@ univention

be open.

ID Broker architecture

Univention GmbH

May 16, 2024

The source of this document is licensed under GNU Affero General Public License v3.0 only.

https://spdx.org/licenses/AGPL-3.0-only.html

Introduction

1.1 About this document
1.2 Big Picture - what is the Univention ID Broker?
1.3 Use Cases

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7

End user single sign-on

1.4 Requirements and demarcation

1.4.1
1.4.2

High level architectural overview

2.1 Participants
2.2 Components

School authority components

3.1 School authorities / schools

3.1.1
3.1.2
3.13

Identity management

ID Broker components

4.1 Modules
4.1.1
4.1.2
4.13
4.14
4.1.5

42.1
422
423
4.2.4
4.3 Scaling

UCS / UCS@school core system
Provisioning APT
Self-disclosure API
Self-disclosure database builder
SSOBroker
4.2 Pseudonymization

Interactions between components

5.1 Authentication and user data retrieval

Appendix

6.1 ID Broker architecture and flows

Overview
End user comfort in SaaS offering
Onboarding of new IDPs
Onboarding of new Service Providers
Operation if the ID Broker environment
Univention as software vendor
Requirements
Demarcation
1.5 Stakeholder

Identity provider
UCS@school ID Connector

Management of Service Providers
Form of the Pseudonyms

Generation of pseudonyms
Future evolutions of the pseudonymization

CONTENTS:

6.1.1 Theory. e e
6.1.2 Requirements fortheauthflow
6.1.3 IDBrokerFlow e e
6.1.4 Alternatives e e e e e e e e
6.2 Datamodel e e
6.2.1 Mapping LDAP / UDM / UCS@school attributes
6.3 manage-service-providers o . e e e e e e e e e e e e e e e e e e e
7 Glossary

8 Indices and tables

Index

49

51

53

CHAPTER
ONE

INTRODUCTION

1.1 About this document

 Target audience of the document are persons with technical skills; focus is on Univention Developers, Uni-
vention Operations and (partly) Service Providers.

» Knowledge about UCS and UCS@school is a prerequisite.
* The document is updated on a regular base to follow the current state of the implementation.

¢ In a future release the Univention ID Broker will include a process to revert pseudonymization service. This is
not yet part of the architecture document.

* Security related questions will be reviewed in each chapter and not separately.

1.2 Big Picture - what is the Univention ID Broker?

The main objective of the Univention ID Broker is to ease the integration between identities of learners and teachers
managed by school authorities or federal states and the various service providers for educational purposes with respect
to the data protection regulations in Europe.
I
I

[
[

retrieve information

ID Broker
about current user

\ 4

service provider \ | |

(e.g. Bettermarks / N
Bildungslogin)

provision user
SSO broker: information
Validate school authority authentication &
retrieve 1D Broker authentication

access service

==

login

> school authority

Student / Teacher (e.g. city / federal state)

Fig. 1.1: Overview of the involved components of the ID Broker and external Systems.

ID Broker architecture

To reach this goal the service will ensure:

* Single sign-on for end users between the identity provider (IDP) of a school authority / federal state (in the
document summarized under the term school authority) and service providers (educational SaaS offerings).

¢ Only one configuration step to connect with the ID Broker both for IDPs and service providers (there is no
need to configure each IDP with each service).

* Service specific pseudonyms instead of global identifiers for users to ensure that an users activities in the
different services can’t be combined to a “profile” of the user.

¢ To give end users a “complete” environment from scratch, service providers can retrieve information about the
role and the courses of users.

 For services which must not get access to clear text information about a user, the ID Broker will provide
(de-)pseudonymization services.

* To ensure data protection, the ID Broker environment will store only a minimal data set.

1.3 Use Cases

1.3.1 Overview

The list in this document describes the high level use cases for end users, service providers and administrators of
identity providers.

1.3.2 End user single sign-on

As end user of an school authority, I'm authenticated in the environment of my school authority (typically by logging
in to the Univention Portal hosted by my school authority). I want to access a SaaS without entering login & password,
but based on a secure single sign-on.

1.3.3 End user comfort in SaaS offering

After entering the SaaS offering, as an end user I want the SaaS offering to provide me the services which are
appropriate for my role and learning context. This means it displays my name, offerings related to my role as teacher
and/or learner, and a work environment prepared to connect to other end users participating in the same groups /
courses. I want to identify group / course members based on their names.

1.3.4 Onboarding of new IDPs

As administrator of a school authority or federal state IDP, I want to have only one technical onboarding (configura-
tion) with the ID Broker environment to implement the above listed end user use cases for all SaaS offerings / service
providers. This onboarding should be as easy as possible while providing a secure and trustworthy connection. The
needed steps are well documented.

As administrator I also want to have clear responsibilities in case a problem occurs and troubleshooting needs to be
done.

As person responsible for the IDP and the information stored in it, [want to be sure that the handling of the data is
done well (only minimal data is transferred, systems are secure) and the legal framework has been clarified (i.a. a
data processing contract is signed).

2 Chapter 1. Introduction

ID Broker architecture

1.3.5 Onboarding of new Service Providers

As administrator of a service provider, I want to have only one technical onboarding (configuration) with the ID
Broker environment to implement the above listed end user use cases for all IDPs (school authorities and federal
states). This onboarding should be as easy as possible while providing a secure and trustworthy connection. The
needed steps are well documented.

As administrator I also want to have clear responsibilities in case a problem occurs and troubleshooting needs to be
done.

As person responsible for the provided Service and the information stored in it, I want to be sure that the handling of
the data is done well (only minimal data is transferred, systems are secure) and the legal framework has been clarified
(i.a. a data processing contract is signed).

1.3.6 Operation if the ID Broker environment

As operator of the ID Broker environment I want to know how to install the environment, which services it has to
provide and where to find information about the services, their architecture / modules, KPIs about the health state of
the services and information where to find log messages. I expect to have a way to do a fully automated setup.

1.3.7 Univention as software vendor

As software vendor I want to maintain a solution which has as much overlap to my existing and established software
stack as reasonable for the given use cases. I want to have the same development process as for other modules,
including build and test procedures.

1.4 Requirements and demarcation

1.4.1 Requirements

Functional requirements

Single sign-on (SSO) for end users while accessing service providers with school authority as leading identity
provider.

