
Guardian Manual 1.1
Release 1.1

Univention GmbH

Dec 22, 2023

The source of this document is licensed under GNU Affero General Public License v3.0 only.

https://spdx.org/licenses/AGPL-3.0-only.html

CONTENTS:

1 What is the Guardian? 1
1.1 Guardian apps . 1
1.2 What does the guardian do? . 2
1.3 Terminology . 3

2 Installation 7
2.1 Installation on a UCS primary node . 7
2.2 Installation on different UCS server roles . 9
2.3 Load balancing and multiple instances . 9

3 Configuration 11
3.1 Guardian Management API . 11
3.2 Guardian Authorization API . 13
3.3 Guardian Management UI . 16

4 Troubleshooting 17
4.1 Introduction . 17
4.2 Common issues . 17
4.3 First time installation and configuration . 18
4.4 Management UI . 18
4.5 Management API . 18
4.6 Debugging OPA decisions . 18
4.7 Authentication issues . 19

5 Management UI 21
5.1 General remarks . 21
5.2 Roles . 22
5.3 Capabilities of a role . 26
5.4 Namespaces . 32
5.5 Contexts . 35

6 Management API and Authorization API 41
6.1 Introduction . 41
6.2 Management API . 41
6.3 Authorization API . 43

7 Developer quick start 45
7.1 Management API . 45
7.2 Authorization API . 53

8 Limitations 59
8.1 Guardian Management API . 59
8.2 Guardian Authorization API . 59
8.3 Guardian Management UI . 60

i

9 Conditions Reference 61

10 Glossary 63

11 Changelogs 65
11.1 Authorization API . 65
11.2 Management API . 65
11.3 Management UI . 65
11.4 Guardian Manual . 66

12 Audience for this manual 67
12.1 Guardian administrators . 67
12.2 App infrastructure maintainers . 67
12.3 App developers . 68

Index 69

ii

CHAPTER

ONE

WHAT IS THE GUARDIAN?

The Guardian provides an authorization service for apps used with a UCS system. Authorization means confirmation
of a user’s access to some resource, for example the ability to modify a user’s data, export data from a system, or
view a web page. It is important to note that the Guardian itself only informs about the results of any authorization
request. The app has to enforce the result of any authorization itself.

Note: The Guardian does not provide authentication, confirmation that a user is who they claim to be. You can use
Keycloak or another service to have a user log in, i.e., authenticate, and then use the Guardian to find out what the
user is allowed to do.

1.1 Guardian apps

The authorization service consists of three applications that are installed from the UCS App Center:

• Management API

• Authorization API

• Management UI

At a minimum, you must install the Management API and the Authorization API. The Management UI provides an
optional user-friendly graphical interface for the Management API. See the chapter on Installation (page 7) for more
information.

1.1.1 Management API

The Management API is a REST1 interface for app developers to configure aspects of the Guardian that their apps
need in order to handle authorization. Apps should run a join script2 during installation that hits the Management
API to register with the Guardian and set up any roles, permissions, and other elements that the app needs.

This API is intended for technical audiences such as app developers. For a more user-friendly interface to manage
the Guardian, please use the Management UI (page 21).

Please read the chapter on the Management API and Authorization API (page 41) for more information.
1 https://en.wikipedia.org/wiki/REST
2 https://docs.software-univention.de/developer-reference/latest/en/join/write-join.html#join-write

1

https://en.wikipedia.org/wiki/REST
https://docs.software-univention.de/developer-reference/latest/en/join/write-join.html#join-write

Guardian Manual 1.1, Release 1.1

1.1.2 Authorization API

The Authorization API is a REST3 interface that allows apps to check whether a given user or other actor has access
to a resource that the app provides. The API can answer the following questions:

1. Given a user and a target resource, what is the user allowed to do?

2. Given a user, a target resource, and a proposed user behavior, is the user allowed to do that behavior?

This API is intended only for app developers. There is no user-friendly interface for the Authorization API.

Please read the chapter on the Management API and Authorization API (page 41) for more information.

1.1.3 Management UI

The Management UI is a user-friendly web interface that allows guardian admins and guardian app admins to con-
figure what users in their UCS system are allowed to do once an app has been installed.

Please read the chapter on the Management UI (page 21) for more information.

1.2 What does the guardian do?

Here is an example that illustrates how the Guardian works with each of the three Guardian applications:

ACME Corporation develops an application, Cake Express, which can be installed from the UCS App Center, and
which allows employees to order cakes for company events. ACME Corporation wants to allow administrators of
Cake Express to have some flexibility in who gets to order cakes, so they update Cake Express so it integrates with
the Guardian.

Alice works for Happy Employees, Inc. as the head IT person. When she installs Cake Express on a UCS System,
the join script4 for Cake Express does the following using the Management API :

1. Registers Cake Express as an app with the Guardian, using the name cake-express.

2. Creates a namespace called cakes that the app will use to store its roles and permissions for managing cakes.

3. Creates a permission in the cakes namespace that the app will check when people try to order cakes,
cake-express:cakes:can-order-cake.

4. Creates a role to assign to people, cake-express:cakes:cake-orderer.

5. Creates a role to assign to cakes, cake-express:cakes:birthday-cake.

At the same time the join script registers Cake Express as an app, the Guardian creates a special role to manage Cake
Express, cake-express:default:app-admin. Alice thinks that managing Cake Express in the Guardian
should be done by an HR person, so she assigns the cake-express:default:app-admin role to the HR
Manager, Bob, in UDM.

Bob can now log into the Management UI , where he is allowed to see and edit everything related to Cake Express in
the Guardian. He decides to create two capabilities:

• Everyone in the HR department has the role happy-employees:departments:hr, so everyone with
this role gets the permission cake-express:cakes:can-order-cake.

• For everyone not in the HR department, but who has the role cake-express:cakes:cake-or-
derer, they are also allowed to order cake, but not if the cake is a birthday cake with the role cake-ex-
press:cakes:birthday-cake, because only HR can order birthday cakes.

Bob asks Alice to give the cake-express:cakes:cake-orderer role to Carla, the CEO, in UDM. Now
Carla is allowed to order a cake, even though she’s not in the HR department.

3 https://en.wikipedia.org/wiki/REST
4 https://docs.software-univention.de/developer-reference/latest/en/join/write-join.html#join-write

2 Chapter 1. What is the Guardian?

https://en.wikipedia.org/wiki/REST
https://docs.software-univention.de/developer-reference/latest/en/join/write-join.html#join-write

Guardian Manual 1.1, Release 1.1

Carla then logs into Cake Express, where she tries to order an anniversary cake for Daniel, who has been at the com-
pany for 20 years. Cake Express sends information about Carla, including her role and the name of her department
and the type of cake, to theAuthorization API to ask if she has the permissioncake-express:cakes:can-or-
der-cake. The Authorization API checks the capability that Bob created and determines that yes, Carla has the
cake-express:cake:cake-orderer role and the cake is not a birthday cake, so she is allowed to order a
cake.

1.3 Terminology

This section covers some of the terminology used by the Guardian in more detail.

1.3.1 Guardian admin and Guardian app admin

Guardian admins and guardian app admins are the two kinds of people who can manage the Guardian.

Note: Technical Note

A guardian admin has the role guardian:builtin:super-admin. This means that in UCS applications that
have UDM integration, the user should have the guardianRole attribute include this string, i.e., guardian-
Role=guardian:builtin:super-admin.

Guardian admins can manage all aspects of the Guardian and integrated apps, including:

• Apps

• Namespaces

• Roles

• Permissions

• Conditions

• Capabilities

• Contexts

A guardian app admin has the ability to manage a single app that integrates with the Guardian.

Note: Technical Note

The role for an app admin comes in the format <app-name>:default:app-admin, with the <app-name>
replaced by the unique identifier for the app. In our Cake Express example above, the app admin for Cake express
has the role cake-express:default:app-admin. In UCS applications that have UDM integration, the
user should have theguardianRole attribute include this string, e.g., guardianRole=cake-express:de-
fault:app-admin.

App admins can manage all of the aspects of their respective app:

• Namespaces

• Roles

• Permissions

• Conditions

• Capabilities

• Contexts

1.3. Terminology 3

Guardian Manual 1.1, Release 1.1

Note: Even if the permissions granted by the app admin role allow for all aspects of an app to be administrated,
permissions and conditions cannot be managed with the Management UI . These types of object are intended to be
created and managed by the apps directly during the provisioning process. Within a UCS domain this would usually
happen during the join script.

1.3.2 App

An app is an application installed from the UCS App Center, or a third-party service that integrates with a UCS
system, that uses the Guardian to determine what an actor is allowed to do.

In order to use the Guardian, apps first must register themselves using the Management API and a unique identifier.
For example, the Cake Express app registered itself with the identifier cake-express. Everything in the Guardian
that is used by Cake Express will start with this identifier, such as the role cake-express:cakes:can-or-
der-cake.

1.3.3 Actor

An actor is a user or machine account that wants to do something in an app.

In the fictitious example above, Carla the CEO is an actor who wants to order a cake in Cake Express.

The Guardian does not manage actors. It is the responsibility of the app and app infrastructure maintainers to manage
actors.

1.3.4 Target

A target is a resource that the actor wants to access in an app.

When Carla ordered an anniversary cake from Cake Express, the anniversary cake was the target resource.

The Guardian does not manage targets. It is the responsibility of the app and app infrastructure maintainers to manage
targets.

1.3.5 Namespace

A namespace is a convenient categorization within an app for all aspects of the app, such as roles and permissions.

When Cake Express ran its join script at installation time, it created a namespace, cakes, to store everything else
it created. Later, if it wants to add some kind of user management feature, it might also add a namespace called
users. Apps also always have the default namespace, which is where the app-admin role for an app is always
located.

All objects in the guardian are namespaced. When referencing the cake-express:cakes:cake-orderer
role in Cake Express, the namespace is the second field of the role string, cakes.

4 Chapter 1. What is the Guardian?

Guardian Manual 1.1, Release 1.1

1.3.6 Role

A role is a string that you assign to a user, group, or other database object, in order to associate it with a capability,
either as an actor or as a target.

In the Cake Express example, Alice could assign the role cake-express:cakes:cake-orderer to any per-
son or even a machine account to let that actor order a cake. Cake Express, in its own internal database, might assign
the role cake-express:cakes:birthday-cake to distinguish between different kinds of cakes.

A role string always follows the format <app-name>:<namespace-name>:<role-name>.

The Guardian does not assign roles to users or objects. Instead, an app infrastructure maintainer is responsible for
assigning role strings to the guardianRole attribute in UDM, or an app developer must assign roles to objects in
their own internal database.

