasses=["'testPhoneCallRedirect'],

J

After the modules options, its properties are defined. UDM properties are defined through textual descriptions, syntax
definitions and instructions for the Univention Management Console.

78 Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

property_descriptions = {

The name property defines the hostname of the IP phone. The syntax parameter tells the Univention Directory
Manager that valid values for this property must match the syntax of a computer name. Additional predefined syntax
definitions can be found in the property descriptions (page 73) section.

'name': univention.admin.property (
short_description=_('Name'),
long_description=_('ID of the IP-phone'),

syntax=univention.admin.syntax.hostName,
required=True,
identifies=True,

)y

J

The active is an example of a boolean/binary property which can only take the values True or False. In this
example, it defines an activation/blocking of the IP phone. The parameter de fault=True initially unlocks the
phone:

'active': univention.admin.property (
short_description=_('active'),
long_description=_('The IP-phone can be deactivated'),

syntax=univention.admin.syntax.TrueFalseUp,
default='TRUE",
)I

The protocol property specifies which VoIP protocol is supported by the phone. No standard syntax definition is
used for this property, but a specially declared SynvVoIP_Protocols class. (The source code of this class follows
in a later section). The syntax of the class defines a selection list with a predefined set of possibilities. The default
parameter preselects the value with the sip key.

'protocol': univention.admin.property (
short_description=_('Protocol'),
long_description=_('Supported VoIP protocols'),

syntax=SynVoIP_Protocols
default="sip"',
)I

The ip property specifies the phones IP address. The predefined class univention.admin.syntax.
ipAddress is specified as the syntax definition. Additionally, the required parameter enforces that setting
this property is mandatory.

'"ip': univention.admin.property (
short_description=_('IP-Address'),
long_description=_('IP-Address of the IP-phone'),

syntax=univention.admin.syntax.ipAddress,
required=True,
)/

The priuser property sets the primary user of the IP phone. A separate syntax definition is again used, which in
this case is a class that defines the valid values by means of a regular expression. (The source code is shown later)

'priuser': univention.admin.property (
short_description=_('Primary User'),
long_description=_('The primary user of this IP-phone'),

syntax=SynVoIP_Address,
required=True,
)

The users property indicates that options are used. Sincemultivalue issetto True in this example, the users
object is a list of addresses.

7.1. UDM modules 79

Univention Developer Reference, Release 5.0-10

'users': univention.admin.property (
short_description=_('Additional Users'),
long_description=_('Users, that may register with this phone'),

syntax=SynVoIP_Address,
multivalue=True,

) 4

The redirect_user property is used to redirect incoming calls to a different phone number. It is only shown if
the options=["'redirection'] is set.

'redirect_user': univention.admin.property (
short_description=_('Redirection User'),
long_description=_('Address for call redirection'),

syntax=SynVoIP_Address,
options=['redirection'],

)y

The following two classes are the syntax definitions used for the protocols, priuser and users properties.
SynVoIP_Protocols is based on the predefined univention.admin.syntax.select class, which pro-
vides the basic functionality for select lists. Derived classes, as seen in the following class, only need to define a name
and the list of choices.

class SynVoIP_Protocols (univention.admin.syntax.select) :
name = _ ('VoIP_Protocol')
choices = [('sip', _('SIP')), ('h323', _('H.323")), ('skype', _('Skype'))]

The other syntax definition (SynVoIP_Address) is based on the univention.admin.syntax.simple
class, which provides basic functionality for syntax definitions utilizing regular expressions. As with the other defi-
nition, a name must be assigned. Additionally, the attributes min_length and max_length must be specified.
If one of these attributes is set to 0, it corresponds to a nonexistent limit in the respective direction. In addition to
the attributes mentioned, the parse () function must also be defined, which passes the value to be checked as a
parameter. By means of the Python module re it is in this case checked whether the value corresponds to the pattern
of a VoIP address, e.g. sip:hans@mustermann.de.

class SynVoIP_Address (univention.admin.syntax.simple) :

name = _ ('VoIP_Address')

min_length = 4

max_length 256

re = re.compile (' (("(sip|h323|skype):)?([a-zA-Z]) [a-2zA-Z20-9.-]+)Q@[a-zA-Z0-9._
—=1+4S")

def parse(self, text):
if self._re.match(text) is not None:
return text
raise univention.admin.uexceptions.valueError (_('Not a valid VoIP Address

='))

Mapping the UDM module properties to the Attributes of the to be created LDAP object is the next step. (mapping
(page 75)). To do this, the univention.admin.mapping.mapping class is used, which provides a simple
way to register mappings for the individual LDAP attributes to UDM properties with the register () function.
This function’s first argument is the modules UDM property name and the second the LDAP attribute name. The
following two arguments of the register () function can be used to specify mapping functions for conversion
from the modules UDM property to the LDAP attribute and vice versa.

mapping = univention.admin.mapping.mapping ()

mapping.register('name', 'cn', None, univention.admin.mapping.ListToString)
mapping.register('active', 'testPhoneActive', None, univention.admin.mapping.
—ListToString)

mapping.register ('protocol', 'testPhoneProtocol', None, univention.admin.mapping.
—ListToString)

(continues on next page)

80 Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

mapping.
mapping.
—ListTo
mapping.
mapping.
—mappin

(continued from previous page)

register('ip', 'testPhonelP', None, univention.admin.mapping.ListToString)
register ('priuser', 'testPhonePrimaryUser', None, univention.admin.mapping.

String)

register ('users', 'testPhoneUsers')

register ('redirect_user',
g.ListToString)

'testPhoneRedirectUser', None,

univention.admin.

Finally, The Python class object (page 76) must be defined for the module that conforms to the specifications defined
in Structure of a module (page 72). For the IP phone, the class would look like this:

class object (univention.admin.handlers.simplelLdap) :

modu

def

def

def

def

def

def

def

def

le = module
open (self) :
super (object, self) .open/()

self.save ()

_ldap_pre_create (self):
return super (object, self)

_ldap_post_create(self):
return super (object, self)

_ldap_pre_modify(self):
return super (object, self)

_ldap_post_modify (self) :
return super (object, self)

_ldap_pre_remove (self) :
return super (object, self)

_ldap_post_remove (self) :
return super (object, self)

_ldap_modlist (self) :

._ldap_pre_create()

._ldap_post_create()

._ldap_pre_modify ()

._ldap_post_modify ()

._ldap_pre_remove ()

._ldap_post_remove ()

ml = super (object, self)._ldap_modlist ()

return ml

J

To enable

searching for objects managed by this module, two additional functions are available: 1ookup () and
identify () (see Theidentify() and lookup() functions (page 77)). The functions provided here should be sufficient
for simple LDAP objects that can be identified by a single objectClass.

lookup =
lookup_f
identify

object.lookup

ilter = object.lookup_filter

= object.identify

LDAP schema extension for the example module

Before the developed module can be used within the Univention Directory Manager, the new object class, in this
case testPhone, must be made known to the LDAP server together with its attributes. Such object definitions are

defined via so-called schemas in LDAP. They are specified in files looking like the following:

attribut

etype (1.3.6.1.4.1.10176.9999.1.1 NAME 'testPhoneActive'
DESC 'state of the IP phone'
EQUALITY caselgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

(continues on next page)

7.1. UDM modules

81

Univention Developer Reference, Release 5.0-10

(continued from previous page)

attributetype (1.3.6.1.4.1.10176.9999.1.2 NAME 'testPhoneProtocol'
DESC 'The supported VoIP protocol'
EQUALITY caseExactIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.10176.9999.1.3 NAME 'testPhoneIP'
DESC 'The IP address of the phone'
EQUALITY caseExactIAS5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.10176.9999.1.4 NAME 'testPhonePrimaryUser'
DESC 'The primary user of the phone'
EQUALITY caselgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.10176.9999.1.5 NAME 'testPhoneUsers'
DESC 'A list of other users allowed to use the phone'
EQUALITY caselIgnoreIAbSMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

objectclass (1.3.6.1.4.1.10176.9999.2.1 NAME 'testPhone'

DESC 'IP Phone'

SUP top STRUCTURAL

MUST (cn $ testPhoneActive $ testPhoneProtocol $ testPhonelIP $.
—~testPhonePrimaryUser)

MAY (testPhoneUsers)

)

186

Detailed documentation on creating LDAP schema files can be found on the OpenLDAP project website'*° and is

not the focus of this documentation.

Installing the module

The last step is to install the Python module and LDAP schema, documented in the following.

The Python module must be copied to the /usr/lib/python2.7/dist-packages/univention/
admin/handlers/ and /usr/lib/python3/dist-packages/univention/admin/handlers/
directory for the Univention Directory Manager to find it. In this directory a subdirectory has to be created corre-
sponding to the first part of the module name. For example, if the module name is test /ip-phone, the directory
should be named test/. The Python module must then be copied to this directory. Ideally, a UDM module is
integrated into a separate Debian package.

Documentation for this can be found in the Introduction (page 3) section. The newly created package will now be
included in the display when univention-directory-manager modules is called.

In principle, the file containing the LDAP schema can be copied to any directory. Univention schema definitions,
for example, are stored in the /usr/share/univention-ldap/schema/ directory. For the LDAP server
to find this schema, it must be included in the /etc/ldap/slapd.conf configuration file. Since this file is
under the control of the Univention Configuration Registry, do not edit the file directly, but create a Univention
Configuration Registry template. (see UCR Template files conffiles/path/to/file (page 21))

186 https://www.openldap.org/

82 Chapter 7. Univention Directory Manager (UDM)

https://www.openldap.org/

Univention Developer Reference, Release 5.0-10

Downloading the sample code

The latest version of the sample code can be found at UCS source: packag-
ing/univention-directory-manager-module-example/!®’.

It contains a source package in Debian format from which two binary packages are created during package building
through . /debian/rules binary: A schema package that needs to be installed on the master and the package
containing the UDM module itself. The sample code also includes a script ip—phone—-tool, which exemplifies
the use of the UDM Python API in a Python script.

7.2 UDM syntax

Every UDM property has a syntax, which is used to check the value for correctness. Univention Corporate
Server already provides several syntax types, which are defined in the Python file /usr/lib/python3/
dist-packages/univention/admin/syntax.py. The following syntax list is not complete. For a com-
plete overview, consult the file directly.

string; string64; OneThirdString; HalfString; TwoThirdsString; FourThirdsString;

OneAndAHalfString; FiveThirdsString; TextArea
Different string classes, which are mapped in Univention Management Console to text input widgets with

different widths and heights.

string_numbers_letters_dots; string _numbers_letters_dots_spaces; IA5string;...
Different string classes with restrictions on the allowed character set.

Upload; Base64Upload; jpegPhoto
Binary data.

integer
Positive integers.

boolean; booleanNone; TrueFalse; TrueFalseUpper; TrueFalseUp
Different boolean types which map to yes and no or true and false.

hostName; DNS_Name; windowsHostName; ipv4Address; ipAddress; hostOrIP; vénetmask;

netmask; IPv4_AddressRange; IP_AddressRange; ...
Different classes for host names or addresses.

unixTime; TimeString; iso8601Date; date
Date and time.

GroupDN; UserDN; UserID; HostDN; DomainController; Windows_Server; UCS_Server; ...
Dynamic classes, which do an LDAP search to provide a list of selectable values like users, groups and hosts.

LDAP_Search, UDM_Objects,UDM_Attribute
These syntaxes do an LDAP search and display the result as a list. They are further described in UDM LDAP
search (page 84).

Additional syntax classes can be added by placing a Python filein /usr/1lib/python2.7/dist-packages/
univention/admin/syntax.d/ and /usr/lib/python3/dist-packages/univention/
admin/syntax.d/. Theyre automatically imported by UDM.

187 https://github.com/univention/univention-corporate-server/tree/5.0- 10/packaging/univention-directory-manager-module-example/

7.2. UDM syntax 83

https://github.com/univention/univention-corporate-server/tree/5.0-10/packaging/univention-directory-manager-module-example/
https://github.com/univention/univention-corporate-server/tree/5.0-10/packaging/univention-directory-manager-module-example/

Univention Developer Reference, Release 5.0-10

7.2.1 UDM syntax override

Sometimes the predefined syntax is inappropriate in some scenarios. This can be because of performance problems
with LDAP searches or the need for more restrictive or lenient value checking. The latter case might require a change
to the LDAP schema, since slapd also checks the provided values for correctness.

The syntax of UDM properties can be overwritten by using Univention Configuration Registry Variables. For each
module and each property the variable directory/manager/web/modules/module/properties/
property/syntax can be set to the name of a syntax class. For example directory/manager/web/
modules/users/user/properties/username/syntax=uid would restrict the name of users to not
contain umlauts.

Since UCR variables only affect the local system, the variables must be set on all systems were UDM is used. This
can be either done through a Univention Configuration Registry policy or by setting the variable in the .postinst
script of some package, which is installed on all hosts.

7.2.2 UDM LDAP search

It is often required to present a list of entries to the user, from which they can select one or — in case of a multi-valued
property — more entries. Several syntax classes derived from select provide a fixed list of choices. If the set of
values is known and fixed, it’s best to derive an own class from select and provide the Python filein /usr/1ib/
python3/dist-packages/univention/admin/syntax.d/.

If on the other hand the list is dynamic and is stored in LDAP, UDM provides three methods to retrieve the values.

class UDM_Attribute

This class does a UDM search. For each object found all values of a multi-valued property are returned.
For a derived class the following class variables can be used to customize the search:

udm_module
The name of the UDM module, which does the LDAP search and retrieves the properties.

udm_filter
An LDAP search filter which is used by the UDM module to filter the search. The special value dn skips
the search and directly returns the property of the UDM object specified by depends.

attribute
The name of a multi-valued UDM property which stores the values to be returned.

is_complex; key_index; label_index
Some UDM properties consist of multiple parts, so called complex properties. These variables are used
to define, which part is displayed as the label and which part is used to reference the entry.
label_format
A Python format string, which is used to format the UDM properties to a label string presented to the
user. $ (property-name) s should be used to reference properties. The special property name $at -
tribute$ is replaced by the value of variable att ribute declared above.
regex

This defines an optional regular expression, which is used in the front end to check the value for validity.

static_values

A list of two-tuples (value, display-string), which are added as additional selection options.

empty_value

If set to True, the empty value is inserted before all other static and dynamic entries.

84 Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

depends

This variable may contain the name of another property, which this property depends on. This can be
used to link two properties. For example, one property can be used to select a server, while the second
dependent property then only lists the services provided by that selected host. For the dependent syntax
attribute must be set to dn.

error_message

This error message is shown when the user enters a value which is not in the set of allowed values.

The following example syntax would provide a list of all users with their telephone numbers:

class DelegateTelephonedNumber (UDM_Attribute) :

udm_module = 'users/user'
attribute = 'phone'
label_format = ' . % (Sattribute$) s’

class UDM_Objects

This class performs a UDM search returning each object found.
For a derived class the following class variables can be used to customize the search:

udm_modules
A List of one or more UDM modules, which do the LDAP search and retrieve the properties.

key
A Python format string generating the key value used to identify the selected object. The default is dn,
which uses the distinguished name of the object.

label
A Python format string generating the display label to represent the selected object. The default is None,
which uses the UDM specific description. dn can be used to use the distinguished name.

regex
This defines an optional regular expression, which is used in the frontend to check the value for validity.
By default only valid distinguished names are accepted.

simple

By default a widget for selecting multiple entries is used. Setting this variable to True changes the
widget to a combo-box widget, which only allows to select a single value. This should be in-sync with the
multivalue property of UDM properties.

use_objects
By default UDM opens each LDAP object through a UDM module implemented in Python. This can be
a performance problem if many entries are returned. Setting this to False disables the Python code and
directly uses the attributes returned by the LDAP search. Several properties can then no longer be used
as key or label, as those are not explicitly stored in LDAP but are only calculated by the UDM module.
For example, to get the fully qualified domain name of a host % (name) s.% (domain) s must be used
instead of the calculated property % (fgdn) s.

udm_filter; static_values; empty_value; depends; error_message
Same as above with UDM_Attribute (page 84).

The following example syntax would provide a list of all servers providing a required service:

rclass MyServers (UDM_Objects) :

udm_modules = (
'computers/domaincontroller_master',
'computers/domaincontroller_backup',
'computers/domaincontroller_slave',
'computers/memberserver',
)

label =" !

udm_filter = 'service=MyService'

7.2. UDM syntax 85

Univention Developer Reference, Release 5.0-10

clas

clas

s LDAP_Search

This is the old implementation, which should only be used, if UDM_Attribute (page 84) and UDM_Ob—
Jject s (page 85) are not sufficient. In addition to ease of use it has the drawback that Univention Management
Console can not do as much caching, which can lead to severe performance problems.

LDAP search syntaxes can be declared in two equivalent ways:

Python API
By implementing a Python class derived from LDAP_Search (page 85) and providing that implemen-
tation in /usr/lib/python3/dist-packages/univention/admin/syntax.d/.

UDM API

By creating a UDM object in LDAP using the module settings/syntax.
s Python_API (LDAP_Search)
The Python API uses the following variables:

syntax_name
This variable stores the common name of the LDAP object, which is used to define the syntax. It is only
used internally and should never be needed when creating syntaxes programmatically.

filter
An LDAP filter to find the LDAP objects providing the list of choices.

attribute
A list of UDM module property definitions like “shares/share: dn”. They are used as the human
readable label for each element of the choices.

value
The UDM module attribute that will be stored to identify the selected element. The value is specified
like shares/share: dn

viewonly

If set to True the values can not be changed.
addEmptyValue
If set to True the empty value is add to the list of choices.

appendEmptyValue

Same as addEmpt yValue but added at the end. Used to automatically choose an existing entry in the
frontend.

-

class MyServers (LDAP_Search) :
def _ init__ (self):
LDAP_Search._ _init_ (self,
filter=(' (& (univentionService=MyService)'
' (univentionServerRole=member)) '),
attribute=(
'computers/memberserver: fqgdn',
) 14
value='computers/memberserver: dn'
)

self.name = 'LDAP_Search' # required workaround

clas

s LDAP_Search.UDM_API
The UDM API uses the following properties:

name
(required)

The name for the syntax.

86

Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

description
(optional)
Some descriptive text.
filter
(required)
An LDAP filter, which is used to find the objects.

base

(optional)

The LDAP base, where the search starts.
attribute

(optional, multi-valued)

The name of UDM properties, which are display as a label to the user. Alternatively LDAP attribute
names may be used directly.

ldapattribute
(optional, multi-valued)

Description, see att ribute (page 87).

value
(optional);

The name of the UDM property, which is used to reference the object. Alternatively an LDAP attribute
name may be used directly.

ldapvalue

(optional)

Description, see value (page 87).
viewonly

(optional)

If set to True the values can not be changed.

addEmptyValue
(optional)

If set to True the empty value is add to the list of choices.

$ eval "$(ucr shell)"

$ udm settings/syntax create "SQ@" --ignore_exists \
——position "cn=custom attributes,cn=univention, $ldap_base" \
——set name="MyServers" \
—-—-set filter="' (& (univentionService=MyService) (univentionServerRole=member)) '_
=\
——set attribute='computers/memberserver: fgdn' \
——-set value='computers/memberserver: dn'
. J

7.2.

UDM syntax 87

Univention Developer Reference, Release 5.0-10

7.3 Package extended attributes

Each UDM module provides a set of mappings from LDAP attributes to properties. This set is not complete, because
LDAP objects can be extended with additional auxiliary objectClasses. Extended Attributes can be used to extend
modules to show additional properties. These properties can be mapped to any already defined LDAP attribute, but
objects can also be extended by adding additional auxiliary object classes, which can provide new attributes.

For packing purpose any additional LDAP schema needs to be registered on the Primary Directory Node, which is
replicated from there to all other domain controllers through the Listener/Notifier mechanism (see Univention Direc-
tory Listener (page 43)). This is best done trough a separate schema package, which should be installed on the Primary
Directory Node and Backup Directory Node. Since Extended Attributes are declared in LDAP, the commands to cre-
ate them can be put into any join script (see Domain join (page 29)). To be convenient, the declaration should be also
included with the schema package, since installing it there does not require the Administrator to provide additional
LDAP credentials.

An Extended Attribute is created by using the UDM command line interface univention-directory-man-
ager or its alias udm. The module is called settings/extended_attribute. Extended Attributes
can be stored anywhere in the LDAP, but the default location would be cn=custom attributes,
cn=univention, below the LDAP base. Since the join script creating the attribute may be called on multiple
hosts, it is a good idea to add the ——ignore_exists option, which suppresses the error exit code in case the
object already exists in LDAP.

The module settings/extended_attribute requires many parameters. They are described in Expansion
of UMC modules with extended attributes'®® in Univention Corporate Server - Manual for users and administrators

[2].

name (required)
Name of the attribute.

CLIName (required)
An alternative name for the command line version of UDM.

shortDescription (required)
Default short description.

translationShortDescription (optional, multiple)
Translation of short description.

longDescription (required)
Default long description.

translationLongDescription (optional, multiple)
Translation of long description.

objectClass (required)
The name of an LDAP object class which is added to store this property.

deleteObjectClass (optional)
Remove the object class when the property is unset.

ldapMapping (required)
The name of the LDAP attribute the property matches to.

syntax (optional)
A syntax class, which also controls the visual representation in UDM. Defaults to st ring.

default (optional)
The default value is used when a new UDM object is created.

valueRequired (optional)
A value must be entered for the property.