Information retrieval for service providers about the group memberships of an authenticated current user:
granting access to the information is based on the users SSO session, so only information about a currently
authenticated user can be retrieved.

The unique identifier of an users has to be an individual pseudonym for each service provider: in case of a
data breach of a service provider, there must not be any individual identifier of an user that allows to make a
connection to the users data at any other service provider. It might be needed to extend this pseudonymization
also to group identifiers.

For security reasons, user authentication / “session” don’t last more than 6 hours. Afterwards the IDP of the
school authority needs to be involved and might extend the session without asking the end user for the password.

Provisioning of user and group information is limited to the scope of the school authority which authenticated
against the Provisioning API.

Any data retrieval API (initially the “Self-disclosure API”) limits access to data to the scope of the authenticated
user: To access the API an authentication as end user is needed, the data to retrieve is data about the user and
his or her context (i.e. learning groups). Detailed requirements will be added in the individual chapters.

Adding school authorities is done in one configuration step for the school authority and the ID Broker operator
and provides the school authorities users access to all current and future service providers.

1.4. Requirements and demarcation 3

ID Broker architecture

* Adding service providers is done in one configuration step for the service provider and the ID Broker operator
and provides access to the service for users of all current and future school authorities.

* In a future version of the document a service to de-pseudonymize a user will be introduced.

Nonfunctional requirements

* The solution has to follow European laws, this includes but is not limited to:

— Data processing agreements have to be concluded with both service providers and school authorities. This
is not part of the technical implementation but will be done as part of the onboarding process.

— All data processing needs to be done under European jurisdiction (i.e. contracted operators and service
providers need to be located in the EU).

— Data storage is limited to the absolute needs for operation and functionality.
» UCS versions

— School authority deployments need to support initially UCS 4.4 and in 2022 UCS 5.0.

— ID Broker deployment shall be based on UCS 5.0 (to avoid a later migration from UCS 4.4 to UCS 5.0).
¢ Leading source of information is the school authority.

¢ Number of named users is expected to be about 100.000 (one hundred thousand) initially and 1.000.000 (one
million) by the end of 2022.

* For all end user use cases the ID Broker has to ensure suitable response times and availability:

— Relevant for these use cases are single sign-on and user information retrieval.

Suitable response times are expected as <0.5 seconds in >90% of all requests under peak load.

Peak load is initially expected to be 10% of named users per hour. This is:
+ Initially: 150 end user logons and information retrieval requests per minute.
+ By the end of 2022: 2000 end user logons and information retrieval requests per minute.

Auvailability of 99.99% of “learning hours”: Monday to Sunday 5:00 - 23:00.

* For provisioning use cases availability and processing requests are lower:
— Outages of less than 5 Minutes can occur at any time
— Peak loads to be handled are:

« Initial provisioning of a large school authority: 500.000 new identities and corresponding groups in
5 days.

+ Change of all named users and corresponding groups in 6 weeks (summer holidays).

* Processed data has to be covered by contracts following EU data protection regulations (Vertrag zur Auftrags-
datenverarbeitung).

1.4.2 Demarcation

The ID Broker must not:
* introduce a new account and/or new authorization information (new password) for users.

« give full access to stored data to any service provider (access is only allowed in the context of an authenticated
end user).

* store any information not needed to process the defined use cases. Data not to be stored includes but is not
limited to: passwords, contact information or any personal data, long term logs or any data that might be used
for movement profiles not needed for fault analysis)

4 Chapter 1. Introduction

ID Broker architecture

The ID Broker should not:

* be visible to the end users - the ID Broker mediates, but is only visible to administrators. Exceptions might
occur in case of error handling.

1.5 Stakeholder

Stakeholders who have interest in the ID Broker and whose interests should be taken into account:
¢ School authorities
* End users (learners / students, lecturers / teachers, parents / legal guardians)
* Service providers
 Univention software development

 Univention operations

1.5. Stakeholder 5

ID Broker architecture

6 Chapter 1. Introduction

CHAPTER
TWO

HIGH LEVEL ARCHITECTURAL OVERVIEW

Let’s have a high level look at the architecture. We have two diagrams explaining the same elements, and both
diagrams are simplified. First we have a look at the participants, and after that we will learn about the action that is

taking place.

2.1 Participants

retrieve user data
with access token

service provider 11 I

access service
passing auth code

login with credentials

Y

ID Broker

send user data

Student / Teacher

Fig. 2.1: Overview ID Broker

Student / Teacher

\ 4

school authority

The person that wants to login and access resources the service provider offers. To customize the resources,
the service provider requires the users name, school and group membership.

School authority

The entity that manages student data. The school authority also has an IDP to authenticate students, and a
school portal for the login link that the student uses. A limited amount of user data is sent to the ID Broker.

Service provider

The service that contains learning resources, but no student data (for example Bettermarks). Login requests

are redirected to the IDP of the school authority the user belongs to.

ID Broker

The service that brokers student data and login processes. This allows integrating multiple learning resources

ID Broker architecture

and making them available to students of multiple school providers, without the service providers and school
authorities having to communicate with each other. Service providers can retrieve metadata from the ID Broker
about currently logged in users.

2.2 Components

Now let’s uncover a few details.

ervice pr..J ID BrokerJ
User / group... E >

T_‘ N~

= N

Self-Disclosure...

A
Pyl
©
o
s

] 2] D 2]
Service Login > SSO Broker N L, Provisioning...
Ll)
IDM

’\ /‘ __ 0
2 | 2 |

> IDP UCS@schooal...

Stude... |

\ 4

Fig. 2.2: ID Broker components

UCS @school ID Connector
The UCS@school ID Connector sends selected user data from the school authorities IDM to the Provisioning
API on the ID Broker.

Provisioning API
The Provisioning API receives user data from school authorities and stores it in the ID Brokers IDM in a
multi-tenant safe way.

UCS @school IDP
The IDP of the school authority is the only one to ever see the users credentials. Authenticated users receive a
ticket that they send to the SSO Broker.

SSO Broker
The SSO Broker can validate the school authorities ticket and give the user a ticket to access a resource of the
service provider.

Service Provider
The user send the service provider this ticket, which it uses to retrieve data about the connected user from the
Self-disclosure API on the ID Broker.

Self-disclosure API
The Self-disclosure API provides the service provider with data about the connected user. The Provisioning API
had stored that data earlier in the ID Brokers IDM.