1.3.7 Permission

A permission is an action that an actor can take in an app.

In Cake Express, there is a permission cake-express:cakes:can-order-cake, that allows a user to order
a cake within the Cake Express app.

Permissions are strings that are recognized by the code in an app, and used to cause something to happen in the app.
Some other examples of fictitious permissions include:

• cake-express:orders:read-order: Allows a user to read all orders.

• cake-express:orders:export-orders: Allows a user to export all orders as an excel spreadsheet.

• cake-express:users:manage-email-notifications: Allows a user to manage the email no-
tifications that users receive from Cake Express.

Note: The Management UI does not have an interface to manage permissions. This can only be done in the Man-
agement API, and as such should only be managed by app developers.

While a guardian admin technically has the ability to create permissions, the app most likely won’t recognize the
permission and know what to do with it.

A permission is a required component of a capability.

1.3.8 Condition

A condition is a criterion under which a permission applies.

Cake Express might have a permission cake-express:cakes:can-add-candles that only applies if the
condition is met that the cake has the role cake-express:default:birthday-cake.

Note: TheManagement UI does not have an interface to manage conditions. This can only be done in the Manage-
ment API, and app developers are most likely to manage them.

While a guardian admin technically has the ability to create conditions, this requires knowledge of how to write Rego5
code.

A condition is an optional component of a capability.
5 https://www.openpolicyagent.org/docs/latest/policy-language/

1.3. Terminology 5

https://www.openpolicyagent.org/docs/latest/policy-language/

Guardian Manual 1.1, Release 1.1

1.3.9 Capability

Capabilities are one of the more complicated aspects of the Guardian to explain, but they are also the key to how the
Authorization API can answer the question of what a user or other actor is allowed to do in an app.

A capability is one or more permissions, optionally combined with one or more conditions that modify when the
permission applies. A capability is then assigned to a role to determine what an actor with that role is allowed to do.

The simplest capability consists of a single permission. In the Cake Express example, everyone with the
happy-employees:department:hr role is assigned a capability with a single permission, cake-ex-
press:cakes:can-order-cake.

A more complex capability might include a permission plus a condition. In the Cake Express example, everyone with
the cake-express:cakes:cake-orderer role has the permission cake-express:cakes:can-or-
der-cake, provided the condition that the target cake does not have the role cake-express:cakes:birth-
day-cake.

If there is more than one condition, the conditions are joined by a relation, eitherAND orOR.WithAND, all conditions
must apply: the user gets permissions if the target does not have the birthday cake role AND the target cake is not
marked as a “top-tier” style cake. With OR, any condition can apply: the user gets permissions if they made the cake
order OR the cake is an anniversary cake.

1.3.10 Context

A context is an additional tag that can be applied to a role, to make it only apply in certain circumstances.

For example, Happy Employees, Inc. has two different offices, London and Berlin. They have the party-planner role,
and Daniel is the party-planner for London and Erik is the party-planner for Berlin. ACME sets up a capability that
says that a party-planner can order a cake, but only for the office context where they are a party-planner. So Erik
can’t order a cake for London, and Daniel can’t order a cake for Berlin.

Not all apps support contexts. Please check with the app developer for your app, to see if they support contexts.

6 Chapter 1. What is the Guardian?

CHAPTER

TWO

INSTALLATION

2.1 Installation on a UCS primary node

The different components of the Guardian can be installed from the Univention App Center. A prerequisite for using
the Guardian is a working Keycloak installation in the UCS domain. How to install and configure Keycloak in a UCS
domain can be found here6.

To install all required components on a UCS primary node, run:

univention-app install \
guardian-management-api \
guardian-authorization-api \
guardian-management-ui

Most of the settings are configured automatically, but since this is a preview version, some manual configuration steps
remain.

KEYCLOAK_SECRET can be obtained by running the following command:

KEYCLOAK_SECRET=$(univention-keycloak oidc/rp secret --client-name guardian-cli |␣
→˓sed -n 2p | sed "s/.*'value': '\([[:alnum:]]*\)'.*/\1/")

Update settings for the Management UI :

univention-app configure guardian-management-api --set \
"guardian-management-api/oauth/keycloak-client-secret=$KEYCLOAK_SECRET"

Then set your USERNAME and PASSWORD to credentials for a user which has access to the UDM REST API:

USERNAME=Administrator
PASSWORD=password

Then update settings for the Guardian Authorization API :

univention-app configure guardian-authorization-api --set \
"guardian-authorization-api/udm_data/username=$USERNAME" \
"guardian-authorization-api/udm_data/password=$PASSWORD"

To be able to use the Guardian Management UI, it is also necessary to give the user the required permissions. For this
the Management UI already utilizes the Guardian. This means the user needs to get the proper guardianRole
assigned. To make the Administrator account the Guardian super user, who has all privileges, execute:

udm users/user modify --dn uid=Administrator,cn=users,$(ucr get ldap/base) \
--set guardianRole=guardian:builtin:super-admin

With these steps the Guardian setup is complete and the Management UI should be available from the Univention
Portal.

6 https://docs.software-univention.de/keycloak-app/latest/index.html

7

https://docs.software-univention.de/keycloak-app/latest/index.html

Guardian Manual 1.1, Release 1.1

2.1.1 Configuring Keycloak for join scripts

When installing an app that uses the Guardian, it will need a special Keycloak client that is configured specifically for
join scripts.

Run the following command on the server with the Guardian Management API installed:

GUARDIAN_SERVER="$(hostname).$(ucr get domainname)"
univention-keycloak oidc/rp create \

--name guardian-scripts \
--app-url https://$GUARDIAN_SERVER \
--redirect-uri "https://$GUARDIAN_SERVER/univention/guardian/*" \
--add-audience-mapper guardian-scripts

Then configure the new client using the Keycloak web interface. Choose ucs from the realm drop-down list at the top
of the left navigation bar. Then click on Clients in the left navigation bar, and choose guardian-scripts.

Configure password login for scripts and remove the client secret:

1. Go to the Settings tab.

2. Navigate to the Capability config section.

3. Turn Client authentication off.

4. Under Authentication flow, check the checkbox for Direct access grants.

Click the Save button at the bottom of the screen.

Configure the correct audience for the Guardian:

1. Go to the Client scopes tab.

2. Click on guardian-scopes-dedicated.

3. Choose Add mapper ‣ By configuration.

1. Select Audience.

2. For the Name, use guardian-audience.

3. For the Included Client Audience, choose guardian.

4. Choose Add mapper ‣ By configuration.

1. Select User Attribute.

2. For the Name, use dn.

3. For the User Attribute, use LDAP_ENTRY_DN.

4. For the Token Claim Name, use dn.

5. Turn Add to ID Token off.

6. Turn Add to userinfo off.

7. Verify that Add to access token is on.

Click the Save button at the bottom of the screen.

8 Chapter 2. Installation

Guardian Manual 1.1, Release 1.1

2.2 Installation on different UCS server roles

This setup assumes that all Guardian components are installed on the same host and that Keycloak as well as the
UDM REST API are running on that host as well. This is usually the UCS primary node. The Guardian supports the
installation of its components on any UCS server role as well as distributing the individual components on different
hosts. For that to work though, multiple settings regarding URLs for Keycloak, the UDMRESTAPI and the different
Guardian components themselves have to be configured manually. Please check the chapter Configuration for a full
reference of all the app settings.

2.3 Load balancing and multiple instances

The Guardian was developed with the capability of running multiple instances of each component in mind. It is
possible to deploy multiple instances of the Guardian Management UI and Guardian Authorization API apps in the
UCS domain without any problems, as long as they are properly configured.

The Management API should only be deployed once in any UCS domain due to the limitations mentioned in App
Center database limitations (page 59).

2.2. Installation on different UCS server roles 9

Guardian Manual 1.1, Release 1.1

10 Chapter 2. Installation

CHAPTER

THREE

CONFIGURATION

This chapter is a reference to all app settings of the Guardian divided by component. These settings can be configured
either via the univention-app command line interface or the Univention App center dialog for app settings.

To change the log level for the Management API for example, use the following command:

univention-app configure guardian-management-api --set \
"guardian-management-api/logging/level=ERROR"

If any of the settings are changed, the application is restarted automatically.

3.1 Guardian Management API

3.1.1 General

guardian-management-api/base_url

Defines
the base
URL of
the API.
If unset
the URL
is gener-
ated from
hostname
and do-
main name
of the
server the
API is in-
stalled
on. You
must not
specify
the proto-
col here
as this
is set in

guardian-management-api/protocol (page 11).

guardian-management-api/protocol

Defines the protocol of the API. Can be either http or https. Default is https.

11

Guardian Manual 1.1, Release 1.1

3.1.2 Logging

guardian-management-api/logging/structured

Can be either
True or False.
If set to True, the
logging output of
the Management
API is structured
as json data.

guardian-man-
agement-api/
logging/
level

Sets the log level
of the applica-
tion. It can be
one of DEBUG,
INFO, WARN-
ING, ERROR,
CRITICAL.

guardian-man-
agement-api/
logging/
format

This
set-
ting
de-
fines
the
for-
mat
of
the
log
out-
put if

guardian-management-api/logging/structured (page 12) is set to False. The documenta-
tion for configuring the log format can be found here7.

3.1.3 CORS

guardian-management-api/cors/allowed-origins

Comma-separated
list of hosts
that are al-
lowed to make
cross-origin
resource sharing
(CORS) requests

7 https://loguru.readthedocs.io/en/stable/api/logger.html

12 Chapter 3. Configuration

https://loguru.readthedocs.io/en/stable/api/logger.html

Guardian Manual 1.1, Release 1.1

to the server.
At a minimum,
this must include
the host of the
Management UI ,
if installed on a
different server.

3.1.4 Au-
thentica-
tion

guardian-man-
age-
ment-api/
oauth/
keycloak-uri

Base URI of the Keycloak server for authentication. If unset the application tries to derive the
Keycloak URI from the UCR variable keycloak/server/sso/fqdn or fall back to the
domain name of the host the application is installed on.

guardian-management-api/oauth/keycloak-client-secret

Keycloak client secret.

3.1.5 Authorization

guardian-management-api/authorization_api_url

URL to the Au-
thorization API. If
not set, the URL
is generated from
hostname and do-
main name of the
server the applica-
tion is installed on.

3.2 Guardian
Authoriza-
tion API

guardian-au-
thoriza-
tion-api/
bundle_server_url

URL to the Man-
agement API from

which to fetch the policy data for decision making. If not set, the URL is generated from hostname and domain name
of the server the application is installed on.