188 https://docs.software-univention.de/manual/5.0/en/central- management-umc/extended-attributes. html#central-extended-attrs

88 Chapter 7. Univention Directory Manager (UDM)

https://docs.software-univention.de/manual/5.0/en/central-management-umc/extended-attributes.html#central-extended-attrs
https://docs.software-univention.de/manual/5.0/en/central-management-umc/extended-attributes.html#central-extended-attrs

Univention Developer Reference, Release 5.0-10

multivalue (optional)
Controls if only a single value or multiple values can be entered. This must be in sync with the SIN-
GLE-VALUE setting of the attribute in the LDAP schema.

mayChange (optional)
The property may be modified later.

notEditable (optional)
Disable all modification of the property, even when the object is first created. The property is only modified
through hooks.

copyable (optional)
Copy the value of the property when the entry is cloned.

hook (optional)
The name of a Python class implementing hook functions. See Extended attribute hooks (page 95) for more
information.

doNotSearch (optional)
If this is enabled, the property is not show in the drop-down list of properties when searching for UDM objects.

tabName (optional)
The name of the tab in the UMC where the property should be displayed. The name of existing tabs can be
copied from UMC session with the English locale. A new tab is automatically created for new names.

translationTabName (optional, multiple)
Translation of tab name.

tabPosition (optional)
This setting is only relevant, when a new tab is created by using a tabName, for which no tab exists. The
integer value defines the position where the newly tab is inserted. By default the newly created tab is appended
at the end, but before the Extended settings tab.

overwriteTab (optional)
If enabled, the tab declared by the UDM module with the name from the t abName settings is replaces by a
new clean tab with only the properties defined by Extended Attributes.

tabAdvanced (optional)
If this setting is enabled, the tab is created inside the Extended settings tab instead of being a tab by its own.

groupName (optional)
The name of the group inside a tab where the property should be displayed. The name of existing groups can
be copied from UMC session with the English locale. A new tab is automatically created for new names.
If no name is given, the property is placed before the first tab.

translationGroupName (optional, multiple)
Translation of group name.

groupPosition (optional)
This setting is only relevant, when a new group is created by using a groupName, for which no group exists.
The integer value defines the position where the newly group is inserted. By default the newly created group is
appended at the end.

overwritePosition (optional)
The name of an existing property this property wants to overwrite.

preventUmcDefaultPopup (optional)
If this setting is enabled, the pop-up that is shown when the default value automatically in UMC is suppressed.

disableUDMWeb (optional)
Disables showing this property in the UMC.

fullwidth (optional)
The widget for the property should span both columns.

module (required, multiple)
A list of module names where this Extended Attribute should be added to.

7.3. Package extended attributes 89

Univention Developer Reference, Release 5.0-10

options (required, multiple)
A list of options, which enable this Extended Attribute.

version (required)
The version of the Extended Attribute format. The current version is 2.

Tip: Create the Extended Attribute first through UMC-UDM. Modify it until you're satisfied. Only then dump
it using udm settings/extended_attribute list and convert the output to an equivalent shell script
creating it.

The following example provides a simple LDAP schema called extended-attribute.schema, which de-
clares one object class univentionExamplesUdmOC and one attribute univentionExamplesUdmAt -
tribute.

Listing 7.1: Extended Attribute for custom LDAP schema

#objectIdentifier univention 1.3.6.1.4.1.10176

#objectIdentifier univentionCustomers univention:99999

#objectIdentifier univentionExamples univentionCustomers:O0
objectIdentifier univentionExamples 1.3.6.1.4.1.10176:99999:0
objectIdentifier univentionExmaplesUdm univentionExamples:1
objectIdentifier univentionExmaplesUdmAttributeType univentionExmaplesUdm:1
objectIdentifier univentionExmaplesUdmObjectClass univentionExmaplesUdm:2

attributetype (univentionExmaplesUdmAttributeType:1
NAME 'univentionExamplesUdmAttribute'
DESC 'An example attribute for UDM'
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{42}
SINGLE-VALUE
)

objectClass (univentionExmaplesUdmObjectClass:1
NAME 'univentionExamplesUdmOC'
DESC 'An example object class for UDM'
SUP top
AUXILIARY
MUST (univentionExamplesUdmAttribute)
)

J

The schema is shipped as /usr/share/extended-attribute/extended-attribute.schema and
installed by calling ucs_registerLDAPExtension from the join-script 50extended-attribute.
inst.

#!/bin/bash
joinscript api: bindpwdfile

VERSION=1
/usr/share/univention-join/joinscripthelper.lib
/usr/share/univention-1ib/ldap.sh

joinscript_init

register LDAP schema for new extended attribute
ucs_registerLDAPExtension "S@" \
——-schema /usr/share/extended-attribute/extended-attribute.schema

Register new service entry for this host
eval "$(ucr shell)"
udm settings/extended_attribute create "S$S@" --ignore_exists \

(continues on next page)

90 Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

(continued from previous page)
—-position "cn=custom attributes,cn=univention, $1dap_base" \
——set name="My Attribute" \
——set CLIName="myAttribute" \
—-set shortDescription="Example attribute" \
——append translationShortDescription='"de_DE" "Beispielattribut"' \
——append translationShortDescription='"fr_FR" "Exemple d’attribut"' \
——set longDescri
——append translationLongDescription='"de_DE" "Ein Beispielattribut"' \
——append translationLongDescription='"fr FR" "Un exemple d’attribut"' \
—--set tabAdvanced=1 \
—-—set tabName="Examples" \
——append translationTabName='"de_DE" "Beispiele"' \
——append translationTabName='"fr FR" "Exemples"' \
——set tabPosition=1 \
——set module="groups/group" \
——set module="computers/memberserver" \
——set syntax=string \
——set default="Lorem ipsum" \
——set multivalue=0 \
——set valueRequired=0 \

ption="An example attribute" \

——set mayChange=1 \

—-set doNotSearch=1 \

——set objectClass=univentionExamplesUdmOC \

——set ldapMapping=univentionExamplesUdmAttribute \
——set deleteObjectClass=0

——set overwritePosition=
——set overwriteTab=

——-set hook=

——set options=

Terminate UDM server to force module reload
/usr/share/univention—-lib/base.sh
stop_udm_cli_server

joinscript_save_current_version
exit O

This example is deliberately missing an unjoin-script (see Writing unjoin scripts (page 37)) to keep this example
simple. It should check if the Extended Attribute is no longer used in the domain and then remove it.

7.3.1 Selection lists

Sometimes an Extended Attribute should show a list of options to choose from. This list can either be static or
dynamic. After defining such a new syntax it can be used by referencing its name in the syntax property of an
Extended Attribute.

Static selections

The static list of available selections is defined once and can not be modified interactively through UMC. Such a list
is best implemented though a custom syntax class. As the implementation must be available on all system roles, the
new syntax is best registered in LDAP. This can be done by using ucs_registerLDAPExtension (page 35) which is
described in join.sh (page 34).

As an alternative the file can be put into the directories /usr/lib/python2.7/dist-packages/
univention/admin/syntax.d/ and /usr/lib/python3/dist-packages/univention/
admin/syntax.d/.

The following example is comparable to the default example in file /usr/1lib/python3/dist-packages/
univention/admin/syntax.d/example.py:

7.3. Package extended attributes 91

Univention Developer Reference, Release 5.0-10

class StaticSelection (select):
choices = [
('valuel', 'Description for selection 1'),
('value2', 'Description for selection 2'),
('value3', 'Description for selection 3'),

Dynamic selections

A dynamic list is implemented as an LDAP search, which is described in UDM LDAP search (page 84). For perfor-
mance reason it is recommended to implement a class derived from UDM_At tribute (page 84)or UDM_Objects
(page 85) instead of using LDAP_Search (page 85). The file /usr/lib/python3/dist-packages/

univention/admin/syntax.py contains several examples.

The idea is to create a container with sub-entries for each selection. This following listing declares a new syntax class

for selecting a profession level.

Listing 7.2: Dynamic selection list for Extended Attributes

class DynamicSelection (UDM_Objects) :
udm_modules = ('container/cn',)
udm_filter = ' (& (objectClass=organizationalRole) (ou:dn:=DynamicSelection))"’
simple = True # only one value is selected
empty_value = True # allow selecting nothing

key = ' ' # this is stored

label =" ' # this is displayed
regex = None # no validation in frontend
error_message = 'Invalid value'

J

The Python code should be put into a file named DynamicSelection. py. The following code registers this new

syntax in LDAP and adds some values. It also creates an Extended Attribute for user objects using this syntax.

$ syntax='DynamicSelection'
$ base="cn=univention, $ (ucr get ldap/base)"

$ udm container/ou create \
——-position "Sbase" \
——set name="$syntax" \

——-set description='UCS profession level'
$ dn="ou=$syntax, Sbase"

$ udm container/cn create \
——position "S$dn" \
——set name="valuel" \
——set description='UCS Guru (> 5)'

$ udm container/cn create \
——position "S$dn" \
——set name="value2" \
—--set description='UCS Regular (1..5)'"

$ udm container/cn create \
——position "S$dn" \
——set name="value3" \
——set description='UCS Beginner (< 1)'

$ udm container/cn create \
—-—ignore_exists \
——position "S$base" \
——-set name='udm_syntax'

(continues on next page)

92 Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

(continued from previous page)

$ dn="cn=udm_syntax, Sbase"

$ udm settings/udm_syntax create \
——position "S$dn" \
——set name="S$syntax" \
——set filename="DynamicSelection.py" \
——set data="$(bzip2 <DynamicSelection.py | base64)" \

Ssyntax" \
on="1"

—-—set package="

—-set packageversi

$ udm settings/extended_attribute create \
——position "cn=custom attributes, Sbase" \
——-set name='Profession' \
——set module='users/user' \
——set tabName='General' \

—-set translationTabName='"de_DE" "Allgemein"' \
——set groupName='Personal information' \
——set translationGroupName='"de_ DE" "Persdnliche Informationen"' \

—-set shortDescription='UCS profession level' \
——set translationShortDescription='"de_DE" "UCS Erfahrung"' \
——set longDescription='Select a level of UCS experience' \

——set translationLongDescription="'"de_DE" "Wd&hlen Sie den Level der Erfahrung.
—mit UCS"' \

——set objectClass='univentionFreeAttributes' \

—-set ldapMapping='univentionFreeAttributel' \

——set syntax="$syntax" \

——set mayChange=1 \
——-set valueRequired=0

7.3.2 Known issues

e The tabName and groupName values must exactly match the values already used in the modules.
If they do not match, a new tab or group is added. This also applies to the translation: They
must match the already translated strings and must be repeated for every Extended Attribute again and
again. The untranslated strings are best extracted directly from the Python source code of the mod-
ules in /usr/lib/python3/dist-packages/univention/admin/handlers/*/*.py. For
the translated strings run msgunfmt /usr/share/locale/$language—-code/LC_MESSAGES/
univention-admin¥* .mo.

e The overwritePosition values must exactly match the name of an already defined property. Otherwise
UDM will crash.

o Extended Attributes may be removed, when matching data is still stored in LDAP. The schema on the other
hand must only be removed when all matching data is removed. Otherwise the server slapd will fail to start.

* Removing objectClasses from LDAP objects must be done manually. Currently UDM does not provide
any functionality to remove unneeded object classes or methods to force-remove an object class including all
attributes, for which the object class is required.

7.3. Package extended attributes 93

Univention Developer Reference, Release 5.0-10

7.3.3 Extended options

UDM properties can be enabled and disabled through options. For example, all properties of a user related to Samba
can be switched on or off to reduce the settings shown to an administrator. If many Extended Attributes are added to
a UDM module, it might proof necessary to also create new options. Options are per UDM module.

Similar to Extended Attributes an Extended Option is created by using the UDM command line interface univen—
tion-directory-manager or its alias udm. The module is called settings/extended_options.
Extended Options can be stored anywhere in the LDAP, but the default location would be cn=custom
attributes, cn=univention, below the LDAP base. Since the join script creating the option may be called
on multiple hosts, it is a good idea to add the ——ignore_exists option, which suppresses the error exit code in
case the object already exists in LDAP.

The module settings/extended_options has the following properties:

name (required)
Name of the option.

shortDescription (required)
Default short description.

translationShortDescription (optional, multiple)
Translation of short description.

longDescription (required)
Default long description.

translationLongDescription (optional, multiple)
Translation of long description.

default (optional)
Enable the option by default.

editable (optional)
Option may be repeatedly turned on and off.

module (required, multiple)
A list of module names where this Extended Option should be added to.

objectClass (optional, multiple)
A list of LDAP object classes, which when found, enable this option.

94 Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

Listing 7.3: Extended Option

$ eval "$(ucr shell)"

$ udm settings/extended_options create "S@" --ignore_exists \
——position "cn=custom attributes,cn=univention, $ldap_base" \
——set name="My Option" \
—-set shortDescription="Example option" \
--set n hortDescription='"de_DE" "Beispieloption"' \
——set longDescription="An example option" \
——set translationLongDescription='"de DE" "Eine Beispieloption"' \
—-set default=0 \
——set editable=0 \
——-set module="users/user" \
—-set objectClass=univentionExamplesUdmOC

7.3.4 Extended attribute hooks

Hooks provide a mechanism to pre- and post-process the values of Extended Attributes. Normally, UDM properties are
stored as-is in LDAP attributes. Hooks can modify the LDAP operations when an object is created, modified, deleted
or retrieved. They are implemented in Python and the file must be placed in the directory /usr/lib/python2.
7/dist-packages/univention/admin/hooks.d/ and /usr/lib/python3/dist-packages/
univention/admin/hooks.d/. The filename must end with . py.

The module univention.admin.hook (page 95) provides the class simpleHook, which implements all re-
quired hook functions. By default they don’t modify any request, but do log all calls. This class should be used as a
base class for inheritance.

class univention.admin.hook.simpleHook
hook_open (obj)

Parameters
obj (univention.admin.handlers.simpleLdap)—

Return type
None

This method is called by the default open () handler just before the current state of all properties is
saved.

hook_1ldap_pre_create (0bj)

Parameters
obj (univention.admin.handlers.simplelLdap)—

Return type
None

This method is called before a UDM object is created. It is called after the module validated all properties,
but before the add-list is created.

hook_1ldap_addlist (obj, al: AddList = [])

Parameters
* obj (univention.admin.handlers.simpleLdap) -
e al (AddList)—

Return type
AddList

This method is called before a UDM object is created. It gets passed a list of two-tuples (ldap-at-
tribute-name, list-of-values),whichwill be used to create the LDAP object. The method

7.3. Package extended attributes 95

Univention Developer Reference, Release 5.0-10

must return the (modified) list. Notice that hook_Idap_modlist () (page 96) will also be called
next.

hook_1ldap_post_create (0bj)

Parameters
obj (univention.admin.handlers.simplelLdap)—

Return type
None

This method is called after the object was created in LDAP.

hook_ldap_pre_modify (0bj)

Parameters
obj (univention.admin.handlers.simplelLdap)—

Return type
None

This method is called before a UDM object is modified. It is called after the module validated all prop-
erties, but before the modification-list is created.

hook_1ldap_modlist (obj, mi: ModList = [])

Parameters
* obj (univention.admin.handlers.simpleLdap) -
e ml (ModList)—

Return type
ModList

This method is called before a UDM object is created or modified. It gets passed a list of tuples, which
are either two-tuples (ldap-attribute-name, list-of-new-values) or three-tuples
(ldap—-attribute—-name, list-of-old-values, list-of-new-values). Itwillbe
used to create or modify the LDAP object. The method must return the (modified) list.

hook_1ldap_pre_remove (0bj)

Parameters
obj (univention.admin.handlers.simplelLdap)—

Return type
None

This method is called before a UDM object is removed.
hook_1ldap_post_remove (0bj)

Parameters
obj (univention.admin.handlers.simpleLdap) -

Return type
None

This method is called after the object was removed from LDAP.

The following example implements a hook, which removes the object-class univentionFreeAttributes, if
the property i sSampleUser is no longer set.

from univention.admin.hook import simpleHook

class RemoveObjClassUnused (simpleHook) :
type = 'RemoveObjClassUnused'

(continues on next page)

96 Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

(continued from previous page)

def hook_ldap_post_modify(self, obj):
"""Remove unused objectClass."""

ext_attr_name = 'isSampleUser'
class_name = 'univentionFreeAttributes'
if obj.oldinfo.get (ext_attr_name) in ('1',) and \

obj.info.get (ext_attr_name) in ('0', None) :
if class_name in obj.oldattr.get ('objectClass', []):
obj.lo.modify (obj.dn,
[('objectClass', class_name, '')])

After installing the file, the hook can be activated by setting the hook property of an Extended Attribute to Re—
moveObjClassUnused:

$ udm settings/extended_attribute modify \
——dn ... \
—-—-set hook=RemoveObjClassUnused

7.4 Package UDM hooks

For some purposes, for example for app installation, it is convenient to be able to deploy a new UDM hook in the
UCS domain from any system in the domain. For this purpose, a UDM hook can be stored as a special type of UDM
object. The module responsible for this type of objects is called settings/udm_hook. As these objects are
replicated throughout the UCS domain, the UCS servers listen for modifications on these objects and integrate them
into the local UDM.

The commands to create the UDM hook objects in UDM may be put into any join script (see Domain join (page 29)).
Like every UDM object a UDM hook object can be created by using the UDM command line interface univen—
tion-directory-manager orits aliasudm. UDM hook objects can be stored anywhere in the LDAP directory,
but the recommended location would be cn=udm_hook, cn=univention, below the LDAP base. Since the
join script creating the attribute may be called on multiple hosts, it is a good idea to add the ——ignore_exists
option, which suppresses the error exit code in case the object already exists in LDAP.

The module settings/udm_hook requires several parameters. Since many of these are determined automati-
cally by the ucs_registerLDAPExtension shell library function, it is recommended to use the shell library
function to create these objects (see join.sh (page 34)).

name (required)
Name of the UDM hook.

data (required)
The actual UDM hook data in bzip2 and base64 encoded format.

filename (required)
The filename the UDM hook data should be written to by the listening servers. The filename must not contain
any path elements.

package (required)
Name of the Debian package which creates the object.

packageversion (required)
Version of the Debian package which creates the object. For object modifications the version number needs to
increase unless the package name is modified as well.

appidentifier (optional)
The identifier of the app which creates the object. This is important to indicate that the object is required as
long as the app is installed anywhere in the UCS domain. Defaults to st ring.

ucsversionstart (optional)
Minimal required UCS version. The UDM hook is only activated by systems with a version higher than or

7.4. Package UDM hooks 97

Univention Developer Reference, Release 5.0-10

equal to this.

ucsversionend (optional)
Maximal required UCS version. The UDM hook is only activated by systems with a version lower than or equal
to this. To specify validity for the whole 5.0-x release range a value like 5. 0—99 may be used.

active (internal)
A boolean flag used internally by the Primary Directory Node to signal availability of the new UDM hook on
the Primary Directory Node (default: FALSE).

7.5 Package UDM extension modules

For some purposes, for example for app installation, it is convenient to be able to deploy a new UDM module in the
UCS domain from any system in the domain. For this purpose, a UDM module can be stored as a special type of
UDM object. The module responsible for this type of objects is called sett ings/udm_module. As these objects
are replicated throughout the UCS domain, the UCS servers listen for modifications on these objects and integrate
them into the local UDM.

The commands to create the UDM module objects in UDM may be put into any join script (see Domain join
(page 29)). Like every UDM object a UDM module object can be created by using the UDM command line in-
terface univention—-directory—-manager or its alias udm. UDM module objects can be stored anywhere in
the LDAP directory, but the recommended location would be cn=udm_module, cn=univention, below the
LDAP base. Since the join script creating the attribute may be called on multiple hosts, it is a good idea to add the
-—ignore_exists option, which suppresses the error exit code in case the object already exists in LDAP.

The module settings/udm_module requires several parameters. Since many of these are determined automat-
ically by the ucs_registerLDAPExtension shell library function, it is recommended to use the shell library
function to create these objects (see join.sh (page 34)).

name (required)
Name of the UDM module, e.g. newapp/someobject.

data (required)
The actual UDM module data in bzip2 and base64 encoded format.

filename (required)
The filename the UDM module data should be written to by the listening servers. The filename may contain
path elements and should conform to the name of the UDM module (e.g. newapp/someobject .py).

messagecatalog (optional)
Multi-valued property to supply message translation files (syntax: <language tag> <base64 en-
coded GNU message catalog>).

umcregistration (optional)
XML definition required to make the UDM module available though the Univention Management Console
(base64 encoded XML)

icon (optional)
Multi-valued property to supply icons for the Univention Management Console (base64 encoded png, jpeg
or svgz).

package (required)
Name of the Debian package which creates the object.

packageversion (required)
Version of the Debian package which creates the object. For object modifications the version number needs to
increase unless the package name is modified as well.

appidentifier (optional)
The identifier of the app which creates the object. This is important to indicate that the object is required as
long as the app is installed anywhere in the UCS domain. Defaults to st ring.