8 Chapter 2. High level architectural overview

ID Broker architecture

Redis
The Redis cache is used by the Self-disclosure API to increase it’s performance while accessing data about the
connected user.

2.2. Components 9

ID Broker architecture

10 Chapter 2. High level architectural overview

CHAPTER
THREE

SCHOOL AUTHORITY COMPONENTS

In this chapter the components that communicate with the ID Broker system are described.

Service providers use the ID Broker for authentication and to retrieve information about logged in users. School
authorities do the actual authentication and send their users data to the ID Broker. The ID Broker system provides

interfaces for multi tenant authentication, user data storage and retrieval.

chool aut.,J.

IDP

UCS@school...

2]

A

IDM

(e.g. Bremen)

3.1 School authorities / schools

Analogous to the ID broker system, the UCS@school platform also forms the basis at the school authority, on which
various sub-components implement the required interfaces. The use of the UCS@school platform is a mandatory

requirement.

The following UCS@school sub-components are relevant for the communication with the ID broker:

11

ID Broker architecture

3.1.1 Identity management

Together with other UCS core components such as UMC and UDM, OpenLDAP forms the identity management
(IDM) at the school authority. All relevant school objects, such as schools, users and group memberships, are admin-
istered via the IDM.

3.1.2 Identity provider

The identity provider (IDP) is also a module of UCS@school, which is responsible for the authentication of users.
For this purpose, multiple authentication mechanisms such as OpenlD Connect or SAML are supported by the IDP.
The IDP can usually be accessed from the outside in order to connect external services to the UCS@school domain
of the school board. In this scenario, the ID broker assumes the role of an external service, and makes appropriate
authentication requests to the IDP. In order to answer the authentication requests, the IDP accesses the local user data
of the IDM.

3.1.3 UCS@school ID Connector

For the provisioning of the ID broker, another component is required, which is also part of the UCS@school platform.
The UCS@school ID Connector offers the possibility to connect a UCS@school domain to another UCS@school
domain (here the ID Broker system) and to provision it with user data.

To use the UCS@school ID Connector in conjunction with the ID Broker, the ID Connector Plugin is required.
* A management API is accessible at ht tps://FQDN/ucsschool-id-connector/api/vl/docs.
¢ The API should not be made accessible to the public, as it is only used for configuration purposes.
 The official documentation: https://docs.software-univention.de/ucsschool-id-connector/

» The source code is available at https://git.knut.univention.de/univention/components/ucsschool-id-connector
ID Connector Plugin
This plugin for the UCS@school ID Connector is triggered by changes in the school authorities IDM (LDAP), i.e.

creation, modification and deletion, of all UCS@school users and school groups which are configured to be connected
to the ID Broker.

Note: With version 1.3.18 of the package id-broker-id-connector-plugin the tool
manage_schools_to_sync.py can be used to or and remove schools from the ID Broker. The new
default is be that new schools have to be added manually. The old behavior, i.e. all current and future schools are
synchronized, still works after the upgrade.

If a change is detected, the plugin uses the Provisioning API to modify the user data on the ID Broker. If an object
is part of a school, which is not yet existing on the ID Broker, this school is created automatically on the ID Broker.

The plugin for the UCS@school ID Connector sends the following data from the school authority to the Provisioning
APIL:

* Users: Only UCS@school users are sent, “normal” users are ignored. The attributes sent are: ent ryUUID (a
unique object ID in the IDM of the school authority), firstname, lastname, username and context.
Where context is a structure that contains the names of the schools the user is a member of, the groups in
those schools and the users role (student, teacher, staff) in them.

* School classes and Workgroups: Only the school groups of users that should by synchronized are sent. The
attributes sent are: name, description (display name), school and members.

¢ Schools: Only the schools of users that should by synchronized are sent. The attributes sent are: name and
displayName.

12 Chapter 3. School authority components

https://docs.software-univention.de/ucsschool-id-connector/
https://git.knut.univention.de/univention/components/ucsschool-id-connector

ID Broker architecture

—> < Provisioning...

NS X

ID Broker
Provisioning

Plugin

UCS@school...

(e.g. Bremen)

Fig. 3.1: UCS@school ID Connector and Provisioning API plugin

e The documentation for school authorities 1is available at https://docs.software-univention.de/
idbroker-school-authority-manual/index.html

¢ The source code is available at https://git.knut.univention.de/univention/components/ucsschool-id-connector/
-/tree/master/src/plugins

3.1. School authorities / schools 13

https://docs.software-univention.de/idbroker-school-authority-manual/index.html
https://docs.software-univention.de/idbroker-school-authority-manual/index.html
https://git.knut.univention.de/univention/components/ucsschool-id-connector/-/tree/master/src/plugins
https://git.knut.univention.de/univention/components/ucsschool-id-connector/-/tree/master/src/plugins

ID Broker architecture

14 Chapter 3. School authority components

CHAPTER

FOUR

In this chapter the components that make up the ID Broker system are described.

ID BROKER COMPONENTS

service pr..J

2 |

User / group...

ID BrokerJ

2 |

Login

> Self-Disclosure...

2]

> SSO Broker

2]

A

Provisioning...

A

(e.g. bettermark...

school aut. J

IDP

Y

UCS@school...

2]

(e.g. Bremen)

Fig. 4.1: Interaction of components

Service providers use the ID Broker for authentication and to retrieve information about logged in users. School
authorities do the actual authentication and send their users data to the ID Broker. The ID Broker system provides
interfaces for multi tenant authentication, user data storage and retrieval.

15

ID Broker architecture

4.1 Modules

The base for an ID Broker system is the UCS@school platform, on top of which various components implement the
required interfaces.

4.1.1 UCS /UCS@school core system

UCS@school components, like the UCS@school Kelvin REST API', are build on top of UCS’ core components
OpenLDAP, Univention Directory Manager (UDM)? and the UDM HTTP REST API®.

Relevant for the ID Broker system are:

LDAP structure

Schools are represented as OU nodes with containers for users, groups, computers and so on below them.

All school object belong to a single OU, except users. User object are stored inside one of its schools OUs, but have
an additional attribute which lists all schools (OUs) they are members of.

Usernames and group names must be unique. Under the hood, names of school groups are prefixed with the OUs
name, so the same school groups name can be used by multiple schools.