3.2. Guardian Authorization API 13

Guardian Manual 1.1, Release 1.1

3.2.1 Logging

guardian-authorization-api/logging/structured

Can be ei-
ther True or
False. If set
to True, the
logging output
of the Autho-
rization API is
structured as
json data.

guardian-au-
thoriza-
tion-api/
logging/
level

Sets the log level
of the applica-
tion. It can be
one of DEBUG,
INFO, WARN-
ING, ERROR,
CRITICAL.

guardian-au-
thoriza-
tion-api/
logging/
format

This
set-
ting
de-
fines
the
for-
mat of
the log
out-
put if

guardian-authorization-api/logging/structured (page 14) is set to False. The docu-
mentation for configuring the log format can be found here8.

8 https://loguru.readthedocs.io/en/stable/api/logger.html

14 Chapter 3. Configuration

https://loguru.readthedocs.io/en/stable/api/logger.html

Guardian Manual 1.1, Release 1.1

3.2.2 CORS

guardian-authorization-api/cors/allowed-origins

Comma-separated
list of hosts
that are al-
lowed to make
cross-origin
resource sharing
(CORS) requests
to the server.
You may need to
add third-party
apps to this
list, if they
need to use the
Guardian.

3.2.3 UDM

guardian-au-
thoriza-
tion-api/
udm_data/
url

The URL of the UDM REST API for data queries.

guardian-authorization-api/udm_data/username

Username for authentication against the UDM REST API.

guardian-authorization-api/udm_data/password

Password for authentication against the UDM REST API.

3.2.4 Authentication

guardian-authorization-api/oauth/keycloak-uri

Base URI of the
Keycloak server
for authentication.
If unset the ap-
plication tries to
derive the Key-
cloak URI from
the UCR variable
keycloak/
server/sso/
fqdn or fall back
to the domain
name of the host
the application is
installed on.

3.2. Guardian Authorization API 15

Guardian Manual 1.1, Release 1.1

3.3 Guardian
Manage-

ment UI

guardian-management-ui/management-api-url

URL for the
Guardian Man-
agement API. If
not set, the URL
is generated from
hostname and
domain name.

3.3.1 Au-
thentication

guardian-man-
agement-ui/
oauth/
keycloak-uri

Base URI of the
Keycloak server for
authentication. If
unset the applica-

tion tries to derive the Keycloak URI from the UCR variable keycloak/server/sso/fqdn or fall back to
the domain name of the host the application is installed on.

16 Chapter 3. Configuration

CHAPTER

FOUR

TROUBLESHOOTING

4.1 Introduction

This chapter provides a guide to troubleshooting the Univention Guardian. It assumes that you have a basic under-
standing of the Guardian and its components, as well as familiarity with command-line tools like Docker.

4.2 Common issues

Before attempting any other solutions, please follow these steps:

1. Restart all Guardian services.

2. Check connectivity between the Guardian components.

Here are some examples of how to do this:

• Connectivity Management API -> Authorization API :

Listing 4.1: Check the connectivity between the Management API and the
Authorization API

univention-app shell guardian-authorization-api
apt update; apt install -y curl
curl $GUARDIAN__MANAGEMENT__ADAPTER__AUTHORIZATION_API_URL/openapi.json -I
check for 200 OK

• Connectivity OPA -> Management API:

Listing 4.2: Check the connectivity between the OPA and theManagement
API

univention-app shell -s opa guardian-authorization-api
apt update; apt install -y curl
check connection to management API
curl -I $OPA_GUARDIAN_MANAGEMENT_URL/openapi.json # check for 200 OK
check if the bundle can be retrieved
curl -I $OPA_GUARDIAN_MANAGEMENT_URL/$OPA_POLICY_BUNDLE # check for 200 OK

• Connectivity UI -> Management API: Use the developer tools in your browser to check the network tab for
errors.

If any of these steps fail, there could be several reasons:

1. The Guardian component that you’re trying to reach might not be running or couldn’t start properly. Check
the logs of the component and restart it if necessary.

2. The Guardian component that you’re trying to reach is running but not reachable from the component you’re
currently on. This could be due to faulty configuration or connectivity problems. Check the environment

17

Guardian Manual 1.1, Release 1.1

variables inside the container with the command env and check the connectivity between the containers with
the command ping.

3. The Guardian component that you’re trying to reach is running and reachable but doesn’t respond to the request.
This could be the case if the Management API is indeed running but the OPA bundle is not generated. Check
the logs of the component and restart it if necessary.

4.3 First time installation and configuration

Make sure that you complete all steps of the configuration (page 11) process. Services might not work properly if the
configuration is not complete.

4.4 Management UI

If the Guardian UI loads but with an error, check the network and console tabs of your browser’s developer tools.
There you can see if the UI could connect to the Management API and if the Management API responded with an
error. If the Management API responded with an error, check the logs of the Management API.

4.5 Management API

4.5.1 Not authorized to access the Authorization API

If in the Management API logs you see the following error: ERROR | Unsuccessful response from
the Authorization API: {'Detail': 'Not Authorized'}, then the Management API could not
authorize itself to the Authorization API. For more information, check the logs of the Authorization API. This can
happen if the client secret is not configured for the Management API or is wrong.

4.6 Debugging OPA decisions

The OPA decisions can’t be easily debugged at the moment. However, there are some ways to make sure everything
is working as expected:

1. OPA fetches the bundle from the Management API. The bundle contains the policies and the data that OPA
needs to make decisions. The bundle is generated by the Management API from its database.

2. If OPA cannot fetch the bundle, it will show it in its logs. Whenever there’s an update in the Management API,
the bundle is regenerated and OPA will fetch it again and log it.

3. To inspect the contents of the bundle, use the following commands:

Listing 4.3: Inspect OPA bundle contents

univention-app shell guardian-management-api
apt update; apt install -y jq
jq '.' /guardian_service_dir/bundle_server/build/GuardianDataBundle/guardian/
→˓mapping/data.json

There you can see what permissions get assigned to which roles under which conditions.

18 Chapter 4. Troubleshooting

Guardian Manual 1.1, Release 1.1

4.7 Authentication issues

If you cannot log in to the Guardian UI or to any of the Swagger UIs for the Management API or the Authorization
API, make sure that the Keycloak server is reachable. You can check the logs of the Keycloak container with the
following command:

Listing 4.4: Check Keycloak logs

univention-app logs keycloak

The most common issues are invalid redirect URLs and clock issues.

For the redirect URL, make sure that the URL is correct. You can check the configuration of the Key-
cloak server at the following URL: https://ucs-sso-ng.school.test/admin/master/console/
#/ucs/clients. Make sure that the redirect URL matches the URL of the Guardian UI for the guardian-ui
client, including the scheme (e.g., https://).

For clock issues, a small difference between the clock of the Keycloak server and the clock of the Management
API or the Authorization API can cause authentication issues. If this is the case, you will see it in the logs of the
Management API or the Authorization API. Look for: WARNING | Invalid Token: "The token is
not yet valid (iat)".

4.7. Authentication issues 19

Guardian Manual 1.1, Release 1.1

20 Chapter 4. Troubleshooting

CHAPTER

FIVE

MANAGEMENT UI

This chapter is geared towardsGuardian administrators who want to manage roles and related objects which can grant
permissions to users.

The GuardianManagement UI app provides a web interface to manage some of the features of the REST API of the
Guardian Management API app. The following sections describe which functions can be performed with the web
interface.

You can access the Guardian Management UI under https://[Domainname]/univention/
guardian/management-ui for the Domainname where the Guardian Management UI app is in-
stalled. When installing the app, a portal entry is created in the Administration category of the default domain
portal (cn=domain,cn=portal,cn=portals,cn=univention,$ldap_base). With the default con-
figuration, a user who wants to use the Guardian Management UI as a guardian admin needs the role
guardian:builtin:super-admin.

For a detailed explanation on what roles, capabilities, namespaces and contexts are, refer to the section about termi-
nology (page 3).

5.1 General remarks

After you entered the Guardian Management UI, you will see a navigation bar with the entries ROLES,
NAMESPACES and CONTEXTS, a search bar with filters and a table.

Fig. 5.1: The front page of the Guardian Management UI.

There are some differences, but you can view and manage the object types role, namespace, and context by navigating
between them with the navigation bar as described in the following sections. The management of capabilities is done
while editing a role.

21

Guardian Manual 1.1, Release 1.1

Note: The apps in theApp box can only bemanaged via the RESTAPI provided by the Guardian Management
API app. Refer to the developer quick start documentation (page 45) if you need to integrate an app with the Guardian.

In the search view for one of the object types, you can filter by app and namespace, with the exception of namespaces
themselves, which can only be filtered by app.

Note: At the moment it is not possible to include properties of an object, such as its Display Name, in the search
criteria.

5.2 Roles

The Guardian Management UI can be used to manage roles. A role contains capabilities and is defined within
the scope of an app and a namespace. From the role and its capabilities, permissions are derived. For more informa-
tion about the fundamental concepts, refer to the section about terminology (page 3).

5.2.1 Create a new role

To create a new role first open the Guardian Management UI and click on ROLES in the navigation menu.

Fig. 5.2: Link to the roles page.

Then click on the + ADD button to open the page to create a new role.

The page to create a new role looks like this:

Fill out all the necessary fields and click on the CREATE ROLE button to create the role. A pop-up will be shown
which confirms the creation by displaying the role name.

Note: The selectable options for the Namespace box depend on the selected app in the App box. You have to select
an app first before you can select a namespace. If you selected an app and still don’t see any selectable namespaces
that means that there are no namespaces for that app. Refer to the section about creating namespaces (page 32).

Note: Capabilities for a role can only be managed on existing roles. To add capabilities to the role you are currently
creating first create the role with the CREATE ROLE button and then manage capabilities as described in Capabilities

22 Chapter 5. Management UI

Guardian Manual 1.1, Release 1.1

Fig. 5.3: Click + ADD to create a new role.

Fig. 5.4: Page to create a new role.

5.2. Roles 23

Guardian Manual 1.1, Release 1.1

of a role (page 26).

5.2.2 Listing and searching roles

To list existing roles open the “Guardian Management UI” and click on ROLES in the navigation menu.

Fig. 5.5: Link to the “Roles” page.

On this page you can search for existing roles by clicking the SEARCH button. The results will be shown below that
button. The search can be narrowed down by selecting a specific app in the App box, and a namespace of the selected
app in the Namespace box.

Fig. 5.6: Form elements for the search of roles.

Note: The namespaces for the Namespace box can be managed as described in Namespaces (page 32).