98 Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

ucsversionstart (optional)
Minimal required UCS version. The UDM module is only activated by systems with a version higher than or
equal to this.

ucsversionend (optional)
Maximal required UCS version. The UDM module is only activated by systems with a version lower than or
equal to this. To specify validity for the whole 5.0-x release range a value like 5. 0—-99 may be used.

active (internal)
A boolean flag used internally by the Primary Directory Node to signal availability of the new UDM module
on the Primary Directory Node (default: FALSE).

7.6 Package UDM syntax extension

For some purposes, for example for app installation, it is convenient to be able to deploy a new UDM syntax in the
UCS domain from any system in the domain. For this purpose, a UDM syntax can be stored as a special type of UDM
object. The module responsible for this type of objects is called settings/udm_syntax. As these objects are
replicated throughout the UCS domain, the UCS servers listen for modifications on these objects and integrate them
into the local UDM.

The commands to create the UDM syntax objects in UDM may be put into any join script (see Domain join (page 29)).
Like every UDM object a UDM syntax object can be created by using the UDM command line interface univen—
tion-directory-manager or its alias udm. UDM syntax objects can be stored anywhere in the LDAP di-
rectory, but the recommended location would be cn=udm_syntax, cn=univention, below the LDAP base.
Since the join script creating the attribute may be called on multiple hosts, it is a good idea to add the ——ig—
nore_exists option, which suppresses the error exit code in case the object already exists in LDAP.

The module settings/udm_syntax requires several parameters. Since many of these are determined automat-
ically by the ucs_registerLDAPExtension shell library function, it is recommended to use the shell library
function to create these objects (see join.sh (page 34)).

name (required)
Name of the UDM syntax.

data (required)
The actual UDM syntax data in bzip2 and base64 encoded format.

filename (required)
The filename the UDM syntax data should be written to by the listening servers. The filename must not contain
any path elements.

package (required)
Name of the Debian package which creates the object.

packageversion (required)
Version of the Debian package which creates the object. For object modifications the version number needs to
increase unless the package name is modified as well.

appidentifier (optional)
The identifier of the app which creates the object. This is important to indicate that the object is required as
long as the app is installed anywhere in the UCS domain. Defaults to st ring.

ucsversionstart (optional)
Minimal required UCS version. The UDM syntax is only activated by systems with a version higher than or
equal to this.

ucsversionend (optional)
Maximal required UCS version. The UDM syntax is only activated by systems with a version lower than or
equal to this. To specify validity for the whole 5.0-x release range a value like 5. 0—-99 may be used.

active (internal)
A boolean flag used internally by the Primary Directory Node to signal availability of the new UDM syntax on
the Primary Directory Node (default: FALSE).

7.6. Package UDM syntax extension 99

Univention Developer Reference, Release 5.0-10

7.7 UDM HTTP REST API

UCS provides a UDM HTTP REST API which can be used to inspect, modify, create and delete UDM objects
through HTTP requests.

The API is accessible from https://FQHN/univention/udm/.
See also:

For an architectural overview, see UDM HTTP REST API'® in Univention Corporate Server 5.0 Architecture [3].

7.7.1 Authentication

To use the API you have to authenticate with a user account which is a member of an authorized group. The group au-
thorization is managed through the Univention Configuration Registry Variables directory/manager/rest/
authorized-groups/.

You can authenticate through the following ways:
+ With user credentials through HTTP basic authentication'*"
» An OAuth 2.0 Access Token as JWT through HTTP Bearer authentication'®’
The API comes predefined with the following UCR variables:
e directory/manager/rest/authorized-groups/domain-admins
e directory/manager/rest/authorized-groups/dc—backup
e directory/manager/rest/authorized-groups/dc—-slaves

The variables authorize the groups Domain Admins, DC Backup Hosts and DC Slave Hosts respec-
tively.

To authorize additional groups you just have to create a new UCR variable. If you haven't already, create the group
you want to authorize:

$ udm groups/group create \
——position="cn=groups, $ (ucr get ldap/base)" \
——set name="UDM API Users"

Now set the UCR variable to allow the group members to use the APL

$ ucr set directory/manager/rest/authorized-groups/udm-api-users=\
"cn=UDM API Users, cn=groups, $(ucr get ldap/base)"

Note: The authorization of a group only allows the group members to access the API in the first place. After that,
which actions the user can perform with the API is regulated through ACLs. For example a normal Domain Users
user can’t create or delete objects.

After you add or modify a Univention Configuration Registry Variable directory/manager/rest/
authorized-groups/ you have to restart the API service for the changes to take effect.

[$ systemctl restart univention-directory-manager-rest

189 https://docs.software-univention.de/architecture/5.0/en/services/udm-rest-api.html#services-udm-rest-api
190 https://datatracker.ietf.org/doc/html/rfc7617.html
191 https://datatracker.ietf.org/doc/html/rfc6750.html

100 Chapter 7. Univention Directory Manager (UDM)

https://docs.software-univention.de/architecture/5.0/en/services/udm-rest-api.html#services-udm-rest-api
https://datatracker.ietf.org/doc/html/rfc7617.html
https://datatracker.ietf.org/doc/html/rfc6750.html

Univention Developer Reference, Release 5.0-10

7.7.2 API overview

You can interact with the API by sending HTTP requests to resources and by using different HTTP methods you can
achieve different results.

Table 7.2: HTTP methods

Verb Description

GET Retrieve a resource

POST Create a resource

PUT Replace or move a resource
PATCH Modify or move a resource
DELETE Delete a resource

For an in depth overview over which resources are available, which HTTP methods are allowed on them and which
query parameters are available for a given HTTP method visit https://FQHN/univention/udm/schema/
with a browser. To download the OpenAPI schema, use https://FOHN/univention/udm/openapi.
json. The contract is that the client must always use the latest schema.

You can navigate the OpenAPI schema interactively with a web browser. To enable it, use the following steps:
1. You need to set the UCR variable directory/manager/rest/html-view-enabledto true.

2. If you need to insert JSON blobs of objects into the HTML source code, enable it by setting directory/
manager/rest/debug-mode-enabledto true.

3. Restart the UDM HTTP REST API with this command:

[$ systemctl restart univention-directory-manager-rest }

4. Finally, visit https://FQHN/univention/udm/.

7.7.3 API clients

The following API clients implemented in Python exist for the UDM HTTP REST API:
* python3—-univention-directory-mananger-rest-client:

Every UCS system has it installed by default. You can use it the following way:

Listing 7.4: Example for using Python UDM HTTP REST API client

from univention.admin.rest.client import UDM
uri = 'https://ucs-primary.example.com/univention/udm/"'
udm = UDM.http (uri, 'Administrator', 'univention')

module = udm.get ('users/user')

1. create a user

obj = module.new ()
obj.properties['username'] = 'foo'
obj.properties|'password'] = 'univention'
obj.properties|['lastname'] = 'foo'
obj.save ()

2. search for users (first user)

obj = next (module.search ('uid=*"))
if obj:

obj = obj.open()
print ('Object '.format (obj))

(continues on next page)

7.7. UDM HTTP REST API 101

Univention Developer Reference, Release 5.0-10

(continued from previous page)

3. get by dn
ldap_base = udm.get_ldap_base ()
obj = module.get ('uid=foo,cn=users, ' % (ldap_base,))

4. get referenced objects e.g. groups
Pg = obj.objects['primaryGroup'].open ()
print (pg.dn, pg.properties)

print (obj.objects['groups'])

5. modify
obj.properties['description'] = 'foo'
obj.save ()

6. move to the ldap base
obj.move (ldap_base)

7. remove
obj.delete()

python3-univention-directory-mananger—-rest—async-client:

After installing the Debian package on a UCS system, you can use it in the following way:

Listing 7.5: Example for using Python asynchronous UDM REST API
client

-
import asyncio
from univention.admin.rest.async_client import UDM

uri = 'https://ucs-primary.example.com/univention/udm/"'

async def main () :
async with UDM.http (uri, 'Administrator', 'univention') as udm:
module = await udm.get ('users/user')

1. create a user

obj = await module.new ()
obj.properties['username'] = 'foo'
obj.properties|'password'] 'univention'
obj.properties['lastname']
await obj.save ()

'foo'

2. search for users (first user)
objs = module.search ()
async for obj in objs:

if not obj:
continue
obj = await obj.open/()
print ('Object '.format (obj))

3. get by dn
ldap_base = await udm.get_ldap_base ()
obj = await module.get ('uid=foo, cn=users, ' % (ldap_base,))

4. get referenced objects e.g. groups

pg = await obj.objects['primaryGroup'].open ()
print (pg.dn, pg.properties)

print (obj.objects['groups'])

5. modify
obj.properties['description'] = 'foo'

(continues on next page)

102

Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

(continued from previous page)

await obj.save ()

6. move to the ldap base
await obj.move (ldap_base)

7. remove
await obj.delete()

¢ Python UDM HTTP REST API Client:
— Package at PyPI'*?

— Documentation'*?

7.7.4 APl usage examples

In the following section you will learn how to create, modify, search and delete a user through the API.

While you try out these examples you will often see the “_links” and “_embedded” properties in the responses. These
properties are defined by HAL, the Hypertext Application Language, which is used in the API. These properties contain
links which can be used to traverse the API. For example the “ links” property of the response to a paginated query
could contain the ‘next” property which points to the next page.

For more information on HAL please refer to the Internet Draft for HAL'*,

Create a user with a POST request

To create a new user your first want to get a template that describes a valid user and has all attributes filled out with
default values.

You can get the template for an UDM module with:

$ curl -X GET -H "Accept: application/json" \
https://S{USER}: S{PASSWORD }@S{FQHN }/univention/udm/S${module }/add

So for the users/user module you get the template with:

$ curl -X GET -H "Accept: application/json" \
https://S{USER}: S{PASSWORD }@S{FQHN }/univention/udm/users/user/add

To work with the template, you can save it into a file. To make it more readable, you can use something like Pythons
- 195
json.tool™”.

$ curl -X GET -H "Accept: application/json" \
https://S{USER}:S{PASSWORD }QS{FQHN }/univention/udm/users/user/add | \
python3 -m Jjson.tool > user_template.json

The JSON file contains meta information (keys that start with underscore ‘_’) that aren’t necessary to create a user.
These can be filtered out to make it easier to work with the template file. The following example produces such a
condensed template:

$ curl -X GET -H "Accept: application/json" \
https://S{USER}: S{PASSWORD }@S{FQHN }/univention/udm/users/user/add | \
python3 -c 'import sys, Json; \
template = json.load(sys.stdin); \
(continues on next page)

192 https://pypi.org/project/udm-rest-client/

193 https://udm-rest-client.readthedocs.io/en/latest/index.html
194 https://datatracker.ietf.org/doc/html/draft-kelly- json-hal-11
195 https://docs.python.org/3/library/json.html#module- json.tool

7.7. UDM HTTP REST API 103

https://pypi.org/project/udm-rest-client/
https://udm-rest-client.readthedocs.io/en/latest/index.html
https://datatracker.ietf.org/doc/html/draft-kelly-json-hal-11
https://docs.python.org/3/library/json.html#module-json.tool

Univention Developer Reference, Release 5.0-10

template =
<" ") kN
json.dump (template,

{key:value for key,

sys.stdout, indent=4)'

value in template.items ()

(continued from previous page)

if not key.startswith (

> user_template.json

The content of user_template. json should look something like this.

{

"position": "cn=users,dc=mydomain,dc=intranet",
"objectType": "users/user",
"options": {

"pki": false

}I

"policies": {
"policies/pwhistory":
"policies/umc": [],
"policies/desktop": []

(1,

}l

"properties": {
"mobileTelephoneNumber": [],
"certificateSubjectOrganisationalUnit":
"groups": [],
"sambahome": null,
"departmentNumber" :
"certificateSerial":

(1,

null,
"certificateSubjectCommonName" :
"primaryGroup":
"uidNumber": null,

"disabled": false,

false,

null,

"postcode": null,

"scriptpath": null,
"sambaPrivileges": [],
"description": null,
"certificateIssuerCommonName" :
false,

null,

"unlock":
"street":

null,
"mailForwardCopyToSelf":
"employeeType": null,
"homedrive": null,
"overridePWLength":
"title": null,
"mailAlternativeAddress":
null,
null,

nn
’

null,

[1,
"userCertificate":
"organisation":
"homeSharePath":
"certificateIssuerOrganisationalUnit":
"e-mail": [],

"userexpiry": null,
"pwdChangeNextLogin": false,
"mailHomeServer": null,

"unixhome": "/home/",

"gecos": "",
"sambaUserWorkstations": [],
"preferredLanguage": null,
"certificateIssuerState": null,
"pagerTelephoneNumber": [],
null,

(1,
"certificateIssuerCountry":
"homeTelephoneNumber": T[],
"shell": "/bin/bash",
"homePostalAddress":

"username" :
"umcProperty":
null,

1,

null,

"cn=Domain Users,cn=groups,dc=mydomain,dc=intranet",

null,

(continues on next page)

104 Chapter 7.

Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

(continued from previous page)

"firstname": null,
"certificateIssuerOrganisation": null,
"lastname": null,

"city": null,
"certificateSubjectMail": null,
"mailForwardAddress": [],

"phone": T[],

"gidNumber": null,

"birthday": null,
"employeeNumber": null,
"objectFlag": [],
"sambalLogonHours": null,
"certificateSubjectLocation": null,
"displayName": "",

"password": null,

"lockedTime": null,

"sambaRID": null,

"secretary": [],
"certificateSubjectOrganisation": null,
"overridePWHistory": null,
"mailPrimaryAddress": null,
"country": null,

"roomNumber": [],
"certificateSubjectCountry": null,
"locked": false,
"certificateDateNotBefore": null,
"passwordexpiry": null,
"certificateVersion": null,
"homeShare": null,
"certificateIssuerMail": null,
"unlockTime": null,
"serviceprovider": [],
"profilepath": null,
"certificatelIssuerLocation": null,
"jpegPhoto": null,
"certificateDateNotAfter": null,
"certificateSubjectState": null

Now you can modify the attributes the new user should have and send the modified template, through a POST request,
to create a new user.

$ curl -X POST —-H "Accept: application/json" —-H "Content-Type: application/json" \
https://S{USER}:S{PASSWORD }@S{FQHN }/univention/udm/users/user/ —--data Quser_
—template.json

Search for users with a GET request

In this example you search for a users/user object where the property firstname starts with "Ale" and the
property lastname ends with "er™".

$ curl -X GET -H "Accept: application/json" \
"http://S{USER}: S{PASSWORD }@S{FQHN }/univention/udm/users/user/?query\ [firstname\
—]=A1%2A&query\ [lastname\]=%2RAer"

The response should look something like this (some fields where omitted for clarity):

7.7. UDM HTTP REST API 105

Univention Developer Reference, Release 5.0-10

" _embedded": {
"udm:object": [

{

"dn": "uid=alexpower, cn=users,dc=mydomain,dc=intranet",

"id": "alexpower",
"objectType": "users/user",
"options": {

"pki": false

}’

"policies": {
"policies/desktop": [1],
"policies/pwhistory": [],
"policies/umc": []

t

"position": "cn=users,dc=mydomain,dc=intranet",

"properties": {
"birthday": null,
"city": null,
"country": null,

"departmentNumber": [],
"description": null,
"disabled": false,
"displayName": "Alex Power",
"e-mail": [],

"employeeNumber": null,
"employeeType": null,

"firstname": "Alex",
"gecos": "Alex Power",
"gidNumber": 5001,
"groups": [

"cn=Domain Users,cn=groups,dc=mydomain,dc=intranet"

] r

"homePostalAddress": [],
"homeShare": null,
"homeSharePath": "alexpower",
"homeTelephoneNumber": [],
"homedrive": null,
"jpegPhoto": null,
"lastname": "Power",
"locked": false,
"lockedTime": "O",
"mailAlternativeAddress": [],
"mailForwardAddress": [],
"mailForwardCopyToSelf": "0",
"mailHomeServer": null,
"mailPrimaryAddress": null,
"mobileTelephoneNumber": [],
"objectFlag": [],
"organisation": null,
"overridePWHistory": null,
"overridePWLength": null,
"pagerTelephoneNumber": [],
"password": null,
"passwordexpiry": null,
"phone": T[],

"postcode": null,
"preferredLanguage": null,

"primaryGroup": "cn=Domain Users, cn=groups, dc=mydomain,

—~dc=intranet",
"profilepath": null,
"owdChangeNextLogin": false,

(continues on next page)

106 Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

(continued from previous page)

"roomNumber": [],
"sambaLogonHours": null,
"sambaPrivileges": [],
"sambaRID": 5018,
"sambaUserWorkstations": [],

"sambahome": null,
"scriptpath": null,

"secretary": [],
"serviceprovider": [],
"shell": "/bin/bash",
"street": null,

"title": null,
"uidNumber": 2009,
"umcProperty": {},

"unixhome": "/home/alexpower",
"unlock": false,
"unlockTime": "",
"userexpiry": null,
"username": "alexpower"
}I
"uri": "http://10.200.28.110/univention/udm/users/user/uid
—%3Dalexpower$2Ccn%3Dusers$2Cdc%3Dmydomain%2Cdc%3Dintranet”
}
]
by
"results": 1

Modify a user with a PUT request

To modify a user you first get the current state of the user. To prevent modification conflicts you also have to get the
entity tag (Etag) of the user resource. The Erag can be found in the response headers; it is used to identify a specific
version of a resource.

$ curl -X GET -H "Accept: application/json" —-—-dump-header user.headers \
https://S{USER}: S{PASSWORD }@S{FQHN }/univention/udm/users/user/<dn> \
| python3 -m json.tool > user.json

Caution: You must URL encode <dn>.

Now you can edit the user in the user . json file to your liking. After you are done, send the changed user. json
through a PUT request to modify the user. To avoid modification conflicts it is required to send the value of the Etag
header, which you saved earlier in the user . headers file, as the value for the I £-Mat ch header.

$ curl -X PUT -H "Accept: application/json" \
-H "Content-Type: application/json" \
-H 'If-Match: "<Etag>""' \
"https://S{USER}: S{PASSWORD }@S{FQHN }/univention/udm/users/user/<dn>" —--data.

—@user.json

Caution: You must URL encode <dn>.

The quotes around the Efag are required.

7.7. UDM HTTP REST API 107

Univention Developer Reference, Release 5.0-10

Delete a user with a DELETE request

To delete a user you just have to send a DELETE request to /univention/udm/users/user/<dn>. Op-
tionally, you can provide an I f-Match header, similar to the PUT method described above, to ensure the deletion
is conditional.

$ curl -X DELETE -H "Accept: application/json" \
-H '"If-Match: "<Etag>" \
'https://S${USER}: S{PASSWORD }@S{FQHN }/univention/udm/users/user/<dn>

Caution: You must URL encode <dn>.

7.7.5 API Error Codes

The UDM HTTP REST API can respond to requests with the following error codes. The list is not exhaustive:

Table 7.3: UDM HTTP REST API error codes

Code Name Example Case

400 Bad Request The API doesn’t understand the format of the request.

401 Unauthorized The request provide no or wrong credentials for authorization.

403 Forbidden User isn’t part of the allowed groups to access the requested resource.

404 Not Found The requested resource doesn’t exist.

406 Not Acceptable The header field Accept does not specify a known MIME media type or
header field Accept-Language does not specify a known language.

412 Precondition Failed The header If£-Match does not match the E-tag or the header I £-Un-
modified-Since doesn’t match the header Last-Modified.

413 Payload Too Large The request payload contains a field that exceeds its size limit.

416 Range Not Satisfiable In the request, the field If-Match doesn’t match the entity tag and the
request has the field Range set.

422 Unprocessable Content The validation of input parameters failed.

500 Internal Server Error Generic error code for internal server errors.

503 Service Unavailable The server for the service isn’t available, for example the LDAP server.

7.8 UCS 5.0: Python 3 migration of modules and extensions

UCS 5.0 switched from Python 2 to Python 3. This also affects Univention Directory Manager. Starting with UCS
5.0 the modules and extensions like syntax classes and hooks must be compatible with both Python versions to ensure
easier transition.

Python 2 support will be removed completely with UCS 5.1.

This chapter describes important aspects of the migration as well as changes to the API.

108 Chapter 7. Univention Directory Manager (UDM)

Univention Developer Reference, Release 5.0-10

7.8.1 Compatibility with UCS 4.4

Most changes proposed in this chapter are compatible with UCS 4.4. One exception is the registration of the mapping
encoding. The changes suggested here should already be included in the UDM modules for UCS 4.4 to make the
update easier.

The changes suggested here should already be included for UCS 4.4. Otherwise, the update to UCS 5.0 may be
problematic. Apps that still install UDM modules under UCS 4.4, while the Primary Directory Node may already
be UCS 5, must also contain the customizations in the UDM modules or register 2 different variants, otherwise the
app will not be displayed on the Primary Directory Node in Univention Management Console / Univention Directory
Manager, for example.