A regular UCS@school system represents the domain of one school authority with all its schools, users, groups etc.
For the multi tenant feature of the ID Broker, the names of objects that must have unique names in LDAP are
internally prefixed with the identifier of the tenant or replaced with a UUID.

UDM

Univention Directory Manager (UDM)? is a Python library that adds business logic on top of LDAP objects. UDMs
features can be used through its Pyt hon UDM interface’, the UDM command line® or the UDM REST API’.

The UDM extended attributes® feature is used to register additional LDAP attributes required for the ID Broker
system. For example the new user attribute brokerID is used to map a UUID to the username of a tenants user.
Another attribute will be used to map between service provider specific aliases and the real user account names. All
LDAP attributes registered with UDM are accessible as UDM properties in the UDM REST API.

UDM REST API

UCS provides a the UDM REST API° which can be used to inspect, modify, create and delete UDM objects via
HTTP requests. All UDM modules and their attributes are accessible through it. The UDM REST API converts the
types of most attributes from their LDAP string representations to more useful JSON representations. It does not do
that for extended attributes though.

e The UDM REST API is accessible at https://FQODN/univention/udm/.

e The UDM REST API should not be made accessible to the public, as it will only be accessed by the Kelvin
REST API.

e The source code is accessible at https://git.knut.univention.de/univention/ucs/-/tree/5.0-1/management/
univention-directory-manager-rest

! https://docs.software-univention.de/ucsschool-kelvin-rest-api/index.html

2 https://docs.software-univention.de/developer-reference/5.0/en/udm/index.htmM#chap-udm

3 https://docs.software-univention.de/developer-reference/5.0/en/udm/rest-api.html#udm-rest-api

4 https://docs.software-univention.de/developer-reference/5.0/en/udm/index.html#chap-udm

3 https://docs.sof tware-univention.de/ucs- python-api/univention.udm.html#module-univention.udm

6 https://docs.software-univention.de/manual/5.0/en/central- management-umc/udm-command.html#central-udm
7 https://docs.software-univention.de/developer-reference/S.0/en/udm/rest-api.html#udm-rest-api

8 https://docs.software-univention.de/developer-reference/5.0/en/udm/package-extended- attributes. html#udm-ea
9 https://docs.software-univention.de/developer-reference/5.0/en/udm/rest-api.html#udm- rest-api

16 Chapter 4. ID Broker components

https://docs.software-univention.de/ucsschool-kelvin-rest-api/index.html
https://docs.software-univention.de/developer-reference/5.0/en/udm/index.html#chap-udm
https://docs.software-univention.de/developer-reference/5.0/en/udm/rest-api.html#udm-rest-api
https://docs.software-univention.de/developer-reference/5.0/en/udm/index.html#chap-udm
https://docs.software-univention.de/ucs-python-api/univention.udm.html#module-univention.udm
https://docs.software-univention.de/manual/5.0/en/central-management-umc/udm-command.html#central-udm
https://docs.software-univention.de/developer-reference/5.0/en/udm/rest-api.html#udm-rest-api
https://docs.software-univention.de/developer-reference/5.0/en/udm/package-extended-attributes.html#udm-ea
https://docs.software-univention.de/developer-reference/5.0/en/udm/rest-api.html#udm-rest-api
https://git.knut.univention.de/univention/ucs/-/tree/5.0-1/management/univention-directory-manager-rest
https://git.knut.univention.de/univention/ucs/-/tree/5.0-1/management/univention-directory-manager-rest

ID Broker architecture

UCS@school Kelvin REST API

The UCS@school Kelvin REST API'? provides HTTP endpoints to create and manage UCS @school domain objects
like school users, school groups and schools (OUs). The Kelvin REST API internally uses the UCS@school library
to add business logic on top of regular UDM user, group and computer objects. The result are for example complex
user and server roles and finer grained authorization. To handle UCS@school objects, use the Kelvin REST API and
not the UDM REST API, as it will take of data consistency. The Kelvin REST API uses the UDM REST API to
communicate with the LDAP database and the Open Policy Agent'' for authorization.

CS systeyl.

Kelvin REST API UDM REST API

HTTP — Tornado
Open...

A

UCS@school
library

HTTP

UDM REST

LDAP
API Client >

Open...

Fig. 4.2: Kelvin REST API components and connections

¢ The Kelvin REST API is accessible at https://FODN/ucsschool/kelvin/vl/docs.

e The Kelvin REST API should not be made accessible to the public, as it will only be accessed by the Provi-
sioning API and the Self-disclosure builder.

» The source code is accessible at https://git.knut.univention.de/univention/ucsschool/-/tree/feature/kelvin/
kelvin-api

4.1.2 Provisioning API

Users and groups have to be created in the ID Broker system. Those users originate from the school authority systems.
The Provisioning API is a REST API with methods and routes to read, create, update and delete users, school groups
and schools.

The UCS@school ID Connector of each school authority uses the Provisioning API to send user and group data to the
ID Broker system. Each school authority has an account in the ID Broker that allows it modify only its own objects.
All objects managed through such an identity share a common namespace implemented as prefixes for the username
/ group names / OU names.

The Provisioning API transparently adds prefixes when talking to internal systems and removes them when talking to
external ones. It acts like an adapter between the UCS@school ID Connector and the Kelvin REST APL.

The Provisioning API is responsible for generating service provider specific pseudonyms. Separate pseudonyms are
generated for each service provider and stored in separate attributes in the users/groups/OUs LDAP objects. A
mapping from service provider ID to LDAP attribute name is retrieved from LDAP. Additionally a mapping from
service provider ID to a secret password (used as salf in the generation of the pseudonym) is retrieved from LDAP.
Each pseudonym is generated as a hash from the following three values:

e entryUUID of the object in the school authorities LDAP (assumed to be a globally unique string)

* service provider specific secret (the salf, known only to the ID Broker system)

10 https://docs.sof tware-univention.de/ucsschool-kelvin-rest-api/index.html
1T https://www.openpolicyagent.org/

4.1. Modules 17

https://docs.software-univention.de/ucsschool-kelvin-rest-api/index.html
https://www.openpolicyagent.org/
https://git.knut.univention.de/univention/ucsschool/-/tree/feature/kelvin/kelvin-api
https://git.knut.univention.de/univention/ucsschool/-/tree/feature/kelvin/kelvin-api

ID Broker architecture

¢ school authority ID

The service provider specific secret prevents cooperating service providers to identify common users.

service pr..J ID BrokerJ - -
W - E W
prefixed object IDs

User / group... > Self-Disclosure...