24 Chapter 5. Management UI

Guardian Manual 1.1, Release 1.1

5.2.3 Editing existing roles

To edit a role, follow the steps in Listing and searching roles (page 24) to list them and then click on the name of the
role you want to edit.

Fig. 5.7: Edit button for listed roles.

The role editing is split into two pages.

The first page is to edit the direct properties of the role and is the first page you see when opening a role. This page
can be accessed by clicking ROLE in the navigation menu. Here you can edit the fields you want to change and click
on SAVE to save the changes.

Fig. 5.8: View and edit page of an existing role.

The second page is to manage the capabilities of the current role. This page can be visited by clicking on CAPA-
BILITES in the navigation menu.

Here you can list all capabilities of the role you are currently editing and manage them. You can also create new
capabilities for that role or delete existing ones. For more details on capabilities see the section: Capabilities of a role

5.2. Roles 25

Guardian Manual 1.1, Release 1.1

Fig. 5.9: Link to the “Capabilities” page of an existing role.

(page 26).

5.2.4 Deleting roles

Deleting roles is not possible at the moment. Neither through the web-interface nor the REST API.

5.3 Capabilities of a role

Capabilities serve as the means to manage the permissions the role will grant to the user it is attached to.

Each capability object can define one ore more permissions it will grant. These permissions can only be selected for
a specific app and namespace. If you want to grant permissions for different apps and/or namespaces you have to
create multiple capability objects.

Inside an capability object you can also add conditions that influence whether the permissions are actually granted.

The capabilities work on a whitelist principle and do not collide.

Note: Capabilities can only be managed on existing roles.

If you are creating a new role and want to manage its capabilities, first create the role and then edit the role to manage
its capabilities.

5.3.1 Create new capability for a role

To add a capability for a role, first click on CAPABILITES in the navigation menu while editing a role. See Editing
existing roles (page 25) for more details on editing a role.

Then click on the + ADD button to open the page to create a new capability.

The page to create a new capability looks like this:

To create the capability fill out all the necessary fields and then click the CREATE CAPABILITY button. A pop-up
will be shown which confirms the creation by displaying the capability name.

Three noteworthy fields are the list of Permissions, the list of Conditions and the Relation.

Permissions
In the Permissions list you can edit all permissions the capability will grant if the conditions in the Conditions

26 Chapter 5. Management UI

Guardian Manual 1.1, Release 1.1

Fig. 5.10: Click + ADD to create a new capability.

Fig. 5.11: Page to create a new capability.

5.3. Capabilities of a role 27

Guardian Manual 1.1, Release 1.1

list are met. The available permissions are based on the selected app in the App box and namespace in the
Namespace box. You cannot select any permissions before filling out both of these fields.

Note: If both the App box and Namespace box are filled out, and you still cannot select permissions, this means that
no permissions exist for that app and namespace.

Conditions
In the Conditions list you can edit all the conditions that should be checked before the permissions in the
Permissions list are granted. Some conditions require additional parameters. You can look up more about
these conditions in chapter Conditions Reference (page 61). Additional fields will be shown underneath them
once selected.

Fig. 5.12: Condition with extra parameters.

Note: See Conditions Reference (page 61) for an explanation of the pre-existing conditions.

Relation
The value of the Relation box describes how the Guardian Authorization API will check conditions
during authorization. AND means all conditions must be met and OR means only 1 condition must be met.

5.3.2 Listing and searching capabilities of a role

To list capabilities of a role click on CAPABILITES in the navigation menu while editing a role. See Editing existing
roles (page 25) for more details on editing a role.

On this page you can search for capabilities of the role you are currently editing by clicking the SEARCH button. The
results will be shown below that button. The search can be narrowed down by selecting a specific app in the App box,
and a namespace of the selected app in the Namespace box.

Note: The namespaces for the Namespace box can be managed as described in Namespaces (page 32).

28 Chapter 5. Management UI

Guardian Manual 1.1, Release 1.1

Fig. 5.13: Form elements for the search of capabilities.

5.3.3 Edit a capability of a role

To edit a capability of a role, follow the steps in Listing and searching capabilities of a role (page 28) to list them and
then click on the name of the capability you want to edit.

Fig. 5.14: Edit button for listed capabilities.

The page to edit the clicked capability looks like this:

The three noteworthy fields you can edit are the list of Conditions, the Relation and the list of Permissions.

Permissions
In the Permissions list you can edit all permissions the capability will grant if the conditions in the Conditions
list are met.

Conditions
In the Conditions list you can edit all the conditions that should be checked before the permissions in the
Permissions list are granted. Some conditions require additional parameters. Additional fields will be shown
underneath them once selected.

5.3. Capabilities of a role 29

Guardian Manual 1.1, Release 1.1

Fig. 5.15: View and edit page of an existing capability.

Fig. 5.16: Condition with extra parameters.

30 Chapter 5. Management UI

Guardian Manual 1.1, Release 1.1

Note: See Conditions Reference (page 61) for an explanation of the pre-existing conditions.

Relation
The value of the Relation box describes in which manner the selected conditions of the Conditions should be
checked. AND means all conditions have to be met, OR means only 1 condition has to be met.

5.3.4 Delete capabilities of a role

To delete capabilities, first click on CAPABILITES in the navigation menu while editing a role. See Editing existing
roles (page 25) for more details on editing a role.

Search and select all the capabilities you want to delete, then click the DELETE button.

Fig. 5.17: Deletion of capabilities.

5.3. Capabilities of a role 31

Guardian Manual 1.1, Release 1.1

5.4 Namespaces

A namespace is a means to categorize roles and permissions. With the Guardian Management UI namespaces
can be created, edited, searched and viewed. For more information about namespaces refer to the section about
Guardian terminology (page 3).

5.4.1 Create a new namespace

To create a new namespace first open the Guardian Management UI and click on NAMESPACES in the navi-
gation menu.

Fig. 5.18: Link to the “Namespaces” page.

Then click on the + ADD button to open the page to create a new namespace.

Fig. 5.19: Click + ADD to create a new namespace.

The page to create a new namespace looks like this:

Fill out all the necessary fields and click on the CREATE NAMESPACE button to create the namespace. A pop-up
will be shown which confirms the creation by displaying the namespace name.

32 Chapter 5. Management UI

Guardian Manual 1.1, Release 1.1

Fig. 5.20: Page to create a new namespace.

5.4.2 Listing and searching namespaces

To list existing namespaces open the Guardian Management UI and click on NAMESPACES in the navigation
menu.

Fig. 5.21: Link to the “Namespaces” page.

On this page you can search for existing namespaces by clicking the SEARCH button. The results will be shown below
that button. The search can be narrowed down by selecting a specific app in the App box.

5.4.3 Editing existing namespaces

To edit a namespaces, follow the steps in Listing and searching namespaces (page 33) to list them and then click on
the name of the namespace you want to edit.

The page to edit the namespace you clicked looks like this:

5.4. Namespaces 33

Guardian Manual 1.1, Release 1.1

Fig. 5.22: Form elements for the search of namespaces.

Fig. 5.23: Edit button for listed namespaces.

34 Chapter 5. Management UI

Guardian Manual 1.1, Release 1.1

Fig. 5.24: View and edit page of an existing namespace.

5.4.4 Deleting namespaces

Deleting namespaces is not possible at the moment. Neither through the web-interface nor the REST API.

5.5 Contexts

A context is an additional tag that can be applied to a role, to make it only apply in certain circumstances. With
the Guardian Management UI you can create, edit, search and view a context. For more information about
contexts refer to the section about Guardian terminology (page 3).

5.5.1 Create a new context

To create a new context first open the Guardian Management UI and click on CONTEXTS in the navigation
menu.

Fig. 5.25: Link to the “Namespaces” page.

Then click on the ADD button to open the page to create a new context.

The page to create a new context looks like this:

Fill out all the necessary fields and click on the CREATE CONTEXT button to create the context. A pop-up will be
shown which confirms the creation by displaying the context name.

5.5. Contexts 35

Guardian Manual 1.1, Release 1.1

Fig. 5.26: Click + ADD to create a new context.

Fig. 5.27: Page to create a new context.

36 Chapter 5. Management UI

Guardian Manual 1.1, Release 1.1

5.5.2 Listing and searching contexts

To list existing contexts open the Guardian Management UI and click on CONTEXTS in the navigation menu.

Fig. 5.28: Link to the “Contexts” page.

On this page you can search for existing contexts by clicking the SEARCH button. The results will be shown below
that button. The search can be narrowed down by selecting a specific app in the App box, and a namespace of the
selected app in the Namespace box.

Fig. 5.29: Form elements for the search of contexts.

Note: The namespaces for the Namespace box can be managed as described in Namespaces (page 32).

5.5.3 Editing existing contexts

To edit a context, follow the steps in Listing and searching contexts (page 37) to list them and then click on the name
of the context you want to edit.

The page to edit the context you clicked looks like this:

5.5. Contexts 37

Guardian Manual 1.1, Release 1.1

Fig. 5.30: Edit button for listed contexts.

Fig. 5.31: View and edit page of an existing context.

38 Chapter 5. Management UI

Guardian Manual 1.1, Release 1.1

5.5.4 Deleting contexts

Deleting contexts is not possible at the moment. Neither through the web-interface nor the REST API.

5.5. Contexts 39

Guardian Manual 1.1, Release 1.1

40 Chapter 5. Management UI

CHAPTER

SIX

MANAGEMENT API AND AUTHORIZATION API

Note: This is a highly technical topic, and is primarily geared towards app developers who want to integrate an
app with the Guardian. Familiarity with using the command line and working with an HTTP API, is necessary to
understand this chapter.

6.1 Introduction

The Management API and Authorization API are the two REST9 APIs10 for the Guardian.

Please read the Developer quick start (page 45) for concrete examples of using the APIs.

6.2 Management API

TheManagement API is a general-purpose CRUD11 interface for managing Guardian objects. When installing a new
app that integrates with the Guardian, the join script12 must register the app and create any new Guardian elements
that it needs, using this API.

Once the join script is complete, the app has no more need to contact the Management API. However, guardian
admins and guardian app admins may use this API to modify roles and capabilities after installing the app.

6.2.1 API documentation

Swagger documentation for the API is located at /guardian/management/docs on the server where theMan-
agement API is installed.

The API requires authentication. Click the Authorize button at the top of the page. The default client does not require
a client_secret. When logging in, please use the credentials of either a guardian admin or a guardian app
admin.

Note: Only the capabilities have a DELETE endpoint. Please see the chapter on Limitations (page 59) for more
information.