For the registration of UDM extensions the parameters to specify the compatible starting and end UCS version are
now mandatory. While a join script looked like:

Listing 7.6: Example for deprecated join script

. /usr/share/univention-lib/ldap.sh

ucs_registerLDAPExtension "S@" \
—-udm_module /usr/lib/python3/dist-packages/univention/admin/handlers/foo/bar.
=Py

it may now specify the compatible UCS versions:

Listing 7.7: Example for join script that defines the compatible UCS ver-
sions

. /usr/share/univention-1ib/ldap.sh

ucs_registerLDAPExtension "S@" \

——ucsversionstart "4.4-0" \

——ucsversionend "5.99-0" \

——udm_module /usr/lib/python3/dist-packages/univention/admin/handlers/foo/bar.
—Py

or register two separate versions compatible for each UCS version:

7.8. UCS 5.0: Python 3 migration of modules and extensions 109

Univention Developer Reference, Release 5.0-10

Listing 7.8: Example for join script that defines two UCS versions

/usr/share/univention-1ib/ldap.sh

ucs_registerLDAPExtension "S@" \
—-—ucsversionstart "4.4-0" \
——ucsversionend "4.99-0" \
—-udm_module /usr/lib/python3/dist-packages/univention/admin/handlers/foo/bar.

=Py
ucs_registerLDAPExtension "$@" \

——-ucsversionstart "5.0-0" \

——ucsversionend "5.99-0" \

—-udm_module /usr/lib/python3/dist-packages/univention/admin/handlers/foo/bar.
=Py

7.8.2 Default option

If not already present, the module should define a de fault Univention Directory Manager option:

options = {

'default': univention.admin.option (
short_description=short_description,
default=True,
objectClasses=['top', 'objectClassName'l],

}

class object(...):

This enables generic functionality like automatic creation of search filters, automatic identification of objects and
obsoletes the need to create the add-list manually.

7.8.3 Mapping functions

The unmap functions must decode the given list of byt e strings (bytes'”) into unicode strings (st r'?7). The
map functions must encode the result of the unmap functions (for example unicode strings str) into a list of
byte strings (bytes!'’®). Both functions have a new optional parameter encoding, which is a tuple consisting of
the encoding (defaults to UTF-8) and the error handling in case de/encoding fails (defaults to strict).

Deprecated UCS 4 code most often looked like:

def map_function (value) :
return [value]

def unmap_function (value):
return value[0]

mapping.register ('property', 'attribute', map_function, unmap_function)

In UCS 5.0 the code has to look like:

196 https://docs.python.org/3/library/stdtypes.html#bytes
197 https://docs.python.org/3/library/stdtypes.htmlé#str
198 https://docs.python.org/3/library/stdtypes.html#bytes

110 Chapter 7. Univention Directory Manager (UDM)

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

Univention Developer Reference, Release 5.0-10

def map_function (
value: Union[Text, Sequence[Text]],
encoding: Optional [Tuple[str, str]]

= None,
) —> List[bytes]:
return [value.encode (*encoding)]
def unmap_function (
value: Sequence[bytes],
encoding: Optional [Tuple[str, str]] = None,

) —> Text:
return value[0].decode (*encoding)

mapping.register ('property', 'attribute', map_function, unmap_function)

7.8.4 Mapping encoding

Warning: Specifying the mapping encoding is incompatible with UCS 4.4.

The registration of the mapping of LDAP attributes to Univention Directory Manager properties now has to specify
the correct encoding explicitly. The default encoding used is UTF-8. As most LDAP data is stored in UTF-8 the
encoding parameter can be left out for most properties.

The encoding can simply be specified in the registration of a mapping:

mapping.register ('property', 'attribute', map_function, unmap_function, encoding=
—"ASCII")

The encoding depends on the LDAP syntax of the corresponding LDAP attribute. Syntaxes storing binary
data should either be specified as IS08859-1 or preferably should be decoded to an ASCII representa-
tion of base64 through univention.admin.mapping.mapBase64 () and univention.admin.
mapping.unmapBase64 (). The attributes of the following syntaxes for example should be set to ASCITI as
they consist of ASCII only characters or a subset of ASCII (for example numbers).

* IAS String (1.3.6.1.4.1.1466.115.121.1.26)

* Integer (1.3.6.1.4.1.1466.115.121.1.27)

* Printable String (1.3.6.1.4.1.1466.115.121.1.44)

* Boolean (1.3.6.1.4.1.1466.115.121.1.7)

* Numeric String (1.3.6.1.4.1.1466.115.121.1.36)

* Generalized Time (1.3.6.1.4.1.1466.115.121.1.24)
¢ Telephone Number (1.3.6.1.4.1.1466.115.121.1.50)
e UUID (1.3.6.1.1.16.1)

¢ Authentication Password (1.3.6.1.4.1.4203.1.1.2)

To find out the syntax of an LDAP attribute programmatically for example for the attribute gecos:

python3 -c '

from univention.uldap import getMachineConnection
from ldap.schema import AttributeType

conn = getMachineConnection ()

schema = conn.get_schema ()

attr = schema.get_obj (AttributeType, "gecos")
print (atttr.syntax)'

7.8. UCS 5.0: Python 3 migration of modules and extensions 111

Univention Developer Reference, Release 5.0-10

7.8.5 object .open() / object._post_unmap ()

LDAP attributes contained in self.oldattr are usually transformed into property values (in self.info) by
the mapping functions. In some cases this can’t be done automatically.

Instead this is done manually in the methods open () or _post_unmap (). These functions must consider trans-
forming byte strings (bytes'” in self.oldattr)into unicode strings (st r>" in self.info).

7.8.6 object.has_key ()

The method has_key () has been renamed into has_property (). The method has_property () isalready
present in UCS 4.4.

7.8.7 identify ()

The identify () function must now consider that the given attribute values are byte strings. The code prior
looked like:

def identify(dn, attr, canonical=False):
return 'objectClassName' in attr.get ('objectClass', [1])

In UCS 5.0 the code have to look like:

class object(...):
@classmethod

def identify(cls, dn, attr, canonical=False) :
return b'objectClassName' in attr.get ('objectClass', [])

identify = object.identify

In most cases the identify () function only checks for the existence of a specific LDAP objectClass. The
generic implementation can be used instead, which requires the de fault UDM option to be set:

options = {

'default': univention.admin.option (
short_description=short_description,
default=True,
objectClasses=['top', 'objectClassName'],

}

class object(...):

identify = object.identify

199 https://docs.python.org/3/library/stdtypes.html#bytes
200 hitps://docs.python.org/3/library/stdtypes.html#str

112 Chapter 7. Univention Directory Manager (UDM)

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

Univention Developer Reference, Release 5.0-10

7.8.8 _ldap modlist ()

The methods _1dap_modlist () and _ldap_addlist () now mustinsert byte strings into the add/modlist.

The code prior looked like:

class object(...):

def _ldap_addlist (al):
al = super (object, self)._ldap_addlist (al)
al.append(('objectClass', ['top', 'objectClassName']))
return al

def _ldap_modlist (ml):
ml = super (object, self)._ldap_modlist (ml)
value =
new = [value]
ml.append(('attribute', self.oldattr.get ('attribute',
return ml

[n,

new))

In UCS 5.0 the code have to look like:

class object(...):

def _ldap_addlist (al):
al = super (object, self)._ldap_addlist (al)

al.append(('objectClass', [b'top', b'objectClassName']))

return al

def _ldap_modlist (ml):
ml = super (object, self)._ldap_modlist (ml)
value =
new = [value.encode ('UTF-8")]
ml.append(('attribute', self.oldattr.get('attribute',
return ml

(1,

new))

The _ldap_addlist () is mostly not needed and should be replaced by specifying a default option (see above).

7.8.9 lookup ()

The lookup () should be replaced by specifying a default option as described above.

rewrite_filter () can be used to add additional filter rules.

7.8.10 Syntax classes

Syntax classes now must ensure to return unicode strings.

7.8.11 Hooks

For hooks the same rules as in _ldap_modlist () apply.

The class method

7.8. UCS 5.0: Python 3 migration of modules and extensions

113

Univention Developer Reference, Release 5.0-10

114 Chapter 7. Univention Directory Manager (UDM)

CHAPTER
EIGHT

UNIVENTION MANAGEMENT CONSOLE (UMC)

The Univention Management Console (UMC) is a service that runs an all UCS systems by default. This service
provides access to several system information and implements modules for management tasks. What modules are
available on a UCS system depends on the system role and the installed components. Each domain user can log an to
the service through a web interface. Depending on the access policies for the user the visible modules for management
tasks will differ.

In the following the technical details of the architecture and the Python and JavaScript API for modules are described.

This chapter has the following content:

8.1 Architecture

The Univention Management Console service consists of four components. The communication between these com-
ponents is encrypted using SSL. The architecture and the communication channels is shown in Fig. 8.1.

Web browser
Dojo/UMC JavaScript API

communcation
via AJAX and JSON

[UMC HTTP server]

UMC Python API

UMC module UMC module | UMC module
UCR Portal UDM

Fig. 8.1: UMC architecture and communication channels

[UMC server

e The UMC server is a small web server that provides HTTP access to the modules and manages the connection
and verifies that only authorized users gets access. It is used by the web frontend.

e The UMC module processes are forked by the UMC server to provide a specific area of management tasks
within a session.

115

Univention Developer Reference, Release 5.0-10

8.2 Protocol HTTP for UMC

With the new generation of UMC there is also an HTTP server available that can be used to access the UMC server.

Listing 8.1: Authentication request

POST http://192.0.2.31/univention/auth HTTP/1.1

{"options": {"username": "root", "password": "univention"}}

Request:

Listing 8.2: Search for users

POST http://192.0.2.31/univention/command/udm/query HTTP/1.1

{"options": {"container": "all",
"objectType":"users/user",
"objectProperty":"username",
"objectPropertyValue":"testl*1"},

"flavor":"users/user"}

Response:

Listing 8.3: Response

{"status": 200,

"message": null,

"options": {"objectProperty": "username",

"container": "all",

"objectPropertyValue": "testl*1",

"objectType": "users/user"},

"ldap-dn": "uid=testll, cn=users,dc=univention,dc=ga",
"path": "univention.ga:/users",

"name": "testll",

"objectType": "users/user"},

"result": [

—~

{"ldap-dn": "uid=test191,cn=users,dc=univention,dc=ga",
"path": "univention.ga:/users",

"name": "testl191",

"objectType": "users/user"}]}

8.3 UMC files

Files for building a UMC module.

8.3.1 debian/package.umc-modules

e univention-110n-build builds translation files.
¢ dh-umc-module-install installs files.
Configured through debian/package.umc-modules.

Module
Internal (?) name of the module.

Python
Directory containing the Python code relative to top-level directory.

116 Chapter 8. Univention Management Console (UMC)

Univention Developer Reference, Release 5.0-10

Definition
Path to an XML file, which describes the module. See UMC module declaration file (page 117) for more
information.

Javascript
Directory containing the Java-Script code relative to top-level directory.

Icons (deprecated)
Directory containing the Icons relative to top-level directory. Must provide icons in sizes 16x16 (umc/
icons/16x16/udm-module.png) and 5050 (umc/icons/50x50/udm-module.png) pixels.

8.3.2 UMC module declaration file

umc/module.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-—-DOCTYPE umc SYSTEM "management/univention-management-console/data/umc-module.
—dtd"——>
<umc version="2.0">
<module id="udm" icon="udm-MODULE" priority="50" version="1.0" python="3">
<name>. . .</name>
<description>...</description>
<keywords>. .., ...</keywords>
<flavor>...</flavor>
<categories>
<category name="domain"/>
</categories>
<command>. . .</command>
</module>
</ume>

umc/categories/category.xml

<?xml version="1.0" encoding="UTF-8"?>
<umc version="2.0">
<categories>
<category id="category" priority="..." icon="....svg" color="
SHExxxxxx" />
</categories>
</ume>

8.4 Local system module

The UMC server provides management services that are provided by so called UMC modules. These modules are
implemented in Python (backend) and in JavaScript (web frontend). The following page provides information about
developing and packaging of UMC modules. It is important to know the details of Architecture (page 115).

The package univention-management-console—-dev provides the command umc—-create-module,
which can be used to create a template for a custom UMC module.

8.4. Local system module 117

Univention Developer Reference, Release 5.0-10

8.4.1 Python API

The Python API for the UMC is defined in the Python module univention.management.console.base.

8.4.2 UMC module API (Python and JavaScript)

A UMC module consists of three components
¢ A XML document containing the definition.
* The Python module defining the command functions.

* The JavaScript frontend providing the web frontend.

XML definition

The UMC server knows three types of resources that define the functionality it can provide:

UMC modules
provide commands that can be executed if the required permission is given.

Syntax types
can be used to verify the correctness of command attributes defined by the UMC client in the request message
or return values provided by the UMC modules.

Categories
help to define a structure and to sort the UMC modules by its type of functionality.

All these resources are defined in XML files. The details are described in the following sections

Module definition

The UMC server does not load the Python modules to get the details about the modules name, description and
functionality. Therefore, each UMC module must provide an XML file containing this kind of information. The
following example defines a module with the id udm:

<?xml version="1.0" encoding="UTF-8"?>
<umc version="2.0">
<module id="udm" icon="udm/module" version="1.0">
<name>Univention Directory Manager</name>
<description>Manages all UDM modules</description>
<flavor icon="udm-users" id="users/user">
<name>Users</name>
<description>Managing users</description>
</flavor>
<categories>
<category name="domain"/>
</categories>
<command name="udm/query" function="query"/>
<command name="udm/containers" function="containers"/>
</module>
</umec>

The element module defines the basic details of a UMC module.

id
This identifier must be unique among the modules of an UMC server. Other files may extend the definition of
a module by adding more flavors or categories.

118 Chapter 8. Univention Management Console (UMC)

Univention Developer Reference, Release 5.0-10

icon
The value of this attribute defines an identifier for the icon that should be used for the module. Details for
installing icons can be found in the Packaging (page 122).

The child elements name and description define the English human readable name and description of the
module. For other translations the build tools will create translation files. Details can be found in the Packaging
(page 122).

This example defines a so called flavor. A flavor defines a new name, description and icon for the same UMC module.
This can be used to show several virtual modules in the overview of the web frontend. Additionally, the flavor is passed
to the UMC server with each request i.e. the UMC module has the possibility to act differently for a specific flavor.

As the next element categories is defined in the example. The child elements category set the categories
within the overview where the module should be shown. Each module can be part of multiple categories. The
attribute name is the internal identifier of a category.

At the end of the definition file a list of commands is specified. The UMC server only passes commands to a UMC
module that are defined. A command definition has two attributes:

name
is the name of the command that is passed to the UMC module. Within the HTTP request it is the URL path
after /univention/command/.

function
defines the method to be invoked within the Python module when the command is called.

Category definition

The predefined set of categories can be extended by each module.

Listing 8.4: UMC module category examples

<?xml version="1.0" encoding="UTF-8"?>
<umc version="2.0">
<categories>
<category id="favorites">
<name>Favorites</name>
</category>
<category id="system">
<name>System</name>
</category>
<category id="wizards">
<name>Wizards</name>
</category>
<category id="monitor">
<name>Surveillance</name>
</category>
</categories>
</umc>

Python module
The Python API for UMC modules primarily consists of one base class that must be implemented. As an addition
the Python API provides some helpers:

» Exception classes

e Translation support

* Logging functions

¢ UCR access

8.4. Local system module 119

Univention Developer Reference, Release 5.0-10

In the definition file, the UMC module specifies functions for the commands provided by the module. These func-
tions must be implemented as methods of the class Instance that inherits from univention.management.
console.base.Base.

The following Python code example matches the definition in the previous section:

SPDX-FileCopyrightText: 2021-2024 Univention GmbH
#
SPDX-License-Identifier: AGPL-3.0-only

from univention.management.console import Translation

from univention.management.console.base import Base, UMC_Error

from univention.management.console.config import ucr

from univention.management.console.log import MODULE

from univention.management.console.modules.decorators import sanitize

from univention.management.console.modules.sanitizers import IntegerSanitizer

_ = Translation('univention-management-console-modules-udm') .translate

class Instance (Base):

def init (self):
"""Initialize the module with some values'"""
super (Instance, self) .init ()
self.data = [int(x) for x in ucr.get ('some/examle/ucr/variable',K '1,2,3').
—split (', ")]

def query(self, request):
"""get all values of self.data"""
self.finished (request.id, self.data)

@sanitize (item=IntegerSanitizer (required=True))
def get (self, request):
"""get a specific item of self.data"""
try:
item = self.datal[request.options['item']]
except IndexError:
MODULE.error ('A invalid item was accessed.')
raise UMC_Error(_('The item %d does not exists.') % (request.options]|
—~'item'],), status=400)
self.finished(request.id, self.datal[item])

@sanitize (IntegerSanitizer (required=True))

def put (self, request):
"""replace all data with the 1list provided in request.options"""
self.data = request.options
self.finished(request.id, None)

Each command methods has one parameter that contains the UMC request. Such an object has the following prop-
erties:
id
the unique identifier of the request.
options
contains the arguments for the command. For most commands it is a dictionary.

flavor
the name of the flavor that was used to invoke the command. This might be None.

The method init () in the example is invoked when the module process starts. It could for example be used to
initialize a database connection.

120 Chapter 8. Univention Management Console (UMC)

Univention Developer Reference, Release 5.0-10

The other methods in the example will serve specific requests. To respond to a request the function finished ()
must be invoked. To validate the request body the decorator @sanitize might be used with various sanitizers
defined in univention.management.console.modules.sanitizers.

For a way to send an error message back to the client the UMC_Error can be raised with the error message as
argument and an optional HTTP status code. The base class for modules provides some properties and methods that
could be useful when writing UMC modules:

username
The username of the owner of this session.

user_dn
The DN of the user or None if the user is only a local user.

password
The password of the user.

init ()
Is invoked after the module process has been initialized. At that moment, the settings, like locale and username
and password are available.

destroy ()
Is invoked before the module process shuts down.

UMC store API

In order to encapsulate and ease the access to module data from the JavaScript side, a store object offers a unified
way to query and modify module data.

The UMC JavaScript API comes with an object store implementation of the Dojo store API?’!. This allows the
JavaScript code to access/modify module data and to observe changes on the data in order to react immediately. The
following methods are supported:
get (id)

Returns a dictionary of all properties for the object with the specified identifier.

put (dictionary, options)
modifies an object with the corresponding properties and an optional dictionary of options.

add (dictionary, options)
Adds a new object with the corresponding properties and an optional dictionary of options.

remove (id)

Removes the object with the specified identifier.

query (dictionary)
Queries a list of objects (returned as list of dictionaries) corresponding to the given query which is represented
as dictionary. Note that not all object properties need to be returned in order to save bandwidth.

The UMC object store class in JavaScript will be able to communicate directly with the Python module if the following
methods are implemented:

module/get ()
Expects as input a list if unique IDs (as strings) and returns a list of dictionaries as result. Each dictionary entry
holds all object properties.

module/put ()

Expects as input a list of dictionaries where each entry has the properties object and options. The
property object holds all object properties to be set (i.e., this may also be a subset of all possible properties)
as a dictionary. The second property options is an optional dictionary that holds additional options as a
dictionary.

201 https://dojotoolkit.org/reference-guide/1.10/dojo/store.html

8.4. Local system module 121

https://dojotoolkit.org/reference-guide/1.10/dojo/store.html

Univention Developer Reference, Release 5.0-10

module/add ()
Expects similar input values as module/put () (page 121).

module/remove ()

Expects as input a list of dictionaries where each entry has the properties object (containing the object’s
unique ID (as string)) and options. The options property can be necessary as a removal might be executed
in different ways (recursively, shallow removal etc.).

module/query ()

Expects as input a dictionary with entries that specify the query parameters and returns a list of dictionaries.
Each entry may hold only a subset of all possible object properties.
Further references:
+ Dojo object store reference guide®*?
* Object store tutorial*®?

« HTMLS IndexedDB object store API2*

8.4.3 Packaging

A UMC module consists of several files that must be installed at a specific location. As this mechanism is always the
same there are debhelper tools making package creation for UMC modules very easy.

The following example is based on the package for the UMC module UCR.

A UMC module may be part of a source package with multiple binary packages. The examples uses a own source
package for the module.