UDM REST... Kelvin API
prefixed LDAP DNs
service provider... add / femove...
Y
Login E > SSO Broker E Provisioning... E

A

(e.g. bettermark...
send objects|without ID pref...

$chool aut.J $chool aut.J $chool aut/l
UCS@schooI..EEI UCS@schooI..EEI
K
changeltriggers changeltriggers
(e.g. Bremen) (e.g. Hamburg) (o

Fig. 4.3: Provisioning API communication

e The API is accessible at https://FODN/ucsschool/apis/docs .

» The source code is accessible at https://git.knut.univention.de/univention/components/ucsschool-api-plugins/
id-broker-plugin/-/tree/main/provisioning_plugin

18 Chapter 4. ID Broker components

https://git.knut.univention.de/univention/components/ucsschool-api-plugins/id-broker-plugin/-/tree/main/provisioning_plugin
https://git.knut.univention.de/univention/components/ucsschool-api-plugins/id-broker-plugin/-/tree/main/provisioning_plugin

ID Broker architecture

4.1.3 Self-disclosure API

The design goal of the Self-disclosure API is to receive and send only service provider specific pseudonyms instead of
clear text user IDs and other personal information. To make the services usable, the clear text values of some fields
in the Self-disclosure API are transmitted (cf. section Future evolutions of the pseudonymization (page 22)). Fig. 4.4
shows the API communication of the self disclosure API as described in the following paragraphs.

The Self-disclosure API is one example of an HTTP API where a content provider can fetch user data customized
to their needs. It is implemented as a plugin for the UCS@school APIs app. It runs in a Docker container on an
UCS @school system.

The Self-disclosure API uses the Redis'? database populated by the Self-disclosure database builder (page 20) to fetch
user and group data.

The client of the the API, e.g. Bettermarks, needs an auth code to get access to the API. This token is typically passed
on from a student’s or teacher’s browser. The student or teacher in return has received this auth code from the IDP
of its school authority.

The ID in the tokens subject field is the pseudonym of the requesting user. The ID in the resource request parameter
(in the URL) is the pseudonym of the user or group that information is requested about.

Separate pseudonyms are generated for each service provider and stored in separate attributes in the users/groups/OUs
LDAP objects. A mapping from service provider ID to LDAP attribute name exists in LDAP. The Self-disclosure
API retrieves that mapping for the connecting service provider using the Redis cache.

When the Self-disclosure API has to lookup an object, it searches for the supplied pseudonym in the Redis cache.

When the Self-disclosure API has to refurn an object, instead of sending the user ID, it sends the service provider
specific pseudonym of that object.

service pr., D B'0keﬂ if data is missing in Redis SDDB
L > g]

SBBD API
E pseudonyms E -
User / group... > Self-Disclosure... E v
] SBBD Converter -

SBBD Listener Mocl%| a

2]

Kelvin REST API

Prowsioning

A

high priority

groups & OUS: add/remove school authority pref...

service provider...

E pseudonym R E

Login SSO Broker

query with pseu-...

(e.qg. bettermark...

chool aut) chool aut) chool aul)

(e.0. Bremen) (e.g. Hamburg))

Fig. 4.4: Self-disclosure API communication

e The API is accessible at https://FODN/ucsschool/apis/docs .

» The source code is accessible at https://git.knut.univention.de/univention/components/ucsschool-api-plugins/
id-broker-plugin/-/tree/main/self_disclosure_plugin

12 https://redis.io/

4.1. Modules 19

https://redis.io/
https://git.knut.univention.de/univention/components/ucsschool-api-plugins/id-broker-plugin/-/tree/main/self_disclosure_plugin
https://git.knut.univention.de/univention/components/ucsschool-api-plugins/id-broker-plugin/-/tree/main/self_disclosure_plugin

ID Broker architecture

4.1.4 Self-disclosure database builder
The design goal of the Self-disclosure database builder is to improve the performance of the Self-disclosure API
(page 19). It uses a Redis database to build a cache of user, group, and service provider mappings stored in LDAP.

The diagram below shows a detailed view of the components involved. Fig. 4.5 shows a detailed view of the compo-
nents involved.

Self-disclosure Database Builder in the ID Broker architecture

. retrieve.

send usdr d
o
4. enqueue fonversic

e i (D Broker L. 3. Change in LDAP triggers

'SDDB app / Docker container

Fig. 4.5: Self-disclosure Database Builder

Changes pushed to the ID Broker LDAP trigger a listener module (3) which enqueues the insert/update or delete
event to a Redis database table which acts as a queue (4). The converter daemon consumes these events (I), reads
from Kelvin and LDAP (II) and saves the data in a Redis table which saves the complete object (III).

The Self-disclosure API (page 19) uses the data stored in the SDDB database to get user and group data (D). If the
data hasn’t yet been inserted by the converter daemon because the replication isn’t yet finished, the Self-disclosure
API query the SDDB API to add the object to the high priority queue so it will be there when the object is requested
again (F).

During this process statistics are written by the internal components of the SDDB builder in a third table (IV). They
can be requested through a prometheus'® endpoint of the SDDB API. The endpoint does not require authentication
since it does not offer any private information.

e The API is accessible at http://FODN/ucsschool/id-broker—-sddb-builder/vl/docs.

e The source code is accessible at https://git.knut.univention.de/univention/ucsschool-components/
id-broker-self-disclosure-db-builder

4.1.5 SSO Broker

The main job of the SSO Broker component is to handle multiple-tenant authentication, using pseudonyms. This
involves the student (or her browser) doing the login and passing authentication tokens/tickets back and forth.

The SSO Broker participates in the following communications:

* The student gets sent to the SSO Broker upon first login (a redirect from the school portal). This first step
is part of an OIDC flow. The SSO Broker then sends the student to the school authority’s IDP, to do SAML
authentication there. This is done using a real user identifier. The student returns to the SSO Broker with her
SAML ticket.