9 https://en.wikipedia.org/wiki/REST
10 https://en.wikipedia.org/wiki/API
11 https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
12 https://docs.software-univention.de/developer-reference/latest/en/join/write-join.html#join-write

41

https://en.wikipedia.org/wiki/REST
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://docs.software-univention.de/developer-reference/latest/en/join/write-join.html#join-write

Guardian Manual 1.1, Release 1.1

6.2.2 Guardian naming conventions

When creating a new object in the Management API , the name for the object should always be lower-case ASCII
alphanumeric, with hyphens or underscores to separate words.

For example, if you want to create a role for users who manage a pet store, you might name the role
pet-store-manager.

With the exception of apps and namespaces themselves, all objects belong to a namespace. We often represent the
full name of an object as a three-part string, with each section separated by colons:

<app-name>:<namespace-name>:<object-name>

For example, if the pet-store-manager role mentioned above belongs to the namespace stores
for the app inventory-manager, then the fully namespaced role is inventiory-man-
ager:stores:pet-store-manager.

6.2.3 Registering an app

Before an app can use theManagement API , it needs to register itself at the /guardian/management/apps/
register endpoint.

Registration looks like:

MANAGEMENT_SERVER="$(hostname).$(ucr get domainname)/guardian/management"

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $keycloak_token" \
-d '{"name":"my-app", "display_name":"My App"}' \
$MANAGEMENT_SERVER/apps/register

Note: There is another endpoint, /guardian/management/apps which will also create a new app. However,
the register endpoint also does additional setup for the app, such as creating a guardian app admin role that can
be used to manage the app.

Unless you know what you are doing, please avoid the /guardian/management/apps endpoint.

After registration, an app must at the bare minimum register the permissions that it needs. However, other Guardian
objects are optional and may be manually created by a guardian app admin later.

6.2.4 Conditions

When constructing a capability, the list of available conditions is available with a GET to the /guardian/
management/conditions endpoint. Each condition provides a documentation string and a list of pa-
rameters it needs.

Please read the chapter on Conditions Reference (page 61) for more information on Guardian’s built-in conditions.

If the Guardian does not provide a condition that you need, you can create it through the /guardian/
management/conditions/{app-name}/{namespace-name} endpoint. This requires a knowledge of
Rego13, and the code must be base64 encoded when submitting it to the Guardian.

Please see Registering custom conditions (page 51) in the Developer quick start (page 45) guide.
13 https://www.openpolicyagent.org/docs/latest/policy-language/

42 Chapter 6. Management API and Authorization API

https://www.openpolicyagent.org/docs/latest/policy-language/

Guardian Manual 1.1, Release 1.1

6.2.5 Contexts

Contexts are a special feature of the Guardian that allows guardian admins to tell apps about where a role applies.

For example, if Happy Employees installs the Cake Express app, Happy Employees can create a london context
and a berlin context, which it includes with the cake-express:cakes:cake-orderer role. Happy Em-
ployees can then create a capability where users can only order cakes for people in the same context.

Some of the built-in Guardian conditions explicitly support contexts, such as:

• target_has_same_context (page 62)

• target_has_role_in_same_context (page 62)

• target_does_not_have_role_in_same_context (page 61)

An app must explicitly support contexts and send them as part of requests to the Authorization API . in order to use
contexts within a capability. Apps must specify in their documentation whether or not they support contexts.

6.3 Authorization API

The Authorization API helps an app determine whether an actor is authorized to perform a given action within the
app.

6.3.1 API documentation

Swagger documentation for the API is located at /guardian/authorization/docs on the server where the
Authorization API is installed.

The API requires authentication. Click the Authorize button at the top of the page. The default client does not require
a client_secret.

6.3.2 Endpoint overview

There are four primary endpoints in the Authorization API :

• /guardian/authorization/permissions

• /guardian/authorization/permissions/with-lookup

• /guardian/authorization/permissions/check

• /guardian/authorization/permissions/check/with-lookup

The first two endpoints answer the question “What are all the permissions an actor has?”.

The second two endpoints answer the question “Does the user have a specific set of permissions?”. You must supply
a list of permissions that you want to check.

In both cases, you must supply an actor, and you may optionally supply targets that are used to answer these questions.

6.3. Authorization API 43

Guardian Manual 1.1, Release 1.1

About with-lookup endpoints

Some apps maintain all their own data in regards to actors and targets. This means that they do not need access to
UDM14 in order to check capabilities. The examples in the Developer quick start (page 45) all use endpoints without
lookup.

However, endpoints ending in with-lookup will search for the actor and targets in UDM and use the results in
checking capabilities. To use the UDM lookup feature, supply the LDAP dn as the id of the actor and targets.

You do not need to supply any attributes or roles in the request, if you use the with-lookup endpoints.

General permissions versus target permissions

The Authorization API endpoints allow an app to evaluate permissions for an actor.

A general permission is a permission that exists, regardless of whether there are any targets present in the API
request. When listing all permissions, you must set include_general_permissions to true in the request,
if you want to see these permissions. See the section on Listing all general permissions (page 53) in the Developer
quick start (page 45) guide for an example.

Target permissions require one or more targets to be present in the targets field of the request. See the section on
Listing all target permissions (page 54) in the Developer quick start (page 45) guide for an example.

Old target versus new target

When sending targets to the Authorization API , a target consists of an old_target and a new_target. The
old_target represents the existing state of the target, and the new_target represents the future state of the
target.

For example, a condition could check that the new_target user password is not the same as the old_target
password.

If the app doesn’t care about an old and new state of the target, then only the old_target is required.

All built-in conditions (page 61) check the old_target.

6.3.3 Custom endpoints

The Authorization API has an experimental endpoint, /guardian/authorization/{app-name}/
{namespace-name}/{endpoint-name}, that allows an app to define its own customRego15 code to evaluate
permissions.

The endpoint does not have UDM access, so the app must supply all of its own data for actors and targets.

This endpoint is not implemented yet, so please do not use it.

14 https://docs.software-univention.de/developer-reference/latest/en/udm/index.html
15 https://www.openpolicyagent.org/docs/latest/policy-language/

44 Chapter 6. Management API and Authorization API

https://docs.software-univention.de/developer-reference/latest/en/udm/index.html
https://www.openpolicyagent.org/docs/latest/policy-language/

CHAPTER

SEVEN

DEVELOPER QUICK START

Note: This is a highly technical topic, and is primarily geared towards app developers who want to integrate an app
with the Guardian. Familiarity with using the command line, working with an API, and writing code is necessary to
understand this chapter.

You should also be familiar with:

• Documentation for App Center Providers16

• Manual for Developers17

This section provides a walk-through of the steps necessary to integrate an app with the Guardian.

ACME Corporation is an app developer who creates Cake Express, which allows people to order cakes for company
events, and which can be installed from the Univention App Center. They want to integrate Cake Express with the
Guardian.

Note: The example scripts assume that:

• The app is installed on the same server as the Management API, and

• The app is installed on the same server as the Keycloak server.

If either of these two things is not true, you will need to find a way for the UCS app infrastructure maintainer to
communicate their locations to the script at run time.

7.1 Management API

7.1.1 Getting a Keycloak token

The first thing that ACMECorporation needs to do is to write a join script for their app. This app will need to interact
with theManagement API , and to do this the join script must get a token from Keycloak18 to authenticate all calls to
the API.

Here are the variables you need to get a token:

binduser=Administrator
bindpwd=password

CLIENT_ID=guardian-scripts

GUARDIAN_KEYCLOAK_URL=$(ucr get guardian-management-api/oauth/keycloak-uri)

(continues on next page)

16 https://docs.software-univention.de/app-center/latest/en/contents.html
17 https://docs.software-univention.de/developer-reference/latest/en/contents.html
18 https://docs.software-univention.de/keycloak-app/latest/#doc-entry

45

https://docs.software-univention.de/app-center/latest/en/contents.html
https://docs.software-univention.de/developer-reference/latest/en/contents.html
https://docs.software-univention.de/keycloak-app/latest/#doc-entry

Guardian Manual 1.1, Release 1.1

(continued from previous page)

SYSTEM_KEYCLOAK_URL=$(ucr get keycloak/server/sso/fqdn)
KEYCLOAK_BASE_URL=${GUARDIAN_KEYCLOAK_URL:-$SYSTEM_KEYCLOAK_URL}

KEYCLOAK_URL="$KEYCLOAK_BASE_URL/realms/ucs/protocol/openid-connect/token"
if [[! $KEYCLOAK_URL == http]]; then

KEYCLOAK_URL="https://$KEYCLOAK_URL"
fi

Note: In a typical join script, the --binduser, --bindpwd, and --bindpwdfile are available, which
specify an administrator user, and either a password or a file for parsing the password.

The example above assumes that the join script has already parsed these parameters into binduser and bindpwd
variables.

You can retrieve the token with:

token=$(curl -d "client_id=$CLIENT_ID" \
-d "username=$binduser" \
-d "password=$bindpwd" \
-d "grant_type=password" \
$KEYCLOAK_URL | sed 's/.*"access_token":"\([[:alnum:]\.-_-]*\)".*/\1/')

The token is referenced in all commands for subsequent sections. You may need to refresh the token several times,
if you are entering commands manually.

7.1.2 Registering an app

ACME Corporation now needs to let the Guardian know about its app, Cake Express. To do this, it needs to take the
token from the previous section (page 45) and make a request to the Management API .

MANAGEMENT_SERVER="$(hostname).$(ucr get domainname)/guardian/management"

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{"name":"cake-express", "display_name":"Cake Express"}' \
$MANAGEMENT_SERVER/apps/register

Note: All names in Guardian are lower-case ASCII alphanumeric with either underscores or hyphens. The encoding
for display names is only limited by the character support for the PostgreSQL database that Guardian uses.

ACME Corporation is now ready to start setting up the Guardian to work with Cake Express.

7.1.3 Registering namespaces

A namespace is just a handy categorization to store everything that an app wants to use in Guardian, like roles and
permissions.

Every app gets a default namespace to use. But ACME Corporation wants to manage three different facets of
Cake Express:

• cakes: Category for everything related to what is actually being sold.

• orders: Category for administration of orders.

• users: Category for managing other users of Cake Express.

46 Chapter 7. Developer quick start

Guardian Manual 1.1, Release 1.1

Later, ACME Corporation will create some roles in each of these namespaces for doing tasks in Cake Express.

Here is how ACME Corporation creates these namespaces:

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{"name":"cakes", "display_name":"Cakes"}' \
$MANAGEMENT_SERVER/namespaces/cake-express

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{"name":"orders", "display_name":"Orders"}' \
$MANAGEMENT_SERVER/namespaces/cake-express

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{"name":"users", "display_name":"Users"}' \
$MANAGEMENT_SERVER/namespaces/cake-express

7.1.4 Registering roles

ACME Corporation wants to create three different roles for users of Cake Express:

• cake-express:cakes:cake-orderer: Someone who can order cakes from Cake Express.