As a first step create a source package with the following directories and files:
* univention-management—-console-module-ucr/
e univention-management-console-module-ucr/debian/

e univention-management—-console-module-ucr/debian/univention-management—-console-module
umc-modules

* univention-management-console-module-ucr/debian/rules

e univention-management-console-module-ucr/debian/changelog
e univention-management—-console-module-ucr/debian/control

* univention-management-console-module-ucr/debian/copyright

All these files are standard Debian packaging files except univention-management-console-mod-
ule-ucr.umc—-modules. This file contains information about the locations of the UMC module source files:

Module: ucr

Python: umc/python
Definition: umc/ucr.xml
Syntax: umc/syntax/ucr.xml
Javascript: umc/Js

Icons: umc/icons

The keys in this file of the following meaning:

Module
The internal name of the module

Python
A directory that contains the Python package for the UMC module

202 https://dojotoolkit.org/reference- guide/1.10/dojo/store.html

203 https://www.sitepen.com/blog/2011/02/15/dojo-object-stores/
204 https://www.w3.org/TR/IndexedDB/#object-store

122 Chapter 8. Univention Management Console (UMC)

https://dojotoolkit.org/reference-guide/1.10/dojo/store.html
https://www.sitepen.com/blog/2011/02/15/dojo-object-stores/
https://www.w3.org/TR/IndexedDB/#object-store

Univention Developer Reference, Release 5.0-10

Definition
The filename of the XML file with the module definition

Javascript
A directory containing the JavaScript source code

Icons
A directory containing the icons required by the modules web frontend

Syntax (optional)
The filename of the XML file with the syntax definitions

Category (optional)
The filename of the XML file with the category definitions

The directory structure for such a UMC module file would look like this:
* univention-management-console-module-ucr/umc/
e univention-management—console-module-ucr/umc/syntax/
* univention-management-console-module-ucr/umc/syntax/ucr.xml
e univention-management-console-module-ucr/umc/js/
e univention-management-console-module-ucr/umc/js/ucr.js
* univention-management—-console-module-ucr/umc/Jjs/de.po
* univention-management-console-module-ucr/umc/de.po
* univention-management-console-module-ucr/umc/icons/
e univention-management—-console-module-ucr/umc/icons/16x16/
* univention-management-console-module-ucr/umc/icons/16x16/ucr.png
e univention-management-console-module-ucr/umc/icons/24x24/
* univention-management-console-module-ucr/umc/icons/24x24/ucr.png
e univention-management—-console-module-ucr/umc/icons/64x64/
* univention-management-console-module-ucr/umc/icons/64x64/ucr.png
e univention-management-console-module-ucr/umc/icons/32x32/
e univention-management—-console-module-ucr/umc/icons/32x32/ucr.png
* univention-management—-console-module-ucr/umc/ucr.xml
* univention-management-console-module-ucr/umc/python/
e univention-management-console-module-ucr/umc/python/ucr/
* univention-management—console-module-ucr/umc/python/ucr/de.po
* univention-management—-console-module-ucr/umc/python/ucr/__init__ .py
If such a package has been created a few things need to be adjusted

debian/rules

#!/usr/bin/make —f

o .
5.

dh $@ --with umc,python3

debian/control

8.4. Local system module

123

Univention Developer Reference, Release 5.0-10

(2
Source: univention-management-console-module-ucr

Section: univention
Priority: optional
Maintainer: Univention GmbH <packages@univention.de>
Build-Depends:

debhelper-compat (= 12),

dh-python,

python3-all,

univention-management-console-dev (>= 12.0.2),
Standards-Version: 4.3.0.3

Package: univention-management-console-module-ucr
Architecture: all
Depends:
univention-management-console-server,
Provides:
S{python3:Provides},
Description: UMC module for UCR

This package contains the UMC module for Univention Configuration Registry
. J

8.5 Domain LDAP module

Done through flavor.

<?xml version="1.0" encoding="UTF-8"7?>
<umc version="2.0">
<module id="udm" icon="udm-MODULE" version="1.0">
<flavor priority="25" icon="udm-MODULE-SUBMODULE" id="MODULE/
—SUBMODULE" >
<name>MODULE name</name>
<description>MODULE description</description>
</flavor>
<categories>
<category name="domain"/>
</categories>
</module>
</ume>

Must use /umc/module/category/@name="domain"!

Must use /umc/module/@translationId to specify alternative translation file, which must be installed as
/usr/share/univention—-management—-console/i18n/language/module.mo.

8.6 Disabling a module

To disable a module, use the following XML file as a template:

<?xml version="1.0" encoding="UTF-8"?>
<umc version="2.0">
<module id="udm" icon="udm/module" version="1.0">

<name/>

<description/>

<flavor id="MODULE/SUBMODULE" deactivated="yes" />
</module>

</ume>

124 Chapter 8. Univention Management Console (UMC)

Univention Developer Reference, Release 5.0-10

8.7 Python 3 migration

Univention Management Console modules and the Python API for them support both Python 2 and Python 3. The
code of Univention Management Console modules has to be migrated to Python 3. There is nothing UMC specific
regarding the implementation.

To include Python 3 modules for a Univention Management Console Debian package the debian/control has
to be adjusted: The Provides entry in package section has to contain ${python3:Provides} for Python 3
and ${python:Provides} for Python 2. Additionally, the Depends entry should contain ${python3:De-
pends}.

Package: univention-management-console-module-...
Architecture: all
Depends:
python3-foo,
${python3:Depends},
Provides:
${python3:Provides},
Description:

By adjusting the XML definition of the module it can be specified that it is executed with Python 3. The attribute
python="3" has to be added to the <module> tag:

<?xml version="1.0" encoding="UTF-8"?>

<umc version="2.0">
<module id="..." priority="50" version="1.0" python="3">
</module>

</ume>

8.7. Python 3 migration 125

Univention Developer Reference, Release 5.0-10

126 Chapter 8. Univention Management Console (UMC)

CHAPTER
NINE

WEB SERVICES

9.1 Extending the overview page

When users open http://localhost/ orhttp://hostname/ in a browser, they are redirected to the UCS
overview page.

Depending on the preferred language negotiated by the web browser the user is either redirected to the German or
English version. The overview page is split between Installed web services and Administration entries.

The start page can be extended using Univention Configuration Registry variables. PACKAGE refers to a unique
identifier, typically the name of the package shipping the extensions to the overview page. The configurable options
are explained below:

e ucs/web/overview/entries/admin/PACKAGE/OPTION variables extend the administrative sec-
tion.

e ucs/web/overview/entries/service/PACKAGE/OPTION variables extend the web services sec-
tion.

To configure an extension of the overview page the following options must/can be set using the pattern ucs/web/
overview/entries/admin/PACKAGE/OPTION=*VALUE* (and likewise for services).

link
defines a link to a URL representing the service (usually a web interface).

label
specifies a title for an overview entry. The title can also be translated; for example 1abel/de can be used for
a title in German.

description
configures a longer description of an overview entry. The description can also be translated; for example
description/de can be used for a description in German. Should not exceed 60 characters, because of
space limitations of the rendered box.

icon
Optionally an icon can be displayed. Using i con, either a filename or a URI can be provided. When specifying
a filename, the name must be relative to the directory /var/www, that is with a leading °/°. All file formats
typically displayed by browsers can be used (for example PNG/JPG). All icons must be scaled to 50x50 pixels.

priority

The display order can be specified using priority. Depending on the values the entries are displayed in
lexicographical order (i.e. 100 < 50).

127

Univention Developer Reference, Release 5.0-10

128 Chapter 9. Web services

CHAPTER
TEN

APP CENTER

The Univention App Center provides a platform for software vendors and an easy-to-use entry point for Univention
Corporate Server users to extend their environment with business software.

The documentation how to develop Apps for Univention App Center can be found in the Univention App Center for

App Providers®” guide.

205 https://docs.software-univention.de/app-center/5.0/en/index. html

129

https://docs.software-univention.de/app-center/5.0/en/index.html
https://docs.software-univention.de/app-center/5.0/en/index.html

Univention Developer Reference, Release 5.0-10

130 Chapter 10. App Center

CHAPTER
ELEVEN

INTEGRATION OF EXTERNAL REPOSITORIES

Sometimes it might be necessary to add external repositories, for example when testing an application which is de-
veloped for UCS@school. Such components can be registered through Univention Management Console or in Uni-
vention Configuration Registry.

Components can be versioned. This ensures that only components are installed that are compatible with a UCS
version.

empty or unset or current
The current major-minor version will be used.

If for example UCS 5.2 is currently in use, only the 5.2 repository will be used. Please note that all major
and minor updates will be blocked until the component is available for the new release. Patch level and errata
updates are not affected.

If for example UCS 5.1 is currently installed. When UCS 5.2 or UCS 6.0 become available, the release updated
will be postponed until the component is also available for version 5.2 and 6.0 respectively.

major.minor
By specifying an explicit version number only the specified version of the component will be used if it matches
the current UCS version. Release updates of the system will not be hindered by such components. Multiple
versions can be given using comma as delimiter.

For example 5.1 5.2 would only include the component with UCS 5.1 and 5.2 but not if UCS 5.0 or UCS
5.3 is in use.

11.1 Integrate with Univention Management Console

A list of the integrated repository components is in the UMC module Repository Settings. Applications which have
been added through the Univention App Center are still listed here, but should be managed through the App Center
module.

A further component can be set up with Add. The Component name identifies the component on the repository server.
A free text can be entered under Description, for example, for describing the functions of the component in more
detail.

The absolute URL of the download server is to be entered in the input field Repository server, and can also optionally
contain a Username, Password, Repository prefix (file path) and port if required.

Warning: The credentials are stored unencrypted and as plain text in Univention Configuration Registry. Every
user with access to the local system can read them.

A software component is only available when Enable this component has been activated.

Prior to UCS 5 two separate repository branches where provided for maintained and unmaintained software. While
UCS 5 no longer uses this distinction.

131

Univention Developer Reference, Release 5.0-10

11.2 Integrate with Univention Configuration Registry

You can use the following Univention Configuration Registry Variables to register a repository component. It’s also
possible to activate further functions here that you can’t configured through the UMC module. NAME stands for the
component’s name.
repository/online/component /NAME/server
The repository server absolute URL on which the components are available. If this variable isn’t set, UCS uses
the server from Univention Configuration Registry Variable repository/online/server?’,
repository/online/component /NAME

You must set this variable to enabled, if UCS should activate and use the component.

repository/online/component /NAME/localmirror

You can use this variable to configure whether UCS mirrors the component locally. In combination with
the Univention Configuration Registry Variable repository/online/component /NAME/server
(page 132), you can set up a configuration so that UCS mirrors the component, but doesn’t activate it, or
that UCS activates the component, but doesn’t mirror it.

repository/online/component /NAME/description

A optional description for the repository.

repository/online/component /NAME/prefix
Deprecated since version 5.0.
Defines the URL path prefix that the repository server uses. Don’t use this variable anymore. Instead, specify

the path as part of the absolute URL in the UCR variable repository/online/component /NAME/
server (page 132).

For example: repository/online/component/NAME/server=https://repository.
example.com/prefix

repository/online/component /NAME/layout
Defines the type of the repository:

e If the variable has the value arch or is unset, UCS searches for the Packages within the architecture
subdirectories amd 64/ and all/ respectively.

« If the variable has the value £1at, UCS searches for the Packages file within the root directory of the
repository.
This variable is usually unset.

repository/online/component/NAME/username
Deprecated since version 5.0.
The variable defines the username if the repository server requires authentication. Don’t use this variable

anymore. Instead, specify the username as part of the absolute URL in the UCR variable repository/
online/component/NAME/server (page 132).

For example: repository/online/component/NAME/server=https://
username@repository.example.com
repository/online/component /NAME/password
Deprecated since version 5.0.
This variable defines the password if the repository server requires authentication. Don’t use this variable

anymore. Instead, specify the password as part of the absolute URL in the UCR variable repository/
online/component/NAME/server (page 132).

For example: repository/online/component /NAME/server=https://
username:password@repository.example.com

206 hitps://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-repository-online-server

132 Chapter 11. Integration of external repositories

https://docs.software-univention.de/manual/5.0/en/appendix/variables.html#envvar-repository-online-server

Univention Developer Reference, Release 5.0-10

repository/online/component /NAME/version
This variable controls the versions to include. For more information, see Integration of external repositories
(page 131).

repository/online/component /NAME/defaultpackages

Defines a list of package names separated by blanks. The UMC module Repository Settings offers the installation
of this component if at least one of the packages isn’t installed. Specifying the package list eases the subsequent
installation of components.

11.2. Integrate with Univention Configuration Registry 133

Univention Developer Reference, Release 5.0-10

134 Chapter 11. Integration of external repositories

CHAPTER
TWELVE

TRANSLATE UCS

This chapter is for those who want to translate UCS into another language.
¢ To add or update the translation for a package, refer to Translating a single Debian package (page 135).
¢ To add a translation package for UCS, refer to Create a translation package for UCS (page 138).

A guide to editing translation files is provided in Editing translation files (page 140). The previously mentioned
sections refer to it when necessary.

12.1 Translating a single Debian package

When creating a new package or updating an existing one, it is possible to provide a translation for that package by
following the workflow described in this section. Examples in this section use the German translation, but they are
applicable to any other language as well.

12.1.1 Setup of univention-110n-build
The setup depends on the operating system developers use to develop the package. A running UCS installation is
recommended, where translators can set up the tools with univention-install, see Setup on a UCS machine

(page 135). Otherwise, follow the instructions in section Setup on a non-UCS machine (page 136). Both setup variants
provide the command univention-110n-build.

Setup on a UCS machine

Install the package univention—-110n-dev as root:

[$ univention-install univention-110n-dev }

After the installation of univention—-110n-dev, the command univention—-110n-build is available for
the following steps.

Skip the next section and continue with UCS package translation workflow (page 136).

135

Univention Developer Reference, Release 5.0-10

Setup on a non-UCS machine

First, install Git>"’, Python 3.7 or later’”® and pip”"”. For example, run the following command on Ubuntu 20.04:

[$ sudo apt-get install git python3 python3-pip }

To checkout the latest version of the UCS Git repository, if not yet available, use the following commands:

$ mkdir ~/translation

$ cd ~/translation

$ git clone \
—--single-branch --depth 1 --shallow-submodules \
https://github.com/univention/univention—-corporate-server

Install the python package univention-110n with pip:

[$ pip install ~/translation/univention-corporate-server/packaging/univention-110n/ }

Pip installs all required Python packages and the command univention-110n-build.

12.1.2 UCS package translation workflow

The translation process is divided into the following steps:
1. Prepare the source code (page 136) for translation.
2. Add and/or update supplementary files (page 137).
3. Run univention-110n-build (page 138) for the package.
4. Translate (page 138) the strings by editing the . po files.

The . po files used in this section contain the German language code de in the file de . po. Use the appropriate
language code from the ISO-639-1 list>'” for other languages.

Prepare the source code

Mark all strings that need translation within the source code. See the following example for a Python file:

from univention.lib.il8n import Translation
_ = Translation ("<packagename>") .translate
example_string = _ ("Hello World!")

Replace <packagename> with the wanted getfext domain, for example the name of the UCS Debian package like
the existing package univention-management-console-module-udm.

For UMC XML files, the translatable XML elements are automatically added to their associated de . po file. This
includes XML elements like name, description, keywords, and more.

For UMC JavaScript module files, include the translation function __ in the define function:

define ([
"umc/i18n!umc/modules/<module>"
], function(_) {
var example_string = _ ("Hello World");

H)

Replace <module> with the module id (examples for existing packages: appcenter, udm).

207 https://git-scm.com/downloads

208 https://www.python.org/downloads/

209 https://pip.pypa.io/en/stable/installation/

210 hitps://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

136 Chapter 12. Translate UCS

https://git-scm.com/downloads
https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installation/
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Univention Developer Reference, Release 5.0-10

Add and/or update supplementary files

The program univention—-110n-build needs to know which source files target which de.po file. de.po
files associate translatable strings with their translations and are meant to be edited manually. For more information,
see the gettext’!! framework upon which univention-110n-build is based.

For a UMC package, de . po files are automatically created for its associated XML file, the JavaScript files and the
Python module, see debian/package.umc-modules (page 116) about UMC modules.

Other source files have to be declared with .univention-110n files that are located in the debian directory
and structured like the following example from the package univention-appcenter:

[

{
"input_files": [
"udm/ . *"
1,
"po_subdir": "udm/handlers/appcenter",
"target_type": "mo",
"destination": "usr/share/locale/ /LC_MESSAGES/univention-—

—admin-handlers—-appcenter.mo"

}

This file instructs univention—110n to compile a de . po file in the directory udm/handlers/appcenter
which includes translations for all files below the directory udm. The name univention-admin-han-
dlers-appcenter hasto be replaced with the wanted gertext domain, for example the name of the new or updated
Debian package. Additionally, if there are one or more . univention-110n files, add univention-110n to
the add-on list in the debian/rules file:

[$ dh ——-with univention-110n }

As an example, refer to the following file tree of the appcenter package, which displays all relevant files for the
translation inside the package:

— debian

F— rules

F—— univention-management-console-module—-appcenter.umc-modules

— univention-management-console-module-appcenter.univention—110n
L

udm
L— handlers
L— appcenter

— de.po
I;.-.

1T

=
=
Q

appcenter.xml
de.po

.
[

de.po
appcenter.js

[TTTT
1T

python
L— appcenter
F— de.po

F— _ init_ .py
l_---

211 https://www.gnu.org/sof tware/gettext/

12.1. Translating a single Debian package 137

https://www.gnu.org/software/gettext/

Univention Developer Reference, Release 5.0-10

debian/rules
Add univention-110n add-on if non-UMC files have to be translated.

debian/univention-management-console-module-appcenter.umc-modules
See debian/package.umc-modules (page 116).

debian/univention-management-console-module—appcenter.univention-110
Instructions for translatable non-UMC files.

udm/handlers/appcenter/de.po
Only created/updated if defined in univention-management-console-module-appcenter.
univention-110n.

umc/appcenter.xml
UMC standard XML file.

umc/de.po
UMC standard de . po file for appcenter.xml.

umc/js/de.po
UMC standard de . po file for all JavaScript files.

umc/js/appcenter. js
One of the JavaScript files with translatable strings.

umc/python/appcenter/de.po
UMC standard de . po file for all Python files.

umc/python/appcenter/___init__ .py
One of the Python files with translatable strings.

Run univention-110n-build

Run the command univention-110n-build in the package directory. The program finds all marked strings
and either updates or creates the corresponding de . po file.

Warning: univention-110n-build updates every package in the current working directory and below.
Make sure to run the program from inside the package directory, if this is not the desired outcome.

Translate

After univention-110n-build finished, the translation can start. Edit the de.po files with a text editor.
Find all empty msgstr fields and enter the translation of the corresponding msgid. See Editing translation files
(page 140) for details.

After the translation step, build and test the package on a UCS installation. Repeat this workflow every time a marked
string is changed or a new one is added to the source files.

12.2 Create a translation package for UCS

UCS provides builtin English and German localization and a French translation package. Univention provides a
set of tools that facilitates the creation of translation packages. Translation packages can provide translations for
all translatable strings of UCS for a specific language. The Univention Management Console, more specifically its
packages, contains the largest share of translatable strings. This section describes all necessary steps to create a
translation package for UCS.

138 Chapter 12. Translate UCS

Univention Developer Reference, Release 5.0-10

12.2.1 Install needed tools

The package univention-110n-dev contains all tools required to set up and update a translation package. It
requires some additional Debian tools to build the package. Run the following command on UCS to install all needed
packages.

[$ sudo univention-install univention-110n-dev dpkg-dev git }

12.2.2 Obtain a current checkout of the UCS Git repository

The Git repository is later processed to get initial files for a new translation (often referred to as PO file or Portable
Objects).

$ mkdir ~/translation
$ cd ~/translation
$ git clone \
—--single-branch \
——depth 1 \
——shallow-submodules \
https://github.com/univention/univention-corporate-server

12.2.3 Create translation package

To create a translation package, for example for French, in the current working directory, the following command
must be executed:

$ cd ~/translation
$ univention-ucs-translation-build-package \
—-—source ~/translation/univention-corporate-server \
—-—languagecode fr \
——locale fr FR.UTF-8:UTF-8 \
——language—name French

This creates anew directory ~/translation/univention-110n-£fr/ which contains a Debian source pack-
age of the same name. It includes all source and target files for the translation.

12.2.4 Edit translation files

The translation source files (.po files) are located below the directory ~/translation/
univention-110n-fr/fr. Each file should be edited to create the translation. Refer to Editing translation
Jiles (page 140) for detailed information.

12.2.5 Update the translation package

First update the Git repository:

$ cd ~/translation/univention-corporate-server
$ git pull —--rebase

If changes affecting translations are made in the Git repository, existing translation packages need to be updated to
reflect those changes. Given a path to an updated Git checkout, univention-ucs-translation-merge can
update a previously created translation source package.

The following example updates the translation package univention-110n—£r:

12.2. Create a translation package for UCS 139

Univention Developer Reference, Release 5.0-10

$ univention-ucs-translation-merge \
~/translation/univention-corporate-server \
~/translation/univention-110n-fr

12.2.6 Build the translation package

Before using the new translation, the Debian package has to be built and installed. This can be done with the following
commands:

cd ~/translation/univention-110n-fr

sudo apt-get build-dep

dpkg-buildpackage -uc -us -b -rfakeroot
sudo dpkg -i ../univention-110n-fr_*.deb

«w v v n

After logging out of the Univention Management Console the new language should now be selectable in the Univention
Management Console login window. Untranslated strings are still shown in their original language, that is, in English.

12.3 Editing translation files

The actual translation process is done by editing translation files which are named <lang> . po, where <lang> is
an 1SO-639-17'? language code. For example, the German code is de, which results in de . po filenames. When
following the instructions in the preceding sections, these files are generated by the package gettext behind the
scenes. The manual can be found in GNU gettext utilities®!?.

12.3.1 Editing translation entries

In the following listing shows a simple example of a translation file:

#: umc/app.js:637
#, python-format
msgid "The %$s will expire in %d days and should be renewed!"

msgstr ""

 The first line provides a hint, were the text is used.
» The second line is optional and contains flags, which indicate the type and state of the translation.

* The line starting with msgid contains the original text. The translation has to be placed on the line containing
msgstr.

For more information about the PO file format, for example about the flags, see The Format of PO Files?!*.