13 https:/prometheus.io/

20 Chapter 4. ID Broker components

https://prometheus.io/
https://git.knut.univention.de/univention/ucsschool-components/id-broker-self-disclosure-db-builder
https://git.knut.univention.de/univention/ucsschool-components/id-broker-self-disclosure-db-builder

ID Broker architecture

service pr..J ID BrokerJ
N
E _/
User / group... » Self-Disclosure... »| Redis
A v
access tokeni
Y
2] 2] ~—
Login > SSO Broker > < Provisioning...
IDM
A A NS 7y

(e.g. bettermark...

chool aut.J
OAuth 2.0
— —SAME > IDP E UCS@schooI...g|

auth start] 3 School portal {l

(e.g. Bremen)

Fig. 4.6: SSO Broker communications

¢ The SSO Broker then needs to get a service provider specific pseudonym. This information is provided by the
ID Broker IDM system, which also contains other user data provided by the school authority. An auth code
valid for the (service provider specific) pseudonym is then given to the student, who passes it on to the service
provider.

* The service provider then swaps the auth code for both an access token and an ID token at the SSO Broker. The
ID token (containing the pseudonym) is consumed by the service provider, while the access token can be used
to request more data about the student (referred to by the pseudonym) at the Self-disclosure API (page 19).

The SSO Broker is implemented using Keycloak.
The SSO Broker is available at:

e for OIDC at https://FQDN/auth/realms/SERVICE PROVIDER ID/protocol/
openid-connect

e for SAML at https://FODN/auth/realms/SERVICE PROVIDER ID/broker/saml

Information about the configuration of Keycloak can be found at https://univention.gitpages.knut.univention.de/
id-broker/operations-manual/

* See chapter ID Broker architecture and flows (page 29) for an in-depth explanation of the authentication mech-
anisms.

 See chapter keycloak-overview for a description of the Keycloak setup.

4.1. Modules 21

https://univention.gitpages.knut.univention.de/id-broker/operations-manual/
https://univention.gitpages.knut.univention.de/id-broker/operations-manual/

ID Broker architecture

4.2 Pseudonymization

A core concept of the ID Broker is the pseudonymization of user data towards the service providers. It is not
only desired to hide the clear text values for names etc. from service providers but also prevent data analysis be-
tween multiple providers. To that effect each user, group and school OU in the ID Broker system get’s a separate
pseudonym for each service provider which is saved in its own LDAP attribute (idBrokerPseudonym000] through
idBrokerPseudonym0030).

4.2.1 Management of Service Providers

To enable each component of the ID Broker to always have access to the correct pseudonyms for each service provider
the pseudonyms will be saved as individual LDAP fields on users, groups and school OUs. Those fields are indexed
to ensure quick searches. To know which field belongs to which service provider a mapping from provider name to
LDAP field name has to be created and maintained as well. Since this mapping has to be available on the host and
its docker containers alike, saving this mapping in the LDAP is the most obvious solution.

To manage service providers in the ID Broker, the script manage-service-providers can be used. It provides function-
alities to add, delete and show the mappings as well as the secrets. When a new service provider is added, all existing
users, groups and school OUs receive the corresponding pseudonym.

The steps which are needed to configure Keycloak are described in Backup - SSO Service - Keycloak'.

4.2.2 Form of the Pseudonyms

The primary identifier of any group, user or school OU object in the ID Broker system is its ent ryUUID from the
school authority, where it is originating from. To ensure that an objects pseudonyms are recoverable in an event of
data loss or sync errors, it should be derived from said ent ryUUID. Thus the pseudonym is generated as

pseudonym_service_providerl = blake2b(salt=service_providerl_salt, person=school_
—authority, data=entryUUID)

where blake2b is a hashing algorithm which returns a string in the ASCII space with no more than 128 symbols and
service_providerl_salt is a previously generated secret string which is unique to each service provider.

4.2.3 Generation of pseudonyms

The generation of pseudonyms happens primarily during user, group or school OU creation in the Provisioning API.
The system will automatically create pseudonyms for all known service providers at that time. When a new service
provider is added to the ID Broker, it is necessary to execute the script that generates pseudonyms for the new service
provider for all users and groups that already exist on the system (manage-service-providers, see above).

4.2.4 Future evolutions of the pseudonymization

The pseudonymization in its current form states that every user of every connected school authority gets a pseudonym
for every existing service provider and thus is usable with it. Future iterations could implement the following ideas
and features:

* Service providers can be activated for users and groups on a school authority level

* Service providers can be activated for users and groups individually (filtered by school, school_class, etc) by
the school authority

 The script for generating pseudonyms for new service providers is transformed into a small service which can
react to new service providers and generates pseudonyms in an intelligent and load balanced way.

14 https://univention.gitpages.knut.univention.de/id-broker/operations-manual/installation.html#install-id- broker-backup-sso-service

22 Chapter 4. ID Broker components

https://univention.gitpages.knut.univention.de/id-broker/operations-manual/installation.html#install-id-broker-backup-sso-service

ID Broker architecture

To make the services usable the clear text values of some fields in the id token as well as the Self-disclosure
API are transmitted. This renders the current pseudonymization ineffective. This is known to all parties and will be
removed in the next project phase as soon as the de-pseudonymization component is implemented.

4.3 Scaling

The APIs that are accessible from outside the ID Broker system are the Provisioning API and the Self-disclosure API.
The Provisioning API uses the Kelvin REST API to access user / group data, which in turn uses the UDM REST API
to access the underlying database. The Self-disclosure API uses the Redis cache build by the Self-disclosure database
builder.

As the Provisioning API and the Self-disclosure API have very different requirements regarding availability and
response time, using separate systems is recommended.

In previous tests, with preliminary ID Broker system components, the UDM REST API was the bottleneck. Depending
on the hardware its response times are limited by I/O or CPU time.

The current design is to keep the components of each of the Provisioning API chain (“Provisioning -> Kelvin ->
UDM?”) on the same host and to not do any load balancing between the internal components. The Self-disclosure
API and the Self-disclosure database builder are installed on separate systems.

Vertical scaling can be done through higher CPU core count and faster disk I/O. To a degree also with more memory
for caching. An optimal distribution of CPU cores to the worker processes of the three REST APIs has not yet been
explored and may vary depending on the hardware.

Horizontal scaling can be done by load balancers in front of those systems. Load balancers can distribute the load
depending on the response time of the front-end APIs. Care must be taken with regards to tokens handed out by
front-end APIs. Either sticky HTTP sessions are required or shared keys on the servers for token verification. This
is probably only relevant for the Provisioning API, as the Self-disclosure API will not hand out tokens.