• cake-express:orders:finance-manager: Someone who manages the expenses for the orders.

• cake-express:users:user-manager: Someone who manages other users within Cake Express.

ACME Corporation also wants to create a role for some of their cakes:

• cake-express:cakes:birthday-cake: A cake just for employee birthdays.

Each role above consists of the following parts, separated by a ::

• app: e.g., cake-express

• namespace: e.g., cakes

• role name: e.g., cake-orderer

Here is how ACME Corporation creates these roles:

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{"name":"cake-orderer", "display_name":"Cake Orderer"}' \
$MANAGEMENT_SERVER/roles/cake-express/cakes

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{"name":"finance-manager", "display_name":"Finance Manager"}' \
$MANAGEMENT_SERVER/roles/cake-express/orders

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{"name":"user-manager", "display_name":"User Manager"}' \
$MANAGEMENT_SERVER/roles/cake-express/users

7.1. Management API 47

Guardian Manual 1.1, Release 1.1

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{"name":"birthday-cake", "display_name":"Birthday Cake"}' \
$MANAGEMENT_SERVER/roles/cake-express/cakes

7.1.5 Registering permissions

ACME Corporation wants to provide some permissions that define what users of Cake Express want to do:

• cake-express:cakes:order-cake: Users with this permission are allowed to order cakes.

• cake-express:orders:cancel-order: Users can cancel a cake order.

• cake-express:users:manage-notifications: Users can manage cake notifications.

Here is how ACME Corporation creates these permissions:

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{"name":"order-cake", "display_name":"order cake"}' \
$MANAGEMENT_SERVER/permissions/cake-express/cakes

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{"name":"cancel-order", "display_name":"cancel order"}' \
$MANAGEMENT_SERVER/permissions/cake-express/orders

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{"name":"manage-notifications", "display_name":"manage notifications"}' \
$MANAGEMENT_SERVER/permissions/cake-express/users

7.1.6 Registering capabilities

Finally, ACME Corporation wants to define some default capabilities for their applications. The guardian app admin
that installs Cake Express can change these later, but these default capabilities make it easier for Cake Express to
work out of the box.

They want to create:

1. Users with the cake-orderer role are allowed to order cakes.

2. Users with the finance-manager role, or the person who ordered the cake, have the permission to cancel
the cake order.

3. Users with the user-manager role have the permission to manage cake notifications. Users can also manage
their own notifications for cakes that are sent to them, except for notifications related to birthday cakes.

Here is how ACME Corporation creates the capability for ordering cake:

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{

"name": "cake-orderer-can-order-cake",
"display_name": "Cake Orderers can order cake",

(continues on next page)

48 Chapter 7. Developer quick start

Guardian Manual 1.1, Release 1.1

(continued from previous page)

"role": {
"app_name": "cake-express",
"namespace_name": "cakes",
"name": "cake-orderer"

},
"conditions": [],
"relation": "AND",
"permissions": [

{
"app_name": "cake-express",
"namespace_name": "cakes",
"name": "order-cake"

}
]

}' \
$MANAGEMENT_SERVER/capabilities/cake-express/cakes

Here is how ACME Corporation creates the capability for canceling an order. This requires two POST requests in
order to create it:

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{

"name": "finance-manager-can-cancel-order",
"display_name": "Finance Manager can cancel orders",
"role": {

"app_name": "cake-express",
"namespace_name": "orders",
"name": "finance-manager"

},
"conditions": [],
"relation": "AND",
"permissions": [

{
"app_name": "cake-express",
"namespace_name": "orders",
"name": "cancel-order"

}
]

}' \
$MANAGEMENT_SERVER/capabilities/cake-express/orders

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{

"name": "self-can-cancel-order",
"display_name": "Users can cancel their own order",
"role": {

"app_name": "cake-express",
"namespace_name": "cakes",
"name": "cake-orderer"

},
"conditions": [

{
"app_name": "guardian",
"namespace_name": "builtin",
"name": "target_field_equals_actor_field",
"parameters": [
{

(continues on next page)

7.1. Management API 49

Guardian Manual 1.1, Release 1.1

(continued from previous page)

"name": "actor_field",
"value": "id"

},
{

"name": "target_field",
"value": "orderer_id"

}
]

}
],
"relation": "AND",
"permissions": [

{
"app_name": "cake-express",
"namespace_name": "orders",
"name": "cancel-order"

}
]

}' \
$MANAGEMENT_SERVER/capabilities/cake-express/orders

Here is how ACME Corporation creates the capability for managing notifications. This also requires two POST
requests in order to create it:

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{

"name": "user-manager-can-manage-notifications",
"display_name": "User Managers can manage cake notifications",
"role": {

"app_name": "cake-express",
"namespace_name": "users",
"name": "user-manager"

},
"conditions": [],
"relation": "AND",
"permissions": [

{
"app_name": "cake-express",
"namespace_name": "users",
"name": "manage-notifications"

}
]

}' \
$MANAGEMENT_SERVER/capabilities/cake-express/users

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{

"name": "self-can-manage-notifications",
"display_name": "Users can manage their own notifications, except for␣

→˓birthday cakes",
"role": {

"app_name": "cake-express",
"namespace_name": "cakes",
"name": "cake-orderer"

},
"conditions": [

{
(continues on next page)

50 Chapter 7. Developer quick start

Guardian Manual 1.1, Release 1.1

(continued from previous page)

"app_name": "guardian",
"namespace_name": "builtin",
"name": "target_field_equals_actor_field",
"parameters": [
{

"name": "actor_field",
"value": "id"

},
{

"name": "target_field",
"value": "recipient_id"

}
]

},
{
"app_name": "guardian",
"namespace_name": "builtin",
"name": "target_does_not_have_role",
"parameters": [
{

"name": "role",
"value": "cake-express:cakes:birthday-cake"

}
]

}
],
"relation": "AND",
"permissions": [

{
"app_name": "cake-express",
"namespace_name": "users",
"name": "manage-notifications"

}
]

}' \
$MANAGEMENT_SERVER/capabilities/cake-express/users

ACME Corporation is now done with the join script and is ready to start using Guardian with their application.

7.1.7 Registering custom conditions

The Guardian comes with several built-in conditions, which are documented in the chapter on Conditions Reference
(page 61).

However, some apps need to write their own custom conditions, and the Management API provides an endpoint to
facilitate this. The endpoint requires knowledge of Rego19.

Suppose that ACME Corporation tracks whether or not a user likes cake, and wants to provide a simple condition to
guardian app admins that allows them to opt users out of receiving a cake, without having to know how Cake Express
stores its cake preferences.

The Rego code for this condition is as follows:

package guardian.conditions

import future.keywords.if
import future.keywords.in

condition("cake-express:users:recipient-likes-cakes", _, condition_data) if {

(continues on next page)

19 https://www.openpolicyagent.org/docs/latest/policy-language/

7.1. Management API 51

https://www.openpolicyagent.org/docs/latest/policy-language/

Guardian Manual 1.1, Release 1.1

(continued from previous page)

condition_data.target.old.attributes.recipient["likes_cakes"]
} else = false

You can test this code in the Rego Playground20 provided by the Open Policy Agent:

package guardian.conditions

import future.keywords.if
import future.keywords.in

condition("cake-express:users:recipient-likes-cakes", _, condition_data) if {
condition_data.target.old.attributes.recipient["likes_cakes"]

} else = false

result := condition("cake-express:users:recipient-likes-cakes", {}, {"target": {
→˓"old": {"attributes": {"recipient": {"likes_cakes": true}}}}})

Click the Evaluate button on the Rego Playground to receive a true result.

The code must be base64 encoded before sending to the API. Here is how ACME Corporation creates a custom
condition:

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{

"name": "recipient-likes-cakes",
"display_name": "recipient likes cakes",
"documentation": "True if the user recieving a cake likes cakes",
"parameters": [],
"code":

→˓"cGFja2FnZSBndWFyZGlhbi5jb25kaXRpb25zCgppbXBvcnQgZnV0dXJlLmtleXdvcmRzLmlmCmltcG9ydCBmdXR1cmUua2V5d29yZHMuaW4KCmNvbmRpdGlvbigiY2FrZS1leHByZXNzOnVzZXJzOnJlY2lwaWVudC1saWtlcy1jYWtlcyIsIF8sIGNvbmRpdGlvbl9kYXRhKSBpZiB7CiAgICBjb25kaXRpb25fZGF0YS50YXJnZXQub2xkLmF0dHJpYnV0ZXMucmVjaXBpZW50WyJsaWtlc19jYWtlcyJdCn0gZWxzZSA9IGZhbHNl
→˓"

}' \
$MANAGEMENT_SERVER/conditions/cake-express/users

ACME Corporation then updates the existing capability for ordering cakes:

curl -X PUT \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{

"display_name": "Cake Orderers can order cake",
"role": {

"app_name": "cake-express",
"namespace_name": "cakes",
"name": "cake-orderer"

},
"conditions": [

{
"app_name": "cake-express",
"namespace_name": "users",
"name": "recipient-likes-cakes",
"parameters": []

}
],
"relation": "AND",
"permissions": [

{
"app_name": "cake-express",

(continues on next page)

20 https://play.openpolicyagent.org/

52 Chapter 7. Developer quick start

https://play.openpolicyagent.org/

Guardian Manual 1.1, Release 1.1

(continued from previous page)

"namespace_name": "cakes",
"name": "order-cake"

}
]

}' \
$MANAGEMENT_SERVER/capabilities/cake-express/cakes/cake-orderer-can-order-cake

7.2 Authorization API

Please follow the previous section for the Management API (page 45) before starting this section.

Note: Code in this section is not part of the join script. This means that it does not have access to the
guardian-scripts client and Administrator password. As part of the join script for your app, you should
create your own Keycloak client to use with your app, that allows service accounts and requires a client secret.

All examples in this section use a hypothetical Keycloak client that Cake Express already has.

7.2.1 Listing all general permissions

Cake Express has three tabs in the web interface:

• Order a Cake

• Manage Existing Orders

• Settings

Cake Express uses its own internal rules:

• The Settings tab is always available.

• Order a Cake is only available to users who are allowed to order cakes and have the cake-ex-
press:cakes:order-cake permission.

• Manage Existing Orders is only available to users who can manage all orders and have the cake-ex-
press:orders:manage-order permission. Users who can’t manage all orders have to use the Order a
Cake tab to see their own orders.