Long texts can be split over multiple lines, were each line must start and end with a double-quote. The following
example from the German translation shows a text spanning two lines, with the placeholder present in the original
and translated text:

#: umc/js/appcenter/AppCenterPage.js:1067

#, python-format

msgid ""

"If everything else went correct and this is Jjust a temporary network "
"problem, you should execute %$s as root on that backup system."

msgstr ""

"Wenn keine weiteren Fehler auftraten und dies nur ein tempordres "
"Netzwerkproblem ist, sollten Sie %s als root auf dem Backup System ausfiihren."

212 https://en.wikipedia.org/wiki/List_of _ISO_639-1_codes
213 hitps://www.gnu.org/software/gettext/manual/gettext.html
214 https://www.gnu.org/sof tware/gettext/manual/htm]_node/PO-Files.html

140 Chapter 12. Translate UCS

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://www.gnu.org/software/gettext/manual/gettext.html
https://www.gnu.org/software/gettext/manual/html_node/PO-Files.html

Univention Developer Reference, Release 5.0-10

Some lines contain parameters, in this example $s and $d. They are indicated by a flag like c—-format or
python—-format, which must not be removed. The placeholders have to be carried over to the translated string
unmodified and in the same order. Some other files contain placeholders of the form % (text) s, which are more
flexible and can be reordered. Because of that, programmers should always use the form % (foo) s.

After a file has been translated completely, the line containing fuzzy at the beginning of the entry must be removed
to avoid warnings. If a translation string consists of multiple lines the translated string should roughly contain as many
lines as the original string.

When a msgid has changed and a translation existed beforehand, it is marked with “#, fuzzy”, as those have to
be corrected:

#: umc/js/appcenter/example.js:42
#, fuzzy

msgid "Hello!"

tr "Hallo, Welt!"

Correct the translation in the msgstr line and remove the line which contains fuzzy:

umc/js/appcenter/example. js:42
sgid "Hello!"
tr "Hallo!"

Warning: If a fuzzy entry is still in one of the de . po files, the package build process fails.

12.3.2 Update meta information

The first entry of a .po file contains its meta information, with each line consisting of a name-value pair. If the
translation work within a file is done, update this information. As an example, see the following excerpt from a . po
translation file:

"Project-Id-Version: univention-management-console-module-services\n"
"Report-Msgid-Bugs—-To: packages@univention.de\n"

"POT-Creation-Date: 2020-09-25 01:15+0200\n"

"PO-Revision-Date: 2020-09-25 11:26+0100\n"

"Last-Translator: Univention GmbH <packages@univention.de>\n"
"Language-Team: Univention GmbH <packages@univention.de>\n"
"Language: de\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"

Running univention-110n-build updates the POT-Creation-Date. The PO-Revision-Date
should be updated every time the . po has been modified. Insert the ISO 639 language code®!” for the target trans-
lation language into Language. Enter contact information into Last-Translator, Language-Team and
Report-Msgid-Bugs-To.

See the gettext manual entry about header entries’!® for more information about all fields, including optional
fields not listed here. Tools like poedit>'” update some of the fields automatically for the user.

215 hitps://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
216 https://www.gnu.org/sof tware/gettext/manual/htm]_node/Header-Entry. html#Header-Entry
217 https://poedit.net/

12.3. Editing translation files 141

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://www.gnu.org/software/gettext/manual/html_node/Header-Entry.html#Header-Entry
https://poedit.net/

Univention Developer Reference, Release 5.0-10

142 Chapter 12. Translate UCS

CHAPTER
THIRTEEN

UNIVENTION UPDATER

The Univention Updater is used for updating the software. It is based on the Debian APT tools. On top of that the
updater provides some UCS specific additions.

13.1 Separate repositories

UCS releases are provided either through ISO images or through online repositories. For each major, minor and
patchlevel release there is a separate online repository. They are automatically added to the files in /etc/apt/
sources.list.d/ depending on the Univention Configuration Registry Variables version/version and
version/patchlevel, which are managed by the updater.

Separate repositories are used to prevent automatic updates of software packages. This is done to encouraged users
to thoroughly test a new release before their systems are updated. The only exception from this rule are the errata
updates, which are put into a single repository, which is updated incrementally.

Therefore, the updater will include the repositories of a new release in a file called /etc/apt/sources.list.
d/00_ucs_temporary_installation.list and then do the updates. Only at the end of a successful
update are the Univention Configuration Registry Variables updated.

Additional components can be added as separate repositories using Univention Configuration Registry Variables
repository/online/component/.., which are described in Integration of external repositories (page 131)
and manual. Setting the variable .../version can be used to mark a component as required (for certain UCS
versions), which blocks an upgrade until the component is available for the specific release(es).

If configured and enabled, components are considered required if the variable .../version is unset or set to cur—
rent.

As an alternative a fixed list of ma jor.minor releases can be used to include the component only for a sub-set
of releases: such a component is only used locally if the listed component versions include the current version, for
examplea 5.0 5.1 5.2 component will not be usedona 5. 4 system.

13.2 Updater scripts

In addition to the regular Debian Maintainer Scripts (see debian/preinst, debian/prerm, debian/postinst, debian/postrm
(page 162)) the UCS updater supports additional scripts, which are called before and after each release update. Each
UCS release and each component can include its own set of scripts.

preup.sh
These scripts are called before the update is started. If any of the scripts aborts with an exit value unequal
zero, the update is canceled and never started. The scripts receives the version number of the next release as
an command line argument.

For components their preup . sh scripts is called twice:
» Before the main release preup . sh script is called

 After the main script was called.

143

Univention Developer Reference, Release 5.0-10

This is indicated by the additional command line argument pre respectively post, which is inserted before
the version string.

postup.sh
These scripts are called after the update successfully completed. If any of the scripts aborts with an exit value
unequal zero, the update is canceled and does not finish successfully. The scripts receives the same arguments
as described above.

The scripts are located in the a11/ component of each release and component. For UCS-5.0 this would be dists/
ucs500/preup.shand5.0/maintained/components/some—component/all/preup. sh for the
preup.sh script. The same applies to the postup.sh script. The full process is shown in Release update
walk-through (page 144).

13.2.1 Digital signature

From UCS 3.2 on the scripts must be digitally signed by an PGP (Pretty Good Privacy) key stored in the key-ring of
apt—key. 8. The detached signature must be placed in a separate file next to each updater scripts with the additional
filename extension . gpg, that is preup.sh.gpg and postup.sh.gpg. These extra files are downloaded as
well and any error in doing so and in the validation process aborts the updater immediately.

The signatures must be updated after each change to the underlying scripts. This can be automated or
be done manually with a command like the following: gpg -a -u key-id --passphrase-file
key-phrase-file -o script.sh.gpg -b script.sh

Signatures can be checked manually using the following command: apt-key verify script.sh.gpg
script.sh

13.3 Release update walk-through

For an release update, the following steps are performed. It assumes a single component is enabled. If multiple
components are enabled, the order in which their scripts are called is unspecified. It shows which scripts are called
in which order with which arguments.

1. Create temporary source list file 00_ucs_temporary_installation.list

2. Download the preup. sh and postup. sh files for the next release and all components into a temporary
directory and validate their PGP signatures

Execute component-preup.sh pre $version

Execute release—-preup.sh $version

Execute component—preup.sh post $version

Download the new Packages and Release files. Their PGP signatures validated by APT internally.
Perform the update

Set the release related Univention Configuration Registry Variables to the new version

© ® N kW

Execute component—postup.sh pre $version
10. Execute release-postup.sh $version

11. Execute component-postup.sh post $version

144 Chapter 13. Univention Updater

CHAPTER
FOURTEEN

SINGLE SIGN-ON: INTEGRATE A SERVICE PROVIDER INTO UCS

UCS provides Single Sign-On functionality with a SAML 2.0 compatible identity provider based on simple-—
samlphp. The identity provider is by default installed on the Primary Directory Node and all Backup Directory
Node servers. A DNS Record for all systems providing single sign-on services is registered for failover, usually
ucs-sso.domainname. Clients are required to be able to resolve the single sign-on DNS name.

14.1 Register new service provider through udm

New service providers can be registered by using the Univention Directory Manager module saml/
serviceprovider. To create a service provider entry in a joinscript, see the following example:

$ eval "$(ucr shell)"
$ udm saml/serviceprovider create "S@" \

——ignore_exists \

——position "cn=saml-serviceprovider,cn=univention, $ldap_base" \

——set isActivated=TRUE \

——set Identifier="MyServiceProviderIdentifier" \

——set NameIDFormat="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified" \
tributes="false" \
——set AssertionConsumerService="https://S$hostname.S$domainname/sso-login-page" \
——set simplesamlNameIDAttribute="uid" \

—-set privacypolicyURL="https://example.com/policy.html" \

——set simplesamlA

——set serviceProviderOrganizationName="My Service Name" \
——-set serviceproviderdescription="A long description shown to the user on the.
—Single Sign-On page." || die

14.2 Get information required by the service provider

The service provider usually requires at least a public certificate or XML metadata about the identity provider. The
certificate can for example be downloaded with the following call:

$ eval "$(ucr shell)"

$ wget —--ca-certificate /etc/univention/ssl/ucsCA/CAcert.pem \

-0 /etc/idp.cert \

https://"S{ucs_server_sso_fgdn:-ucs-sso.S$Sdomainname }"/simplesamlphp/saml2/idp/
—certificate

The XML metadata is available for example from

$ eval "$(ucr shell)"
$ wget —--ca-certificate /etc/univention/ssl/ucsCA/CAcert.pem \

-0 /etc/idp.metadata \

https://"S{ucs_server_sso_fgdn:-ucs-sso.$domainname }"/simplesamlphp/saml2/idp/
—metadata.php

145

Univention Developer Reference, Release 5.0-10

The single sign-on login page to be configured in the service provider is https://ucs-sso.domainname/
simplesamlphp/saml2/idp/SSOService.php.

14.3 Add direct login link to the UCS Portal page

To provide users with a convenient link to an identity provider initiated login, the following ucr command may be
used:

$ fgdn="ucs-sso.domainname"

$ myspi="MyServiceProviderIdentifier"

$ ucr set ucs/web/overview/entries/service/SP/description="External Service Login".

-\
ucs/web/overview/entries/service/SP/label="External Service SSO" \
ucs/web/overview/entries/service/SP/link="https://Sfqgdn/simplesamlphp/saml2/idp/

—SSOService.php?spentityid=Smyspi" \
ucs/web/overview/entries/service/SP/description/de="Externer Dienst Login" \
ucs/web/overview/entries/service/SP/label/de="Externer Dienst SSO" \
ucs/web/overview/entries/service/SP/priority=50

where MyServiceProviderIdentifier isthe identifier used when creating the UDM service provider object.

146 Chapter 14. Single sign-on: Integrate a service provider into UCS

CHAPTER
FIFTEEN

MISCELLANEOUS

15.1 Databases

UCS ships with two major database management systems, which are used for UCS internal purposes, but can also be
used for custom additions.

15.1.1 PostgreSQL

UCS uses PostgreSQL by default for its package tracking database, which collects the state and versions of packages
installed on all systems of the domain.

15.1.2 MariaDB

By default the MariaDB root password is set to . Debian provides the dbconfig package, which can be used
to create and modify additional databases from maintainer scripts.

15.2 UCS lint

Use ueslint to find packaging issues.
For each issue one or more lines are printed. The first line per issue always contains several fields separated by ::
severity:module-id-test-id[:filename[:1ine—-number|[:column-number]]] :message

For some issues extra context data is printed on the following lines, which are indented with space characters. All
other lines start with a letter specifying the severity:

E
Error: Missing data, conflicting information, real bugs.
W
Warning: Possible bug, but might be okay in some situations.
I
Informational: found some issue, which needs further investigation.
S

Style: There might be some better less error prone way.

The severities are ordered by importance. By default uecslint only aborts on errors, but this can be overwritten
using the ——exitcode-categories argument followed by a subset of the characters EWIS.

After the severity an identifier follows, which uniquely identifies the module and the test. The module is given as four
digits, which is followed by a dash and the number of the test in that module. Currently the following modules exist:

0001-CheckJoinScript
Checks join file issues

147

Univention Developer Reference, Release 5.0-10

0002-CopyPasteErrors
Checks for copy & paste error from example files

0004-CheckUCR
Checks UCR info files

0006—-CheckPostinst
Checks Debian maintainer scripts

0007-Changelog

Checks debian/changelog file for conformance with Univention rules

0008-Translations
Checks translation files for completeness and errors

0009-Python
Checks Python files for common errors

0010-Copyright
Checks for Univention copyright

0011-Control
Checks debian/control file for errors

0013-bashism
Checks files using /bin/sh for BASH constructs

0014-Depends
Checks files for missing runtime dependencies on UCS packages

0015-FuzzyNames
Checks for spelling of Univention

0016-Deprecated
Checks files for usage of deprecated functions

0017-Shell
Checks shell scripts for quoting errors

0018-Debian
Checks for Debian packaging issues

The module and test number may be optionally followed by a filename, line number in that file, and column number
in that line, where the issue was found. After that a message is printed, which describes the issue in more detail.

Since ueslint is very Univention centric, many of its tests return false positives for software packages by other
parties. Therefore, many tests need to be disables. For this the file debian/ucslint.overrides can be
created with list of modules and test to be ignored. Without specifying the optional filename, line number and

column number, the test is globally disabled for all files.

15.3 Function libraries

The source package univention-1lib provides the binary packages

shell-univention-1lib,

python3—-univention—-1ib and python-univention-1lib, which contain common library func-

tions usable in shell or Python programs.

148

Chapter 15. Miscellaneous

Univention Developer Reference, Release 5.0-10

15.3.1 shell-univention-1lib

This package (and several others) provides shell libraries in /usr/share/univention-1ib/, which can be
used in shell scripts.

/usr/share/univention-1lib/admember.sh
This file contains some helpers to test for and to manage hosts in AD member mode.

/usr/share/univention-lib/backup. sh
This file contains code to remove old backup files from /var/univention-backup/.

/usr/share/univention-lib/base.sh
This file contains some helpers to create log files, handle unjoin scripts (see Writing unjoin scripts (page 37))
or query the network configuration.

/usr/share/univention-1ib/join.sh
This file is provided by the package univention-join. It is used by by Debian maintainer scripts to
register and call join scripts. See join.sh (page 34) for further details.

/usr/share/univention-1lib/ldap.sh
This file contains some helpers to query data from LDAP, register and un-register service entries, LDAP
schema and LDAP ACL extensions.

/usr/share/univention-lib/samba.sh
This file contains a helper to check is Samba4 is used.

/usr/share/univention-lib/ucr.sh
This file is provided by the package univention—-config. It contains some helpers to handle boolean
Univention Configuration Registry Variables and handle UCR files on package removal. See Using UCR from
shell (page 11) for further details.

/usr/share/univention-1lib/umc.sh
This file contains some helpers to handle UMC (see Univention Management Console (UMC) (page 115)) related
tasks.

/usr/share/univention-lib/all.sh
This is a convenient library, which just includes all libraries mentioned above.

15.3.2 python-univention-1lib

This package provides several Python libraries located in the module univention.1lib.

univention.lib.admember
This module contains functions to test for and to manage hosts in AD member mode.

univention.lib.atjobs
This module contains functions to handle at-jobs.

univention.lib. fstab
This module provides some functions for handling the file /etc/fstab.

univention.lib.il8n
This module provides some classes to handle texts and their translations.

univention.lib.ldap_extension
This module provides some helper functions internally used to register LDAP extension as described in join.sh

(page 34).

univention.lib.listenerSharePath
This module provides some helper functions internally used by the Directory Listener module handling file
shares.

univention.lib.locking
This module provides some functions to implement mutual exclusion using file objects as locking objects.

15.3. Function libraries 149

Univention Developer Reference, Release 5.0-10

univention.lib.misc
This module provides miscellaneous functions to query the set of configured LDAP servers, localized domain
user names, and other functions.

univention.lib.package_manager
This module provides some wrappers for dpkg and APT, which add functions for progress reporting.

univention.lib.s4
This module provides some well known SIDs and RIDs.

univention.lib.ucrLogrotate
This module provides some helper functions internally used for parsing the Univention Configuration Registry
Variables related to Jogrotate. 8.

univention.lib.ucs
This module provides the class UCS_Version to more easily handle UCS version strings.

univention.lib.umc
This module provides the class C1ient to handle connections to remote UMC servers.

univention.lib.umc_module
This module provides some functions for handling icons.

15.4 Login access control

Access control to services can be configured for individual services by setting certain Univention Configuration Reg-
istry Variables. Setting auth/SERVICE/restrict to true enables access control for that service. This will
include thefile /etc/security/access-SERVICE. conf, which contains the list of allowed users and groups
permitted to login to the service. Users and groups can be added to that file by setting auth/SERVICE/user/
USER and auth/SERVICE/group/GROUP to t rue respectively.

15.5 Network packet filter

Firewall rules are setup by univention—-firewall and can be configured through Univention Configuration
Registry or by providing additional UCR templates.

15.5.1 Filter rules by Univention Configuration Registry

Besides predefined service definitions, Univention Firewall also allows the implementation of package filter rules
through Univention Configuration Registry. These rules are included in /etc/security/packetfilter.d/
through a Univention Configuration Registry module.

Filter rules can be provided through packages or can be configured locally by the administrator. Local rules have a
higher priority and overwrite rules provided by packages.

All Univention Configuration Registry settings for filter rules are entered in the following format:

Local filter rule
security/packetfilter/protocol/>port (s)address=policy

Package filter rule
security/packetfilter/package/package/protocol/port (s)/address=policy

The following values need to be filled in:

package (only for packaged rules)
The name of the package providing the rule.

150 Chapter 15. Miscellaneous

Univention Developer Reference, Release 5.0-10

protocol
Can be either t cp for server services using the Transmission Control Protocol or udp for services using the
stateless User Datagram Protocol.

port;min-port}:max-port
Ports can be defined either as a single number between 1 and 65535 or as a range separated by a colon:
min-port:max-port

address
This can be either 1pv4 for all IPv4 addresses, ipv6 for all IPv6 addresses, all for both IPv4 and IPv6
addresses, or any explicitly specified IPv4 or IPv6 address.

policy
If a rule is registered as DROP, then packets to this port will be silently discarded; REJECT can be used to
send back an ICMP message port unreachable instead. Using ACCEPT explicitly allows such packets.
(IPtables rules are executed until one rule applies; thus, if a package is accepted by a rule which is discarded
by a later rule, then the rule for discarding the package does not become valid).

Filter rules can optionally be described by setting additional Univention Configuration Registry Variables. For each
rule and language, an additional variable suffixed by / Ianguage can be used to add a descriptive text.

Some examples:

Listing 15.1: Local firewall rules

security/packetfilter/tcp/2000/all=DROP
security/packetfilter/tcp/2000/all/en=Drop all packets to TCP port 2000
security/packetfilter/udp/500:600/all=ACCEPT
security/packetfilter/udp/500:600/all/en=Accept UDP port 500 to 600

All package rules can be globally disabled by setting the Univention Configuration Registry Variable security/
packetfilter/use_packagesto false..

15.5.2 Local filter rules through iptables commands

Besides the existing possibilities for settings through Univention Configuration Registry, there is also the possibility
of integrating user-defined enhanced configurations in /etc/security/packetfilter.d/, for example for
realizing a firewall or Network Address Translation. The enhancements should be realized in the form of shell scripts
which execute the corresponding iptables for IPv4 and ip6table for IPv6 calls. For packages this is best done
through using a Univention Configuration Registry template as described in File (page 15).

Full documentation for IPTables can be found at the netfilter/iptables project?'®,

15.5.3 Testing Univention Firewall settings
Package filter settings should always be thoroughly tested. The network scanner nmap, which is integrated in Uni-
vention Corporate Server as a standard feature, can be used for testing the status of individual ports.

Since nmap requires elevated privileges in the network stack, it should be started as root user. A TCP port can be
tested with the following command: nmap HOSTNAME -p PORT (s)

A UDP port can be tested with the following command: nmap HOSTNAME -sU -p PORT(s)

Listing 15.2: Using nmap for firewall port testing

$ nmap 192.0.2.100 -p 400
$ nmap 192.0.2.110 -sU -p 400-500

218 hitps://www.netfilter.org/

15.5. Network packet filter 151

https://www.netfilter.org/

Univention Developer Reference, Release 5.0-10

15.6 Active Directory Connection custom mappings

For general overview about the Active Directory Connection app, see Active Directory Connection®'” in

Univention Corporate Server - Manual for users and administrators [2].

It is possible to modify and append custom mappings. Administrators need to create the file /etc/univention/
connector/ad/localmapping.py. Within that file, they must implement the following function:

def mapping_hook (ad_mapping) :
return ad_mapping

The variable ad_mapping influences the mapping. The Active Directory Connection app logs the resulting mapping
to /var/log/univention/connector—ad-mapping.log, when the administrator restarts Univention
AD connector.

219 https://docs.sof tware-univention.de/manual/5.0/en/windows/ad- connection.html#ad- connector- general

152 Chapter 15. Miscellaneous

https://docs.software-univention.de/manual/5.0/en/windows/ad-connection.html#ad-connector-general

CHAPTER
SIXTEEN

APPENDIX

16.1 Bug reporting

UCS is neither error free nor feature complete. Issues are tracked using Bugzilla?’.

1. Create an account.
2. Search for existing entries before opening new reports.

3. Include the version info:

[$ ucr search —--brief “version/ }

4. Provide enough information to help us reproduce the bug.
5. Conduct some research:
« Search Univention Help Knowledge Base?”!