API clients must be implemented with fault tolerance regarding lost sessions, as load balancers may have to move
their connection when a server is down / being updated.

4.3. Scaling 23

ID Broker architecture

24

Chapter 4. ID Broker components

CHAPTER
FIVE

INTERACTIONS BETWEEN COMPONENTS

The ID Broker architecture has been designed in a way that allows the users of multiple school authorities to securely
access the resources of multiple service providers, without the school authorities and service providers having to
communicate with each other. The users password is only send once to the IDP of its school authority. The service
providers do not have to store any user information.

5.1 Authentication and user data retrieval

When a user wants to access a resource of one of the service providers, she needs to authenticate herself and the
service provider requires some data about the user to provide an individualized service.

service | 8. studgnt ID Broker
provider details
A
3. login
7. OAuth 2.0 4. SAML 1. student data
6. OAuth 2.0
i 2. login link school
5. SAML authority
Student

Fig. 5.1: ID Broker - connections

The service provider however does not do the authentication itself. It does not even know the name of the school
authority the user belongs to or the address of its IDP. So the service provider redirects the user to the ID Broker
which in turn redirects the user to the IDP of its school authority.

The ID Broker can verify the signature of the school authorities IDP and give the user a ticket. The user passes that
ticket to the service provider, which can now retrieve data about the user from the ID Broker.

1. student data
The school authority syncs student data to the ID Broker.

2. request service provider login at school authorities portal page
The student clicks a link on the school authorities portal page, and gets redirected to the service provider. This
redirection is necessary to make the combination of SAML and OpenID Connect possible - the ID Broker
needs to know which SAML backend should be used.

3. request login
The student requests a login at the service providers page, and gets redirected to the ID Broker.

25

ID Broker architecture

service provider | | school authority ID Broker

IDP &
school portal

Student

2. request service provider login
at school portal

3. request login

redirect to ID Broker

i [
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
h 1
1 redirect to service provider !
1 i
1 1
1 1
1 1
1 |
i {
1 1
1 i
h]
1 1
1 1
1 1
1 1

4. auth request

1
1+ SAML redirect to school authority IDP ' I

5. SAML auth

1
1
1
!
|
SAML ticket, redirect to ID Broker

auth_code

7. auth_code, request content

1
1

1

1

)

l

1

} 1
] 1
i i
6. request auth_code with SAML ticket |
i T
1 1
1 1
i i
1 1
1 1
1 1
1 1
1

1

1

8. request student details

7b. content page

h
1
1
1
i
I student details
h
1
1
1
1
|

service provider | | school authority 1D Broker

Student

IDP &
school portal

Fig. 5.2: ID Broker sequence: authentication and user data retrieval sequence (simplified visualization)

26 Chapter 5. Interactions between components

ID Broker architecture

4. auth request
The ID Broker does not do the actual login, instead the student gets redirected to the school authority, which
has an IDP (SAML) provider.

5. SAML auth
Here, the actual SAML auth happens, the student gets a SAML ticket, and is redirected to the ID Broker.

6. request auth_code
Using the SAML ticket, the user requests an auth_code from the ID Broker. The user gets redirected to the
service provider.

7. auth_code, request content
The user passes on the auth_code while asking for the actual content page(s). The auth_code is exchanged by
the service provider for an access token (this step is left out of the diagram for clarity reasons, but takes place
in reality).

8. request student details
Using the access token, the service provider can now request user data from the ID Broker.

7b. content page
This is the continuation of step 7 - the student gets the requested content from the service provider.

5.1. Authentication and user data retrieval 27

ID Broker architecture

28

Chapter 5. Interactions between components

CHAPTER
SIX

APPENDIX

6.1 ID Broker architecture and flows

This document is the result of researching different possibilities on how to implement SSO between the student and
teachers, service providers and the school authorities.

Warning: Because of the research setup, http:// is used everywhere, and not https: //, which MUST
be used in a real setup.

Warning: There are also other errors in the details of the recorded flow, which are going to be corrected. WIP.

6.1.1 Theory

One should be somewhat familiar with id_broker_architecture/saml and id_broker_architecture/oauth2 flows before
reading the details of the ID Broker auth architecture. Also id_broker_architecture/understanding_jwt helps.

6.1.2 Requirements for the auth flow

One requirement is that the school authorities can keep on using SAML. We found that we can’t just start with SAML
and then ‘hand over’ to OAuth?2 (see below Auth code flow II - First SAML (page 44)). Instead, we need to interweave
OAuth2 and SAML flows.

6.1.3 ID Broker Flow

This presents the mix of SAML and OAuth?2.

Mapping of terms and roles

* student - the student/browser using the application.

¢ School portal - the portal where the student clicks on a link to the Service Provider (SP) (e.g. Bettermarks).
¢ School IDP (SAML) - the Identity Provider (IDP) that speaks SAML and is provided by UCS.

* SSO Broker (Keycloak) - the SSO Broker runs APIs, and uses Keycloak to manage authentication.

¢ Self-disclosure API - an API that provides useful information to the service provider (e.g. Bettermarks).

* service provider - the actual application that wants to consume data.

29

ID Broker architecture

Flowchart - “OIDC first”

The following figure shows the flow from OIDC, to SAML, to OIDC.
Details with messages
1. visit site

The initiate step is always the user/student visiting her school portal. We need this in order to get information about
who the IDP is.

2. link: service provider

On the school portal she will find a link that sends her to the service provider, or the testapp?2 .py in our case.
Please note the 1dp_hint - this is needed to inform Keycloak about which IDP to use as the backend.

[http://10.205.2.110:5000/?idp_hint:ExampleSAZ

» This writes the idp_hint to the session with the client

3. Request to protected resource on client

She follows the link to the protected resource.