Alice is a user with id alice. She has the cake-express:cakes:cake-orderer role. Bob has ordered
her an anniversary cake, because she has been with the Happy Employees company for 10 years. It is also Alice’s
birthday in two weeks, so Carol has also ordered her a birthday cake.

Alice logs into Cake Express, and Cake Express needs to know which tabs to show Alice. So Cake Express asks the
Authorization API for all capabilities related to the cakes and orders namespaces:

AUTHORIZATION_SERVER="$(hostname).$(ucr get domainname)/guardian/authorization"

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{

"namespaces": [
{
"app_name": "cake-express",
"name": "cakes"

},
{
"app_name": "cake-express",

(continues on next page)

7.2. Authorization API 53

Guardian Manual 1.1, Release 1.1

(continued from previous page)

"name": "orders"
}

],
"actor": {

"id": "alice",
"roles": [
{
"app_name": "cake-express",
"namespace_name": "cakes",
"name": "cake-orderer"

}
],
"attributes": {}

},
"targets": [],
"include_general_permissions": true,
"extra_request_data": {}

}' \
$AUTHORIZATION_SERVER/permissions

Note: Usually the Authorization API expects one or more targets in order to evaluate permissions. However, you can
ask for general_permissions, which means the Authorization API will also evaluate all capabilities without
a target.

In the Cake Express example of the web interface tabs, we don’t have specific objects like cakes to check. We just
want to know general permissions, so we set include_general_permissions to true.

The Authorization API says that Alice has one general permission, cake-express:cakes:order-cakes.
This means that Cake express should show her the Order a Cake tab, but not the Manage Existing Orders tab. Cake
Express always shows the Settings tab.

7.2.2 Listing all target permissions

Now Alice wants to manage her cake notifications, so she clicks on the Settings tab and goes to the Cake Notifications
section.

From the previous call to the API, Cake Express already knows that Alice does not have the cake-ex-
press:users:manage-notifications general permission for any cake. But Alice might be able to manage
notifications for cakes she is associated with. So Cake Express gathers a list of all cakes where Alice is the recipient,
and asks the Authorization API for target permissions for those cakes:

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{

"namespaces": [
{
"app_name": "cake-express",
"name": "users"

}
],
"actor": {

"id": "alice",
"roles": [
{
"app_name": "cake-express",
"namespace_name": "cakes",
"name": "cake-orderer"

(continues on next page)

54 Chapter 7. Developer quick start

Guardian Manual 1.1, Release 1.1

(continued from previous page)

}
],
"attributes": {
"id": "alice"

}
},
"targets": [

{
"old_target": {
"id": "anniversary-cake-from-bob",
"roles": [],
"attributes": {

"id": "anniversary-cake-from-bob",
"orderer_id": "bob",
"recipient_id": "alice",
"notifications": true

}
}

},
{
"old_target": {
"id": "birthday-cake-from-carol",
"roles": [

{
"app_name": "cake-express",
"namespace_name": "cakes",
"name": "birthday-cake"

}
],
"attributes": {

"id": "birthday-cake-from-carol",
"orderer_id": "carol",
"recipient_id": "alice",
"notifications": true

}
}

}
],
"include_general_permissions": false,
"extra_request_data": {}

}' \
$AUTHORIZATION_SERVER/permissions

Note: Targets for the Authorization API can check the old_target, which is the original state of the target, and
the new_target, which is the updated state of the target.

In the case of showing Alice which cakes she can manage, the cakes haven’t changed, so the request only needs to
supply the old_target.

The Authorization API shows that Alice has cake-express:users:manage-notifications permissions
for the anniversary cake from Bob, but no permissions for the birthday cake from Carol. So Cake Express only shows
Alice the anniversary cake from Bob.

7.2. Authorization API 55

Guardian Manual 1.1, Release 1.1

7.2.3 Checking specific permissions

When Alice turns notifications off for the anniversary cake, Cake Express makes a confirmation check to make sure
she can manage notifications on the cake:

curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $token" \
-d '{

"namespaces": [
{
"app_name": "cake-express",
"name": "users"

}
],
"actor": {

"id": "alice",
"roles": [
{
"app_name": "cake-express",
"namespace_name": "cakes",
"name": "cake-orderer"

}
],
"attributes": {
"id": "alice"

}
},
"targets": [

{
"old_target": {
"id": "anniversary-cake-from-bob",
"roles": [],
"attributes": {

"id": "anniversary-cake-from-bob",
"orderer_id": "bob",
"recipient_id": "alice",
"notifications": true

}
},
"new_target": {
"id": "anniversary-cake-from-bob",
"roles": [],
"attributes": {

"id": "anniversary-cake-from-bob",
"orderer_id": "bob",
"recipient_id": "alice",
"notifications": false

}
}

}
],
"targeted_permissions_to_check": [

{
"app_name": "cake-express",
"namespace_name": "users",
"name": "manage-notifications"

}
],
"general_permissions_to_check": [
{
"app_name": "cake-express",

(continues on next page)

56 Chapter 7. Developer quick start

Guardian Manual 1.1, Release 1.1

(continued from previous page)

"namespace_name": "users",
"name": "manage-notifications"

}
],

"extra_request_data": {}
}' \

$AUTHORIZATION_SERVER/permissions/check

The Authorization API says that Alice doesn’t have general permissions to manage notifications, but she does have
permissions for all targets. So Cake Express saves the new notification settings, and Alice will no longer get notifica-
tions about her anniversary cake.

7.2. Authorization API 57

Guardian Manual 1.1, Release 1.1

58 Chapter 7. Developer quick start

CHAPTER

EIGHT

LIMITATIONS

The Guardian software stack is a new product that is developed iteratively. This chapter documents the known
limitations of each component.

8.1 Guardian Management API

8.1.1 App Center database limitations

Due to limitations in the Univention App Center, the Guardian Management API should only be deployed once in
any UCS domain. This is due to the fact that each instance of the app gets its own database for the persistent data.
This would mean that every instance has its own set of apps, conditions, roles, etc. The App Center does not prevent
anyone from deploying as many instances of the Guardian Management API as desired, so this limitation has to be
kept in mind.

8.1.2 No object deletion

TheManagement API does not allow for the deletion of objects at the moment, with the exception of capabilities. This
is due to the relation of the different object types with each other and the complex consistency checks this operation
would entail.

8.1.3 Policy endpoint is public

The endpoint in theManagement API where the Authorization API can download the policy data for decision making
can be accessed without any authentication. Therefore all data that is contained in the Management API has to be
considered public information.

8.2 Guardian Authorization API

8.2.1 Limitation for with-lookup endpoints

The Guardian generally allows each client application to use its own structure for data that is used for authorization.
As long as the capabilities and conditions are created in a fashion that handles data correctly, there are no restrictions
what the data must look like.

However, the with-lookup endpoints, which allow the Authorization API to fetch data from UDM on behalf of
the app, are limited to the structure of actors and targets returned by the UDM REST API.

59

Guardian Manual 1.1, Release 1.1

8.3 Guardian Management UI

8.3.1 Frontend-only pagination

The Management UI in its current state always fetches all objects in their respective list views. This might reduce
performance in the UI if working with very big datasets.

8.3.2 No typing for condition parameters

When managing the capabilities of a role in the UI and editing the conditions, the parameters of those conditions are
currently not typed. Therefore it is important to take special care when entering the values for condition parameters.

If there are any problems with users not having the correct permissions as configured, it should be one of the first
places to check. Make sure that there are no errors due to wrongly typed parameter values.

8.3.3 UCS Portal integration

The Management UI can be accessed from the UCS Portal, but is opened in a new tab. Currently the integration
directly into the Portal tab does not work.

60 Chapter 8. Limitations

CHAPTER

NINE

CONDITIONS REFERENCE

This chapter documents the conditions that the Guardian provides for configuring capabilities on roles. This is of
interest for both app developers and guardian admins, that want to configure roles properly.

All conditions listed here are created in the guardian app’s builtin namespace. Therefore the identifier of any
condition is guardian:builtin:condition_name, where condition_name is the name of the specific
condition.

Note: Requests to the Authorization API supply both an old_target, the state of the target before a change, and
a new_target, the state of the target after the change.

In this document, conditions on the target apply only to the old_target.

actor_does_not_have_role

Parameter name Value type
role ROLE (string)

This condition applies if the actor does not have the role specified in the role parameter.

no_targets

This condition applies if the authorization request does not contain a specific target.

only_if_param_result_true

Parameter name Value type
result BOOLEAN

This condition is included for testing and debugging purposes only and should not be used.

target_does_not_have_role

Parameter name Value type
role ROLE (string)

This condition applies if the target does not have the role specified in the role parameter.

target_does_not_have_role_in_same_context

Parameter name Value type
role ROLE (string)

This condition applies if the target does not have the role specified in the role parameter with the same context as
the actor’s role currently being evaluated. For example, if the actor’s role is company:default:admin in the

61

Guardian Manual 1.1, Release 1.1

context DEPARTMENT1 and the role parameter is company:default:user, this condition would apply as
long as the target does not have the role company:default:user with the context DEPARTMENT1.

target_field_equals_actor_field

Parameter name Value type
target_field STRING
actor_field STRING

This condition applies if the specified field of the actor and the specified field of the target have the same value.

target_field_equals_value

Parameter name Value type
field STRING
value ANY

This condition applies if the specified field of the target has the same value as specified in the value parameter.

target_field_not_equals_value

Parameter name Value type
field STRING
value ANY

This condition applies if the specified field of the target does not have the same value as specified in the value
parameter.

target_has_role

Parameter name Value type
role ROLE (string)

This condition applies if the target has the role specified in the role parameter.

target_has_role_in_same_context

Parameter name Value type
role ROLE (string)

This condition applies if the target has the role specified in the role parameter with the same context as the actor’s
role currently being evaluated. If for example the actor’s role is company:default:admin in the context DE-
PARTMENT1 and the role parameter is company:default:user, this condition would apply as long as the
target has the role company:default:user with the context DEPARTMENT1.

target_has_same_context

This condition applies if any of the target’s roles have the same context as any of the actor’s roles.

target_is_self

Parameter name Value type
field STRING

This condition applies if the actor and the target are the same. Per default this is decided by comparing their id
attribute. If the field value is specified this field is used for identification instead.