* Search Univention Help?** and ask for help. In addition to our support team many of our partners are
also present there. Your questions might also help other users while you may profit from issues already
solved for other users.

16.2 Debian packaging

This chapter describes how software for Univention Corporate Server is packaged in the Debian format. It allows
proper dependency handling and guarantees proper tracking of file ownership. Customers can package their own
internal software or use the package mechanism to distribute configuration files consistently to different machines.

Software is packaged as a source package, from which one or more binary packages can be created. This is useful to
create different packages from the same source package. For example the Samba source package creates multiple
binary packages:

* one containing the file server
* one containing the client commands to access the server

« and several other packages containing documentation, libraries, and common files shared between those pack-
ages

The directory should be named package_name-version.

220 https://forge.univention.org/bugzilla/index.cgi
221 https://help.univention.com/c/knowledge-base/supported/
222 https://help.univention.com/

153

https://forge.univention.org/bugzilla/index.cgi
https://help.univention.com/c/knowledge-base/supported/
https://help.univention.com/

Univention Developer Reference, Release 5.0-10

16.2.1 Prerequisites and preparation

Some packages are required for creating and building packages.

build-essential
This meta package depends on several other packages like compilers and tools to extract and build source
packages. Packages must not declare an explicit dependency on this and its dependent packages.

devscripts
This package contains additional scripts to modify source package files like for example debian/
changelog.

dh-make
This program helps to create an initial debian/ directory, which can be used as a starting point for packaging
new software.

These packages must be installed on the development system. If not, missing packages can be installed on the com-
mand line using univention—install or through UMC, which is described in the Univention Corporate Server
- Manual for users and administrators [2].

16.2.2 dh_make

dh_make is a tool, which helps creating the initial debian/ directory. It is interactive by default and asks several
questions about the package to be created.

Type of package: single binary, indep binary, multiple binary, library, kernel.
—module, kernel patch?

[s/i/m/1/k/n]

s, single binary
A single architecture specific binary package is created from the source package. This is for software which
needs to be compiled individually for different CPU architectures like 1386 and amd64.

i, indep binary
A single architecture-independent binary package is created from the source package. This is for software
which runs unmodified on all CPU architectures.

m, multiple binary
Multiple binary packages are created from the source package, which can be both architecture independent
and dependent.

1, library
Two or more binary packages are created for a compiled library package. The runtime package consists of
the shared object file, which is required for running programs using that library. The development package
contains the header files and other files, which are only needed when compiling and linking programs on a
development system.

k, kernel module
A single kernel-dependent binary package is created from the source package. Kernel modules need to be
compiled for each kernel flavor. dkms should probably be used instead. This type of packages is not described
in this manual.

n, kernel patch
A single kernel-independent package is created from the source package, which contains a patch to be applied
against an unpacked Linux kernel source tree. dkms should probably be used instead. This type of packages
is not described in this manual.

In Debian, a package normally consists of an upstream software archive, which is provided by a third party like the
Samba team. This collection is extended by a Debian specific second TAR archive or a patch file, which adds the
debian/ directory and might also modify upstream files for better integration into a Debian system.

When a source package is built, dokg-source. 1 separates the files belonging to the packaging process from files
belonging to the upstream package. For this to work, dpkg—source needs the original source either provided as a

154 Chapter 16. Appendix

Univention Developer Reference, Release 5.0-10

TAR archive or a separate directory containing the unpacked source. If neither of these is found and ——native is
not given, dh_make prints the following warning:

Could not find my-package_l1.0.orig.tar.gz
Either specify an alternate file to use with -f,
or add —--createorig to create one.

The warning from dh_make states that no pristine upstream archive was found, which prohibits the creation of the
Debian specific patch, since the Debian packaging tools have no way to separate upstream files from files specific to
Debian packaging. The option ——createorig can be passed to dh_make tocreate a . orig.tar.qgz archive
before creating the debian/ directory, if such separation is required.

16.2.3 Debian control files

The control files in the delbian/ directory control the package creation process. The following sections provide a
short description of these files. A more detailed description is available in the The Debian GNU/Linux FAQ - Basics
of the Debian package management system [4].

Several files will have the . ex suffix, which mark them as examples. To activate these files, they must be renamed
by stripping this suffix. Otherwise, the files should be deleted to not clutter up the directory by unused files. In case a
file was deleted and needs to be restored, the original templates can be found in the /usr/share/debhelper/
dh_make/debian/ directory.

The debian/ directory contains some global configuration files, which can be put into two categories: The files
changelog, control, copyright, rules are required and control the build process of all binary packages.
Most other files are optional and only affect a single binary package. Their filename is prefixed with the name of the
binary package. If only a single binary package is build from the source package, this prefix can be skipped, but it is
good practice to always use the prefix.

The following files are required:

changelog
Changes related to packaging, not the upstream package. See debian/changelog (page 160) below for more
information.

compat
The Debhelper tools support different compatibility levels. For UCS-3.x the file must contain a single line
with the value 7. See debhelper. 7 for more details.

control
Contains control information about the source and all its binary packages. This mostly includes package name
and dependency information. See debian/control (page 157) below for more information.

copyright
This file contains the copyright and license information for all files contained in the package. See debian/copy-
right (page 159) below for more information.

rules
This is a Makefile style file, which controls the package build process. See debian/rules (page 161) below
for more information.

source/format
This file configures how dpkg-source. 1 separates the files belonging to the packaging process from files
belonging to the upstream package. Historically, the Debian source format 1. 0 shipped packages as a TAR
file containing the upstream source plus one patch file, which contained all files of the debian/ sub-directory
in addition to all changes to upstream files.

The new format 3.0 (quilt) replaces the patch file with a second TAR archive containing the debian/
directory. Changes to upstream files are no longer applied as one giant patch, but split into logical changes and
applied using a built-in quilt. 1.

16.2. Debian packaging 155

Univention Developer Reference, Release 5.0-10

For simple packages, where there is no distinction between upstream and the packaging entity, the 3.0 (na-
tive) format can be used instead, were all files including the debian/ directory are contained in a single
TAR file.

The following files are optional and should be deleted if unused, which helps other developers to concentrate on only
the files relevant to the packaging process:

README .Debian
Notes regarding package specific changes and differences to default options, for example compiler options.
Will be installed into /usr/share/doc/package_name/README.Debian.

package.cron.d
Cron tab entries to be installed. See dh_installcron. 1 for more details.

package.dirs
List of extra directories to be created. See dh_installdirs. 1 for more details. May other dh_ tools
automatically create directories themselves, so in most cases this file is unneeded.

package.install
List of files and directories to be copied into the package. This is normally used to partition all files to be in-
stalled into separate packages, but can also be used to install arbitrary files into packages. See dh_install.!
for more details.

package.docs
List of documentation files to be installed in /usr/share/doc/package/. See dh_installdocs. 1
for more details.

package.emacsen—-install; package.emacsen—-remove; package.emacsen—-startup
Emacs specific files to be installed below /usr/share/emacs-common/package/. See
dh_installemacsen. 1 for more details.

package.doc-base*
Control files to install and register extended HTML and PDF documentation. See dh_installdocs. 1 for
more details.

package.init .d; package.default
Start-/stop script to manage a system daemon or service. See dh_installinit. 1 for more details.

package.manpage. 1; package.manpage . sgml
Manual page for programs, library functions or file formats, either directly in troff or SGML. See
dh_installman. 1 for more details.

package.menu
Control file to register programs with the Debian menu system. See dh_installmenu. 1 for more details.

watch
Control file to specify the download location of this upstream package. This can be used to check for new
software versions. See uscan. 1 for more details.

package.preinst; package.postinst; package.prerm; package.postrm
Scripts to be executed before and after package installation and removal. See debian/preinst, debian/prerm,
debian/postinst, debian/postrm (page 162) below for more information.

package.maintscript
Control file to simplify the handling of configuration files. See dpkg-maintscript—-helper.1 and
dh_installdeb. 1 for more information.

Other debhelper programs use additional files, which are described in the respective manual pages.

156 Chapter 16. Appendix

Univention Developer Reference, Release 5.0-10

debian/control

The control file contains information about the packages and their dependencies, which are needed by dpkg. The
initial control file created by dh_make looks like this:

Source: testdeb

Section: unknown

Priority: optional

Maintainer: John Doe <user@example.com>
Build-Depends: debhelper (>= 5.0.0)
Standards-Version: 3.7.2

Package: testdeb

Architecture: any

Depends: ${shlibs:Depends}, ${misc:Depends}
Description: <insert up to 60 chars description>
<insert long description, indented with spaces>

The first block beginning with Source describes the source package:

Source
The name of the source package. Must be consistent with the directory name of the package and the information
in the changelog file.

Section??3

A category name, which is used to group packages. There are many predefined categories like 1ibs, edi-
tors, mail, but any other string can be used to define a custom group.

Priority®*

Defines the priority of the package. This information is only used by some tools to create installation DVD.
More important packages are put on earlier CD, while less important packages are put on later CD.

essential
Packages are installed by default and dpkg prevents the user from easily removing it.

required
Packages which are necessary for the proper functioning of the system. The package is part of the base
installation.

important
Important programs, including those which one would expect to find on any Unix-like system. The
package is part of the base installation.

standard
These packages provide a reasonably small but not too limited character-mode system.

optional
Package is not installed by default. This level is recommended for most packages.

extra
This contains all packages that conflict with some other packages.

Maintainer
The name and email address of a person or group responsible for the packaging.

Build-Depends; Build-Depends—Indep
A list of packages which are required for building the package.

Standards-version
Specifies the Debian Packaging Standards version, which this package is conforming to. This is not used by
UCS, but required by Debian.

223 https://www.debian.org/doc/debian-policy/ch-archive html#s-subsections
224 https://www.debian.org/doc/debian- policy/ch-archive html#s-priorities

16.2. Debian packaging 157

https://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
https://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities

Univention Developer Reference, Release 5.0-10

All further blocks beginning with Package describes a binary package. For each binary package one block is
required.

Package
The name of the binary package. The name must only consist of lower case letters, digits and dashes. If only a
single binary package is built from a source package, the name is usually the same as the source package name.

Architecture
Basically there are two types of packages:

* Architecture dependent packages must be build for each architecture like 1 386 and amd 64, since bina-
ries created on one architecture do not run on other architectures. A list of architectures can be explicitly
given, or any can be used, which is then automatically replaced by the architecture of the system where
the package is built.

* Architecture independent packages only need to be built once, but can be installed on all architectures.
Examples are documentation, scripts and graphics files. They are declared using a1l in the architecture
field.

Description
The first line should contain a short description of up to 60 characters, which should describe the purpose of
the package sufficiently. A longer description can be given after that, where each line is indented by a single
space. An empty line can be inserted by putting a single dot after the leading space.

Most packages are not self-contained but need other packages for proper function. Debian supports different kinds
of dependencies.

Depends
A essential dependency on some other packages, which must be already installed and configured before this
package is configured.

Recommends
A strong dependency on some other packages, which should normally be co-installed with this package, but
can be removed. This is useful for additional software like plug-ins, which extends the functionality of this
package, but is not strictly required.

Suggests
A soft dependency on some other packages, which are not installed by default. This is useful for additional
software like large add-on packages and documentation, which extends the functionality of this package, but
is not strictly required.

Pre-Depends
A strong dependency on some other package, which must be fully operational even before this package is
unpacked. This kind of dependency should be used very sparsely. It’'s mostly only required for software called
from the .preinst script.

Conflicts
A negative dependency, which prevents the package to be installed while the other package is already installed.
This should be used for packages, which contain the same files or use the same resources, for example TCP
port numbers.

Provides
This package declares, that it provides the functionality of some other package and can be considered as a
replacement for that package.

Replaces
A declaration, that this package overwrites the files contained in some other package. This deactivates the
check normally done by dpkg to prevent packages from overwriting files belonging to some other package.

Breaks
A negative dependency, which requests the other package to be upgraded before this package can be installed.
This is a lesser form of Conflicts. Breaks is almost always used with a version specification in the form
Breaks: package (<< version): This forces package to be upgraded to a version greater than
version before this package is installed.

158 Chapter 16. Appendix

Univention Developer Reference, Release 5.0-10

In addition to literal package names, debhelper supports a substitution mechanism: Several helper scripts are
capable of automatically detecting dependencies, which are stored in variables.

${shlibs:Depends}
dh_shlibdeps automatically determines the shared library used by the programs and libraries of the pack-
age and stores the package names providing them in this variable.

${python3:Depends}
dh_python detects similar dependencies for Python modules.

${misc:Depends}
Several Debhelper commands automatically add additional dependencies, which are stored in this variable.

In addition to specifying a single package as a dependency, multiple packages can be separated by using the pipe
symbol (|). At least one of those packages must be installed to satisfy the dependency. If none of them is installed,
the first package is chosen as the default.

A package name can be followed by a version constraint enclosed in parenthesis. The following operators are valid:

<<
is less than
<=
is less than or equal to
is equal to
>=
is greater than or equal to
>>

is greater than

For example:

Depends: libexamplel (>= ${binary:Version}),
exim4 | mail-transport-agent,
${shlibs:Depends}, ${misc:Depends}

Conflicts: libgg0, libggil

Recommends: libncurses5 (>> 5.3)

Suggests: libgiiO-target-x (= 1:0.8.5-2)

Replaces: vim-python (<< 6.0), vim-tcl (<= 6.0)

Provides: www-browser, news-reader

debian/copyright

The copyright file contains copyright and license information. For a downloaded source package it should include
the download location and names of upstream authors.

This package was debianized by John Doe <max@example.com> on
Mon, 21 Mar 2009 13:46:39 +0100.

It was downloaded from <fill in ftp site>

Copyright:
Upstream Author (s): <put author(s) name and email here>

License:
<Must follow here>

J

The file does not require any specific format. Debian recommends to use a machine-readable format, but this is not
required for UCS. The format is described in Machine-readable debian/copyright file?”> at looks like this:

225 hitps://dep-team.pages.debian.net/deps/dep5/

16.2. Debian packaging 159

https://dep-team.pages.debian.net/deps/dep5/

Univention Developer Reference, Release 5.0-10

Format: http://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream—-Name: Univention GmbH

Upstream-Contact: <package>Q@univention.de>

Source: https://docs.software-univention.de/

Files: *
Copyright: 2013-2023 Univention GmbH
License: AGPL

debian/changelog

The changelog file documents the changes applied to this Debian package. The initial file created by dh_make
only contains a single entry and looks like this:

testdeb (0.1-1) unstable; urgency=low
* Initial Release.

—— John Doe <user(@example.com> Mon, 21 Mar 2013 13:46:39 +0100

For each new package release a new entry must be prepended before all previous entries. The version number needs
to be incremented and a descriptive text should be added to describe the change.

The command debchange from the devscripts package can be used for editing the changelog file. For
example the following command adds a new version:

o]

After that the changelog file should look like this:

testdeb (0.1-2) unstable; urgency=low
* Add more details.
—— John Doe <user(@example.com> Mon, 21 Mar 2013 17:55:47 +0100
testdeb (0.1-1) unstable; urgency=low
* Initial Release.

—— John Doe <user(@example.com> Mon, 21 Mar 2013 13:46:39 +0100

The date and timestamp must follow the format described in RFC 2822°%°. debchange automatically inserts and
updates the current date. Alternatively date -R can be used on the command line to create the correct format.

For UCS it is best practice to mention the bug ID of the UCS bug tracker (see Bug reporting (page 153)) to reference
additional details of the bug fixed. Other parties are encouraged to devise similar comments, for example URLs to
other bug tracking systems.

226 https://datatracker.ietf.org/doc/html/rfc2822.html

160 Chapter 16. Appendix

https://datatracker.ietf.org/doc/html/rfc2822.html

Univention Developer Reference, Release 5.0-10

debian/rules

The file rules describes the commands needed to build the package. It must use the Make syntax The GNU Make
manual [5]. Tt consists of several rules, which have the following structure:

target: dependencies
command

Each rule starts with the target name, which can be a filename or symbolic name. Debian requires the following
targets:

clean
This rule must remove all temporary files created during package build and must return the state of all files
back to the same state as when the package is freshly extracted.

build; build-arch; build-indep
These rules should configure the package and build either all, all architecture dependent or all architecture
independent files.

These rules are called without root permissions.

binary; binary-arch; binary-indep
These rules should install the package into a temporary staging area. By default this is the directory debian/
tmp/ below the source package root directory. From there files are distributed to individual packages, which
are created as the result of these rules.

These rules are called with root permissions.

Each command line must be indented with one tabulator character. Each command is executed in a separate shell,
but long command lines can be split over consecutive lines by terminating each line with a backslash (\).

Each rule describes a dependency between the target and its dependencies. make considers a target to be out-of-date,
when a file with that name target does not exists or when the file is older than one of the files it depends on. In
that case make invokes the given commands to re-create the target.

In addition to filenames also any other word can be used for target names and in dependencies. This is most often
used to define phony targets, which can be given on the command line invocation to trigger some tasks. The above
mentioned clean, build and binary targets are examples for that kind of targets.

dh_make only creates a template for the rules file. The initial content looks like this:

#!/usr/bin/make -f

=*= makefile =*=

Sample debian/rules that uses debhelper.

This file was originally written by Joey Hess and Craig Small.

As a special exception, when this file is copied by dh-make into a

dh-make output file, you may use that output file without restriction.

This special exception was added by Craig Small in version 0.37 of dh-make.

S o o o3

Uncomment this to turn on verbose mode.
#export DH_VERBOSE=1

S .
o .

dh s$@

Since UCS-3.0 the debian/rules file is greatly simplified by using the dh sequencer. It is a wrapper around all
the different debhelper tools, which are automatically called in the right order.

Tip: To exactly see which commands are executed when dpkg—buildpackage builds a package, invoke dh
target —--no-act by hand, for example dh binary ——-no-act lists all commands to configure, build, in-
stall and create the package.

16.2. Debian packaging 161

Univention Developer Reference, Release 5.0-10

In most cases it’s sufficient to just provide additional configuration files for the individual debhelper commands as
described in Debian control files (page 155). If this is not sufficient, any debhelper command can be individually
overridden by adding an override target to the rules file.

For example the following snippet disables the automatic detection of the build system used to build the package and
passes additional options:

override_dh_auto_configure:
./setup —-prefix=/usr —--with-option-foo

Without that explicit override dh_auto_configure would be called, which normally automatically detects sev-
eral build systems like cmake, setup.py, autoconf and others. For these dh also passes the right options to
configure the default prefix /usr and use the right compiler flags.

After configuration the package is built and installed to the temporary staging area in debian/tmp/. From there
dh_install partitions individual files and directories to binary packages. This is controlled through the debian/
package.install files.

This file can also be used for simple packages, where no build system is used. If a path given in the debian/
package.install file is not found below debian/tmp/, the path is interpreted as relative to the source pack-
age root directory. This mechanism is sufficient to install simple files, but fails when files must be renamed or file
permissions must be modified.

debian/preinst, debian/prerm, debian/postinst, debian/postrm

In addition to distributing only files, packages can also be used to run arbitrary commands on installation, upgrades
or removal. This is handled by the four Maintainer scripts, which are called before and after files are unpacked or
removed:

debian/package.preinst
called before files are unpacked.

debian/package.postinst
called after files are unpacked. Mostly used to (re-)start services after package installation or upgrades.

debian/package.prerm
called before files are removed. Mostly used to stop services before a package is removed or upgraded.

debian/package.postrm
called after files have been removed.

The scripts themselves must be shell scripts, which should contain a #DEBHELPER# marker, where the shell script
fragments created by the dh_ programs are inserted. Each script is invoked with several parameters, from which the
script can determine, if the package is freshly installed, upgraded from a previous version, or removed. The exact
arguments are described in the template files generated by dh_make.

The maintainer scripts can be called multiple times, especially when errors occur. Because of that the scripts should
be idempotent, that is they should be written to achieve a consistent state instead of blindly doing the same sequence
of commands again and again.

A bad example would be to append some lines to a file on each invocation. The right approach would be to add a
check, if that line was already added and only do it otherwise.

Warning: Make sure to handle package upgrades and removal correctly: Both tasks will invoke any existing
scripts prerm and post rm, but with different parameters remove and upgrade only.

It is important that all these scripts handle error conditions properly: Maintainer scripts should exit with exit
0 on success and exit 1 on fail, if things go catastrophically wrong.

On the other hand, an exit code unequal to zero usually aborts any package installation, upgrade or removal
process. This prevents any automatic package maintenance and usually requires manual intervention of a human

162 Chapter 16. Appendix

Univention Developer Reference, Release 5.0-10

administrator. Therefore, it is essential that maintainer scripts handle error conditions properly and are able to
recover an inconsistent state.

16.2.4 Building

Before the first build is started, remove all unused files from the debian/ directory. This simplifies maintenance
of the package and helps other maintainers to concentrate on only the relevant differences from standard packages.

The build process is started by invoking the following command:

[$ dpkg-buildpackage -us -uc }

The options —us and —uc disable the PGP signing process of the source and changes files. This is only needed for
Debian packages, were all files must be cryptographically signed to be uploaded to the Debian infrastructure.

Additionally, the option —b can be added to restrict the build process to only build the binary packages. Otherwise a
source package will also be created.