62 Chapter 9. Conditions Reference

CHAPTER

TEN

GLOSSARY

actor
A user or machine account that wants to access a target in an app in some way. For example, a user actor may
want to read the email of another target user.

app
An application installed into a UCS system from theAppCenter, or a third-party service provider that integrates
with the UCS system. Specifically, applications or service providers that integrate with the Guardian.

app developer
A person, company, or organization that develops software that is used with a UCS system, that integrates with
the Guardian. This includes UCS App Center applications, as well as third-party service providers using a
service connector.

app infrastructure maintainer
A person who installs and manages UCS systems.

authentication
Confirmation of a user’s identity. The Guardian does not handle authentication.

authorization
Confirmation of the access that a user has. The Guardian’s job is to handle authorization after a user is authen-
ticated.

Authorization API
A REST21 interface that allows an app to authorize an actor to use features of the app.

capability
One or more permissions, optionally combined with one or more conditions that are joined by either an “AND”
or “OR” relationship.

condition
A criterion under which a permission applies.

context
An optional tag that modifies when a role applies.

guardian admin
A user with the guardian:builtin:super-admin role, who can manage all aspects of the Guardian
and any app using the Guardian, including capabilities for users and groups.

guardian app admin
Auser with a role ending inapp-admin, who canmanagemost aspects of an app, including which capabilities
a user has for that app.

Management API
A REST22 interface that allows an app or guardian admin to manage the Guardian.

Management UI
A limited web interface that allows an guardian admin or guardian app admin to manage the Guardian.

21 https://en.wikipedia.org/wiki/REST
22 https://en.wikipedia.org/wiki/REST

63

https://en.wikipedia.org/wiki/REST
https://en.wikipedia.org/wiki/REST

Guardian Manual 1.1, Release 1.1

namespace
A categorization of Guardian elements within an app. For example, an office suite might create an email
namespace in which to store roles and permissions related to email.

permission
An action that an actor can take in a specific app.

role
A string assigned to a user group, or object in order to use a capability. In a UCS domain this is usually done
in UDM and currently supported for user objects only.

target
A resource in an app that an actor wants to access. Used in determining which permissions an actor has.

64 Chapter 10. Glossary

CHAPTER

ELEVEN

CHANGELOGS

11.1 Authorization API

11.1.1 1.1.0 (2023-12-22)

• Remove obsolete App Center settings.

• Migrate docker image to UCS base image

11.1.2 1.0.0 (2023-12-11)

• Initial release.

11.2 Management API

11.2.1 1.1.0 (2023-12-22)

• Remove obsolete App Center settings.

• Rename App Center setting for Management API Keycloak client secret.

• Migrate docker image to UCS base image

11.2.2 1.0.0 (2023-12-11)

• Initial release.

11.3 Management UI

11.3.1 1.1.0 (2023-12-22)

• Remove obsolete App Center settings.

• Migrate docker image to UCS base image

65

Guardian Manual 1.1, Release 1.1

11.3.2 1.0.0 (2023-12-11)

• Initial release.

11.4 Guardian Manual

11.4.1 1.1 (2023-12-22)

• Rename App Center setting for Management API Keycloak client secret.

11.4.2 1.0 (2023-12-22)

• Initial release.

Managing user permissions for a UCS system is difficult and time-consuming. Historically, it has required knowledge
of access control lists (ACLs), and applications have usually hard-coded permissions to specific roles such as the
Domain Admin.

The Guardian provides an alternative to this system, where applications can register user permissions, which UCS
system administrators can then manage and organize in roles with an easy-to-use web interface. The applications
in turn can then query the Guardian for authorization questions regarding specific actors and enforce app specific
behavior in accordance with the administrators configuration.

For example, suppose that you run a business where you have a human resources department and an IT department.
You want your human resources department to have different access to installed applications than your IT department.
You may want to give permissions to the head of your IT department to manage email, while your vacation tracking
application can only be managed by the head of HR.

The Guardian provides a convenient way to manage these permissions, for applications that support integration with
the Guardian.

This manual explains how both UCS system administrators, as well as developers of applications for a UCS system,
can use the Guardian to manage what users are allowed to do in applications.

66 Chapter 11. Changelogs

CHAPTER

TWELVE

AUDIENCE FOR THIS MANUAL

There are three different audiences for the Guardian manual:

• Guardian Administrators

• App Infrastructure Maintainers

• App Developers

12.1 Guardian administrators

A guardian admin is a superuser who administers the Guardian once it has been installed, as well as managing apps
that integrate with the Guardian. A guardian app admin is a subset of the guardian admin role, which has limited
abilities to manage specific apps within the Guardian. Whenever this manual refers to an admin, this means either
the superuser or a limited app admin.

Note: Not all applications installed through the Univention App Center support integration with the Guardian and
can be managed through the Guardian. Please see the manual for your specific application to determine if it supports
the Guardian.

This manual does not assume any specific technical knowledge for admins of the Guardian. When possible, all
instructions use a web browser.

The chapter on the Management UI (page 21) is geared towards admins.

12.2 App infrastructure maintainers

An app infrastructure maintainer is someone who is responsible for installing and maintaining a UCS system and
applications installed from the Univention App Center.

This manual assumes some technical knowledge for app infrastructure maintainers, such as the ability to use the
command line and read log files.

The most relevant chapters for app infrastructure maintainers are:

• Installation (page 7)

• Configuration (page 11)

• Troubleshooting (page 17)

67

Guardian Manual 1.1, Release 1.1

12.3 App developers

An app developer is a person, company, or organization who develops either applications that are installed through
the Univention App Center, or a third-party external service provider that in some way connects to a UCS system to
provide services to users within that system, for example, using the ID Connector23.

An app is either anAppCenter application or a third-party external service provider, that integrates with theGuardian.

This manual presumes that app developers have high technical knowledge, including using a command line, writing
code, and making calls to an API.

The most relevant chapters for app developers are:

• Management API and Authorization API (page 41)

• Developer quick start (page 45)

• Conditions Reference (page 61)

23 https://docs.software-univention.de/ucsschool-id-connector/index.html

68 Chapter 12. Audience for this manual

https://docs.software-univention.de/ucsschool-id-connector/index.html

INDEX

A
actor, 63
app, 63
app developer, 63
app infrastructure maintainer, 63
authentication, 63
authorization, 63
Authorization API, 63

C
capability, 63
condition, 63
context, 63

E
environment variable

actor_does_not_have_role, 61
guardian-authorization-api/bundle_server_url,

13
guardian-authorization-api/cors/allowed-origins,

15
guardian-authorization-api/logging/format,

14
guardian-authorization-api/logging/level,

14
guardian-authorization-api/logging/structured,

14
guardian-authorization-api/oauth/keycloak-uri,

15
guardian-authorization-api/udm_data/password,

15
guardian-authorization-api/udm_data/url,

15
guardian-authorization-api/udm_data/username,

15
guardian-management-api/authorization_api_url,

13
guardian-management-api/base_url,

11
guardian-management-api/cors/allowed-origins,

12
guardian-management-api/logging/format,

12
guardian-management-api/logging/level,

12

guardian-management-api/logging/structured,
12

guardian-management-api/oauth/keycloak-client-secret,
13

guardian-management-api/oauth/keycloak-uri,
13

guardian-management-api/protocol,
11

guardian-management-ui/management-api-url,
16

guardian-management-ui/oauth/keycloak-uri,
16

no_targets, 61
only_if_param_result_true, 61
target_does_not_have_role, 61
target_does_not_have_role_in_same_con-

text, 43, 61
target_field_equals_actor_field, 62
target_field_equals_value, 62
target_field_not_equals_value, 62
target_has_role, 62
target_has_role_in_same_context,

43, 62
target_has_same_context, 43, 62
target_is_self, 62

G
guardian admin, 63
guardian app admin, 63
guardian-authorization-api/logging/structured,

14
guardian-management-api/logging/structured,

12
guardian-management-api/protocol, 11

M
Management API, 63
Management UI, 63

N
namespace, 64

P
permission, 64

69

Guardian Manual 1.1, Release 1.1

R
role, 64

T
target, 64
target_does_not_have_role_in_same_con-

text, 43
target_has_role_in_same_context, 43
target_has_same_context, 43

70 Index

	What is the Guardian?
	Guardian apps
	Management API
	Authorization API
	Management UI

	What does the guardian do?
	Terminology
	Guardian admin and Guardian app admin
	App
	Actor
	Target
	Namespace
	Role
	Permission
	Condition
	Capability
	Context

	Installation
	Installation on a UCS primary node
	Configuring Keycloak for join scripts

	Installation on different UCS server roles
	Load balancing and multiple instances

	Configuration
	Guardian Management API
	General
	Logging
	CORS
	Authentication
	Authorization

	Guardian Authorization API
	Logging
	CORS
	UDM
	Authentication

	Guardian Management UI
	Authentication

	Troubleshooting
	Introduction
	Common issues
	First time installation and configuration
	Management UI
	Management API
	Not authorized to access the Authorization API

	Debugging OPA decisions
	Authentication issues

	Management UI
	General remarks
	Roles
	Create a new role
	Listing and searching roles
	Editing existing roles
	Deleting roles

	Capabilities of a role
	Create new capability for a role
	Listing and searching capabilities of a role
	Edit a capability of a role
	Delete capabilities of a role

	Namespaces
	Create a new namespace
	Listing and searching namespaces
	Editing existing namespaces
	Deleting namespaces

	Contexts
	Create a new context
	Listing and searching contexts
	Editing existing contexts
	Deleting contexts

	Management API and Authorization API
	Introduction
	Management API
	API documentation
	Guardian naming conventions
	Registering an app
	Conditions
	Contexts

	Authorization API
	API documentation
	Endpoint overview
	About with-lookup endpoints
	General permissions versus target permissions
	Old target versus new target

	Custom endpoints

	Developer quick start
	Management API
	Getting a Keycloak token
	Registering an app
	Registering namespaces
	Registering roles
	Registering permissions
	Registering capabilities
	Registering custom conditions

	Authorization API
	Listing all general permissions
	Listing all target permissions
	Checking specific permissions

	Limitations
	Guardian Management API
	App Center database limitations
	No object deletion
	Policy endpoint is public

	Guardian Authorization API
	Limitation for with-lookup endpoints

	Guardian Management UI
	Frontend-only pagination
	No typing for condition parameters
	UCS Portal integration

	Conditions Reference
	Glossary
	Changelogs
	Authorization API
	1.1.0 (2023-12-22)
	1.0.0 (2023-12-11)

	Management API
	1.1.0 (2023-12-22)
	1.0.0 (2023-12-11)

	Management UI
	1.1.0 (2023-12-22)
	1.0.0 (2023-12-11)

	Guardian Manual
	1.1 (2023-12-22)
	1.0 (2023-12-22)

	Audience for this manual
	Guardian administrators
	App infrastructure maintainers
	App developers

	Index