16.2.5 Further reading

* The Debian GNU/Linux FAQ - Basics of the Debian package management system [4]
e Debian New Maintainers' Guide [6]
* Debian Policy Manual [7]

* Debian Developer's Reference [8]

16.3 Bibliography

16.3. Bibliography 163

Univention Developer Reference, Release 5.0-10

164 Chapter 16. Appendix

BIBLIOGRAPHY

[1] ISO 639-1: Alpha-2 code. International Organization for Standardization, 2010. URL: https://www.loc.gov/
standards/is0639-2/.

[2] Univention Corporate Server - Manual for users and administrators. Univention GmbH, 2021. URL: https://docs.
software-univention.de/manual/5.0/en/.

[3] Univention Corporate Server 5.0 Architecture. Univention GmbH, 2023. URL: https://docs.software-univention.
de/architecture/5.0/en/.

[4] The Debian GNU/Linux FAQ - Basics of the Debian package management system. Debian, 2019. URL: https:
/Iwww.debian.org/doc/manuals/debian-faq/pkg-basics.en.html.

[5]1 The GNU Make manual. Free Software Foundation, 2020. URL: https://www.gnu.org/sof tware/make/manual/.

[6] Debian New Maintainers' Guide. Debian, 2015. URL: https://www.debian.org/doc/devel-manuals#maint-guide.

[7]1 Debian Policy Manual. Debian, 2020. URL: https://www.debian.org/doc/debian-policy/.

[8] Debian Developer's Reference. Debian, 2021. URL: https://www.debian.org/doc/manuals/
developers-reference/.

165

https://www.loc.gov/standards/iso639-2/
https://www.loc.gov/standards/iso639-2/
https://docs.software-univention.de/manual/5.0/en/
https://docs.software-univention.de/manual/5.0/en/
https://docs.software-univention.de/architecture/5.0/en/
https://docs.software-univention.de/architecture/5.0/en/
https://www.debian.org/doc/manuals/debian-faq/pkg-basics.en.html
https://www.debian.org/doc/manuals/debian-faq/pkg-basics.en.html
https://www.gnu.org/software/make/manual/
https://www.debian.org/doc/devel-manuals#maint-guide
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/developers-reference/
https://www.debian.org/doc/manuals/developers-reference/

Univention Developer Reference, Release 5.0-10

166 Bibliography

PYTHON MODULE INDEX

u

udm_modules_globals, 72
univention.admin.hook, 95

167

Univention Developer Reference, Release 5.0-10

168 Python Module Index

Non-alphabetical

SPATH, 12
| UCSUDL |, see directory listener
| UCSUDM |, see directory manager

A

-—acl
ucs_registerLDAPExtension command

line option, 35

add () (built-in function), 121

addEmptyValue (LDAP_Search.UDM_API at-
tribute), 87

addEmptyValue (Python_API attribute), 86

apache, see web services

app center, 129

appendEmptyValue (Python_API attribute), 86

as_root () (in module high_level), 50

atd/autostart, 25,27

attribute (LDAP_Search.UDM_API attribute), 87

attribute (Python_API attribute), 86

attribute (UDM_Attribute attribute), 84

attributes (in module high_level), 47

attributes (in module your_module), 44

B

base (LDAP_Search.UDM_API attribute), 87
bug, see bugzilla
bugzilla, 153

C

childs (in module udm_modules_globals), 73
clean () (in module high_level), 49
clean () (in module your_module), 46
config registry, 11,15

categories, 20

descriptions, 18

examples, 2325

repository, 9

services, 20

template, 1518

template file, 21
configuration files, 15
create () (in module high_level), 48
custom attributes, see extended attributes

INDEX

D

database, 147
mariadb, 147
mysql, 147
postgresql, 147
depends (UDM_Attribute attribute), 84
description (in module high_level), 47
description (in module your_module), 44
description (LDAP_Search.UDM_API attribute),
86
die, 33
diff () (in module high_level), 50
directory listener,43
cache, 65
credentials, 64
debug, 64
example module, 55
modrdn, 57
notifier ID, 66
verify, 66
Directory manager
module extension, 35
directory manager, 71
custom modules, 72
extended attributes, 88
extension modules packaging, 98
hook extension, 35
hooks packaging, 97
LDAP search, 84
syntax extension, 35
syntax override, 84
UDM syntax extension packaging, 99
directory/manager/rest/authorized-groups/dc-backu
100
directory/manager/rest/authorized-groups/dc-slave
100
directory/manager/rest/authorized-groups/domain-a
100
directory/manager/rest/debug-mode—enabled,
101
directory/manager/rest/html-view-enabled,
101
domain join, 29
domain credentials,4l1,42
join script, 29
join status, 29

169

Univention Developer Reference, Release 5.0-10

machine credential change, 42
running, 30
unjoin, 37

E

empty_value (UDM_Attribute attribute), 84
environment wvariable
SPATH, 12
atd/autostart, 25,27
directory/man-

security/packetfilter/use_pack-

ages, 151
server/password/change, 42
server/password/interval, 42
ucs/web/overview/entries/ad-

min/PACKAGE/OPTION, 127
ucs/web/overview/entries/ser—

vice/PACKAGE/OPTION, 127
UNIVENTION_APP_IDENTIFIER, 36
VERSION, 33

ager/rest/authorized-groups/dc-back¥grsion/patchlevel, 143

100
directory/man-

version/version, 143
Errata updates

ager/rest/authorized-groups/dc-slav®d§S 4.2 erratum 311,43

100
directory/man-

UCS 4.3 erratum 85,31
UCS 4.3 erratum 427,67

ager/rest/authorized-groups/domain-&&®iws,0 erratum 164, 68

100
directory/man-
ager/rest/debug-mode-enabled,
101
directory/man-
ager/rest/html-view—enabled,
101
group-name, 100
hosts/allow/, 24
hosts/deny/, 24
JS_LAST_EXECUTED_VERSION, 34
ldap/backup, 66
ldap/hostdn, 30, 41
ldap/master, 66
listener/cache/filter, 45
notifier/server, 66
notifier/server/port, 66
print/papersize, 23
repository/online/component /NAME,
9,132
repository/online/compo-
nent /NAME/defaultpackages,
133
repository/online/compo—
nent /NAME/description, 132
repository/online/compo-
nent /NAME/layout, 132
repository/online/compo-
nent /NAME/localmirror, 132
repository/online/compo-
nent /NAME /password, 132
repository/online/compo—
nent /NAME/prefix, 132
repository/online/compo-
nent /NAME/server, 9, 132
repository/online/compo-
nent /NAME/username, 132
repository/online/compo—
nent /NAME/version, 132
repository/online/server, 132

error_handler () (in module high_level), 51
error_message (UDM_Attribute attribute), 85
examples

config registry, 2325

multi file, 24

services, 25

single file, 23
extended attributes, 88

hooks, 95

options, 94

selection list, 9l

F

filter (in module low_level), 52

filter (in module your_module), 44

filter (LDAP_Search.UDM_API attribute), 87
filter (Python_API attribute), 86

G

get () (built-in function), 121
get_active () (in module high_level), 48
get_attributes () (in module high_level), 47
get_attributes () (in module your_module), 44
get_description () (in module high_level), 47
get_description () (in module your_module), 44
get_ldap_filter () (in module high_level), 47
get_ldap_filter () (in module your_module), 44
get_listener_module_class () (in module
high_level), 48
get_listener_module_instance () (in mod-
ule high_level), 47
get_name () (in module high_level), 47
get_name () (in module your_module), 43
get_priority () (in module high_level), 47
get_priority () (in module your_module), 45
group—name, 100

F{

handle_every_delete (in module your_module),
45
handler () (in module low_level), 53

170

Index

Univention Developer Reference, Release 5.0-10

hook_ldap_addlist () (univention.ad-
min.hook.simpleHook method), 95
hook_ldap_modlist () (univention.ad-
min.hook.simpleHook method), 96
hook_ldap_post_create () (univention.ad-
min.hook.simpleHook method), 96
hook_ldap_post_remove () (univention.ad-
min.hook.simpleHook method), 96
hook_ldap_pre_create () (univention.ad-
min.hook.simpleHook method), 95
hook_ldap_pre_modify () (univention.ad-
min.hook.simpleHook method), 96
hook_ldap_pre_remove () (univention.ad-
min.hook.simpleHook method), 96
hook_open () (univention.admin.hook.simpleHook
method), 95
hosts/allow/, 24
hosts/deny/, 24

—-—icon
ucs_registerLDAPExtension command
line option, 36
initialize () (in module high_level), 49
initialize () (in module your_module), 45

J

join, see domain join
join script
domain join, 29
exit codes, 32
helpers, 33
library, 33
return codes, 32
writing, 30
joinscript_check_any_version_exe-
cuted, 33
joinscript_check_specific_ver-
sion_executed version, 33
joinscript_check_ver-
sion_in_range_executed min
max, 33
joinscript_extern_init join-script, 33
joinscript_init, 33
joinscript_remove_script_from_sta-
tus_file name, 33
joinscript_save_current_version, 33

K

key (UDM_Objects attribute), 85
Knowledge Base
KB 13149,65

L

label (UDM_Objects attribute), 85
label_format (UDM_Attribute attribute), 84
layout (in module udm_modules_globals), 74
LDAP

access control list extension, 35
schema, 68
schema extension, 35
ldap/backup, 66
ldap/hostdn, 30, 41
ldap/master, 66
ldap_filter (in module high_level), 47
ldap_filter (in module your_module), 44
LDAP_Search (built-in class), 85
LDAP_Search.UDM_API (built-in class), 86
ldapattribute (LDAP_Search.UDM_API
tribute), 87
ldapvalue (LDAP_Search.UDM_API attribute), 87
listener, see directory listener
schema replication, 68
listener/cache/filter, 45
listener_module_class (in module high_level),
48
1o (in module high_level), 52
localisation, see translation
logger (in module high_level), 52
long_description (in module udm_modules_glob-
als), 72

ar-

M

management console, 115

disable, 124

files, 116

LDAP, 124

Module, 124

module, 117, 124

system, 117

umc-modules, 116

XML, 117
mapping (in module udm_modules_globals), 75
——messagecatalog

ucs_registerLDAPExtension command

line option, 36

modify () (in module high_level), 48
modxrdn (in module your_module), 44
module

template, 18

udm_modules_globals, 72

univention.admin.hook, 95
module (in module udm_modules_globals), 72
module/add () (built-in function), 121
module/get () (built-in function), 121
module/put () (built-in function), 121
module/query () (built-in function), 122
module/remove () (built-in function), 122
multi file

examples, 24

template, 16

N

——name
ucs_registerLDAPExtension command
line option, 35

Index

171

Univention Developer Reference, Release 5.0-10

name (in module high_level), 47

name (in module your_module), 43

name (LDAP_Search.UDM_API attribute), 86
notifier/server, 66
notifier/server/port, 66

O

object (class in udm_modules_globals), 76
operations (in module udm_modules_globals), 72
options (in module udm_modules_globals), 73
options.default (in module udm_modules_glob-

als), 73

options.editable (in module udm_modules_glob-
als), 73

options.long_description (in module

udm_modules_globals), 73
options.objectClasses (in module udm_mod-

ules_globals), 73
options.short_description (in

udm_modules_globals), 73

module

F)

packaging, 3
build dependencies, 154
check for errors, 147
debian, 153
library functions, 148
modify existing package,4
new package,4
package repository,8
po (in module high_level), 52
post_run () (in module high_level), 50
postrun () (in module your_module), 46
postup
updater, 143
pre_run () (in module high_level), 49
prerun () (in module your_module), 46
preup
updater, 143
print/papersize, 23
priority (in module high_level), 47
priority (in module your_module), 45
property_descriptions (in module udm_mod-
ules_globals), 73
property_descriptions.default (in module
udm_modules_globals), 74
property_descriptions.dontsearch (in
module udm_modules_globals), 74
property_descriptions.editable (in mod-
ule udm_modules_globals), T4
property_descriptions.identifies (in
module udm_modules_globals), 74
property_descriptions.long_descrip-—
tion (in module udm_modules_globals),
74
property_descriptions.may_change (in
module udm_modules_globals), 74

property_descriptions.multivalue (in
module udm_modules_globals), 74

property_descriptions.options (in module
udm_modules_globals), 74

property_descriptions.required (in mod-
ule udm_modules_globals), T4

property_descriptions.short_descrip-
tion (in module udm_modules_globals),
74

property_descriptions.syntax (in module
udm_modules_globals), 74

put () (built-in function), 121

Python 3

migration, 69, 108, 125
Python_APT (built-in class), 86

Q

query () (built-in function), 121

R

regex (UDM_Attribute attribute), 84
regex (UDM_Objects attribute), 85
registry, see config registry
remove () (built-in function), 121
remove () (in module high_level), 49
repositories
external, 131
repository, see packaging
repository/online/component/NAME, 9
repository/online/compo-
nent /NAME/server,9, 132
repository/online/server, 132
RFC
REC
REC
RFC
RFC

S

——schema
ucs_registerLDAPExtension command
line option, 35
script
template, 17
security/packetfilter/use_packages,
151
server password change, see domain join
server/password/change, 42
server/password/interval, 42
services
examples, 25
setdata () (in module low_level), 54
short_description (in module
ules_globals), 72
simple (UDM_Objects attribute), 85
simpleHook (class in univention.admin.hook), 95
single file
examples, 23

2254,44

2822, 160
6750, 100
7617, 100

udm_mod-

172

Index

Univention Developer Reference, Release 5.0-10

template, 15
single sign-on
SAML, 145
SSO, see single sign-on
static_values (UDM_Attribute attribute), 84
syntax_name (Python_API attribute), 86

——schema, 35
——ucsversionend, 35
—-—ucsversionstart, 35
——udm_hook, 35
——udm_module, 35
——udm_syntax, 35

——umcmessagecatalog, 36
T- ——umcregistration, 36
——ucsversionend
ucs_registerLDAPExtension command
line option, 35
—--ucsversionstart
ucs_registerLDAPExtension command
line option, 35
UDM, see directory manager
UDM_Attribute (built-in class), 84
udm_filter (UDM_Attribute attribute), 84
LJ ——udm_hook
ucs_registerLDAPExtension command
line option, 35
——udm_module

doc/developer—-reference/joiHSeiedshpihabExtension command

template

config registry, 1518

module, 18

multi file, 16

script, 17

single file, 15
template (in module udm_modules_globals), 75
translation, 138

UCR, see config registry

ucr (in module high_level), 52

UCS source code
UCS source:

30 line option, 35
UCS source: doc/developer—referencePgﬁs@@ﬁ§}ﬁ&%ﬁ%%4@'ﬂwamﬂmm%84
57 udm_modules (UDM_Objects attribute), 85
UCS source: doc/developer—reference ATsFOilespglopals
61 module, 72
UCS source: doc/developer-reference PPMsObier s builtin glass), 85
58 ——udm_syntax
UCS source: doc/developer-reference/lidteheroElishRbAPExtension command
56 line option, 35
UCS source: doc/developer-reference PRkefeednanggement gonsole
4 ——umcmessagecatalog
UCS source: doc/developer-reference/uct)dostegisterlDAPExtension command
24 line option, 36
UCS source: doc/developer-reference/adPAsegdssration
23 ucs_registerLDAPExtension command

UCS source: doc/developer-reference/ucr/sekiigepption, 36
25 Univention Management Console, see man-

UCS source: manage-— agement console

ment/univention—directory—listeng¥;ggg%ﬁggsaggmﬁ@%§zﬂgEgﬁéyipy,

47 univention.admin.hook

UCS source: manage- module, 95
ment/univention-directory-1listenBPPakgmis¢ BRI st ener module_template.py,
47,55 updater

UCS source: packag- postup, 143

ing/univention—directory—manager—mo&ﬁf@¥éigﬁpleL

77. 83 repositories, 143
ucs/web/overview/entries/admin/PACK— scripts, 143

AGE/OPTION, 127 System update,]43

ucs/web/overview/entries/ser— upgrade, see updater
vice /PACKAGE /OP TION, 127 Use_obj ects (UDM_ObJ@CtS attribute), 85

ucs_registerLDAPExtension command \/
line option
--acl, 35 value (LDAP_Search.UDM_API attribute), 87
——icon, 36 value (Python_API attribute), 86
-—-messagecatalog, 36 VERSION, 33
——name, 35 version/patchlevel, 143

Index 173

Univention Developer Reference, Release 5.0-10

version/version, 143

viewonly (LDAP_Search.UDM_API attribute), 87
viewonly (Python_API attribute), 86

virtual (in module udm_modules_globals), 75

W

web services, 127

174 Index

	Foreword
	Packaging software
	Introduction
	Preparations
	Example: Re-building an UCS package
	Checking out and building a UCS package

	Example: Creating a new UCS package
	Setup repository
	Building packages through the openSUSE Build Service

	Univention Config Registry
	Using UCR
	Using UCR from shell
	Using UCR from Python

	Configuration files
	debian/package.univention-config-registry
	File
	Multifile
	Script
	Module

	debian/package.univention-config-registry-variables
	debian/package.univention-config-registry-categories
	debian/package.univention-service

	UCR Template files conffiles/path/to/file
	Build integration
	Examples
	Minimal File example
	Multifile example
	Services

	Python 3 Migration

	Domain join
	Join scripts
	Join status
	Running join scripts
	Writing join scripts
	Basic join script example
	Join script exit codes
	Join script libraries
	joinscripthelper.lib
	join.sh
	ldap.sh

	Writing unjoin scripts

	Lightweight Directory Access Protocol (LDAP) in UCS
	Packaging LDAP Schema Extensions
	Packaging LDAP ACL Extensions
	LDAP secrets
	Password change

	Univention Directory Listener
	Structure of Listener Modules
	Handle LDAP objects
	Initialize and clean
	Suspend and resume

	High-level Listener modules API
	Low-level Listener module
	Listener tasks and examples
	Listener API example
	Basic example
	Rename and move
	Full example with packaging
	A little bit more object oriented

	Technical Details
	User-ID and Credentials
	Internal Cache
	univention-directory-listener-ctrl
	univention-directory-listener-dump
	univention-directory-listener-verify
	get_notifier_id.py

	Internal working
	LDAP Schema handling
	Python 3 migration

	Univention Directory Manager (UDM)
	UDM modules
	Overview
	Structure of a module
	Global variables
	Mandatory variables
	Optional arguments
	The Python class object
	The identify() and lookup() functions

	Example module
	Python code of the example module
	LDAP schema extension for the example module
	Installing the module
	Downloading the sample code

	UDM syntax
	UDM syntax override
	UDM LDAP search

	Package extended attributes
	Selection lists
	Static selections
	Dynamic selections

	Known issues
	Extended options
	Extended attribute hooks

	Package UDM hooks
	Package UDM extension modules
	Package UDM syntax extension
	UDM HTTP REST API
	Authentication
	API overview
	API clients
	API usage examples
	Create a user with a POST request
	Search for users with a GET request
	Modify a user with a PUT request
	Delete a user with a DELETE request

	API Error Codes

	UCS 5.0: Python 3 migration of modules and extensions
	Compatibility with UCS 4.4
	Default option
	Mapping functions
	Mapping encoding
	object.open() / object._post_unmap()
	object.has_key()
	identify()
	_ldap_modlist()
	lookup()
	Syntax classes
	Hooks

	Univention Management Console (UMC)
	Architecture
	Protocol HTTP for UMC
	UMC files
	debian/package.umc-modules
	UMC module declaration file

	Local system module
	Python API
	UMC module API (Python and JavaScript)
	XML definition
	Module definition
	Category definition

	Python module
	UMC store API

	Packaging

	Domain LDAP module
	Disabling a module
	Python 3 migration

	Web services
	Extending the overview page

	App Center
	Integration of external repositories
	Integrate with Univention Management Console
	Integrate with Univention Configuration Registry

	Translate UCS
	Translating a single Debian package
	Setup of univention-l10n-build
	Setup on a UCS machine
	Setup on a non-UCS machine

	UCS package translation workflow
	Prepare the source code
	Add and/or update supplementary files
	Run univention-l10n-build
	Translate

	Create a translation package for UCS
	Install needed tools
	Obtain a current checkout of the UCS Git repository
	Create translation package
	Edit translation files
	Update the translation package
	Build the translation package

	Editing translation files
	Editing translation entries
	Update meta information

	Univention Updater
	Separate repositories
	Updater scripts
	Digital signature

	Release update walk-through

	Single sign-on: Integrate a service provider into UCS
	Register new service provider through udm
	Get information required by the service provider
	Add direct login link to the UCS Portal page

	Miscellaneous
	Databases
	PostgreSQL
	MariaDB

	UCS lint
	Function libraries
	shell-univention-lib
	python-univention-lib

	Login access control
	Network packet filter
	Filter rules by Univention Configuration Registry
	Local filter rules through iptables commands
	Testing Univention Firewall settings

	Active Directory Connection custom mappings

	Appendix
	Bug reporting
	Debian packaging
	Prerequisites and preparation
	dh_make
	Debian control files
	debian/control
	debian/copyright
	debian/changelog
	debian/rules
	debian/preinst, debian/prerm, debian/postinst, debian/postrm

	Building
	Further reading

	Bibliography

	Bibliography
	Python Module Index
	Index