[http://lO.205.2.110:5000/private

4. redirect:SSO Broker

The protected resource doesn’t know her, so an OIDC flow gets initiated. This would be sent to the authorization
server in OAuth2, and for us it is the SSO Broker. Scope describes what the testapp is asking authorization for:

Location: https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker/protocol/
—openid-connect/auth?

client_id=python-clientég
redirect_uri=http%3A%2F%2F10.205.2.110%3A5000%2Foidc_callbacks
scope=openid+email+profiles&

access_type=offlines&

response_type=codes&

kc_idp_hint=ExampleSA2&
—state=eyJjc3ImX3Rva2vuljogIndrT2dDb3ZUR25scE1ITRO55eGtKACIRT2tFYUY2dUhRRIiwgImR1c3Rp
—%3D%3D

* kc_idp_hint is based on idp_hint value in session

30 Chapter 6. Appendix

mE0aWouIljogl

ID Broker architecture

“

“

C

student

’ School portal }

School IDP (SAML) SSO Broker (Keycloak) Self-disclosure API Service provider

visit site, clicks service provider

link: service provider ﬂ

idp:school_idp

auth_request(service provider), kc_idp_hint:school_idp

auth request

request

idp:school_idp.

redirect: id_broker

auth_request, kc_idp_hint: school_idp

redirect: keycloak saml login

follow redirect

redirect:school_idp

login
redirect: login form
request login form
login form
login post

redirect: id_broker

saml ticket

follow redirect

redirect: service provider

auth code, session

saml ticket

request
request access token ‘
auth code, client credentials
respanse
>
access token, id_token
request student_details
response
>
student_details
redirect ‘
follow redirect url
>
content

’ School portal \

School IDP (SAML) SSO Broker (Keycloak) Self-disclosure API Service provider

Fig. 6.1: OAuth2 / SAML / OAuth2 flow
click to get a larger version of the diagram

6.1.

ID Broker architecture and flows

31

ID Broker architecture

5.

auth request

She follows the redirect:

https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker/protocol/openid-

—connect/auth?
client_id=python-clienté&
redirect_uri=http%$3A%2F%$2F10.205.2.110%3A5000%2Foidc_callbacké&
scope=openid+email+profiles
access_type=offlineé&
response_type=codes&
kc_idp_hint=ExampleSA2&

—state=eyJjc3ImX3Rva2vuljogIndrT2dDb3ZUR25scE1TR055eGtKACIRT2tFYUY2dUhRIiwgImR1c3Rp
—%3D%3D
J
The state contains:
N

}

"esrf_token": "rkOgCovIGnlpISGNyxkJt-QOkEaF6uHQ",

"destination": "eyJhbGciOiJIUzUxMiJ9.
—ImhOdHA6LYy8xMC4yMDUUM14xMTAOGNTAWMCOwCcm12YXR1Ig.
—fHONX2dN17I7XYqRUbA8et ZmpAfKedyjPhlVrGDF fLBgbyI82iXgfB4k 7FABYRmtWZy3uvdEhx51Utge3Ek1wA

"
—

which means
.

"destination": {
"headers": {
"alg": "HS512"

by

"payload": "http://10.205.2.110:5000/private",

"signature":
Lk 1wA

< "fHONX2dN17I7XYqRUbA8Bet ZmpAfKe4yjPhlVrGDF fLBqbyI821iXgfB4k 7TFABYRmMtWZy3uvdEhx 51Ut ge 3]

n
—

by
"ecsrf_token": "rkOgCovIGnlpISGNyxkJt-QOkKEaF6uHQ"

6. redirect: Keycloak SAML login

Keycloak doesn’t hasn’t got the browser authenticated yet. So the user gets a redirect to the SAML endpoint.

Location: https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker/broker/

—ExampleSA2/login?
session_code=U7QqTnIs1CTL7AThlcf_ XFCaCi950PE4v7Uwc5baH2s&
client_id=python-clients&

tab_id=_NzbfJl6_Db0

¢ set session cookies

32 Chapter 6. Appendix

pmE0aWouIjogl:

ID Broker architecture

7. follow redirect

The user follows to the SAML endpoint, asking for a login.

https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker/broker/ExampleSA2/
—login?
session_code=U7Q0gTnIs1CTL7AThlcf_XFCaCi950PE4v7Uwc5SbaH2sé&
client_id=python-clientég
tab_id=_NzbfJl6_b0

8. redirect: School IDP

The endpoint doesn’t know the user yet. But because of step (5) Keycloak knows to which IDP she needs to be sent.
The request contains a proper SAML request.

Location: https://ucs-sso.school2.intranet/simplesamlphp/saml2/idp/SSOService.php
{

"SAMLRequest": "< see below, base 64 encoded >",
"RelayState": "4vuHEBlr-1kWNvElsxy4si8qgTCfnTM77J8Z7AIb5P8.gt_dghNpMEY.python—
—client"

}

‘Which means

<samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:saml="urn:ocasis:names:tc:SAML:2.0:assertion"
AssertionConsumerServiceURL="https://login.keycloak.idbroker.
—intranet/auth/realms/ID-Broker/broker/ExampleSA2/endpoint"
Destination="https://ucs-sso.school2.intranet/simplesamlphp/
—~saml2/idp/SSOService.php"
ForceAuthn="false"
ID="ID_cc9da054-144b-4c42-8dbc-2008860£2£f01"
Issuelnstant="2022-02-01T12:29:59.874z"
ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP—
—Redirect"
Version="2.0">
<saml:Issuer>https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker/
—broker/ExampleSA2/endpoint/descriptor</saml:Issuer>
<dsig:Signature xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml—
—exc—-cldn#"/>
<dsig:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more
—f#rsa-sha256"/>
<dsig:Reference URI="#ID_cc9da054-144b-4c42-8dbc-2008860f2f01">
<dsig:Transforms>
<dsig:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig
—#enveloped-signature"/>
<dsig:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc—
—cl4n#"/>
</dsig:Transforms>
<dsig:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc
—#sha256"/>
<dsig:DigestValue>P0P7K5x7yvgkllsr33iGeRtmLonN2R/T7o0im2rb/vbw=</
—dsig:DigestValue>
</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue>...</dsig:SignatureValue>
<dsig:KeyInfo>

(continues on next page)

6.1. ID Broker architecture and flows 33

ID Broker architecture

(continued from previous page)

<dsig:X509Data>
<dsig:X509Certificate>...</dsig:X509Certificate>
</dsig:X509Data>
<dsig:KeyValue>
<dsig:RSAKeyValue>
<dsig:Modulus>. ..</dsig:Modulus>
<dsig:Exponent>AQAB</dsig:Exponent>
</dsig:RSAKeyValue>
</dsig:KeyValue>
</dsig:KeyInfo>
</dsig:Signature>
<samlp:NameIDPolicy Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient
" />
</samlp:AuthnRequest>
J

9. login

And of she goes to the UCS system, where the SAML auth is configured.

POST https://ucs-sso.school2.intranet/simplesamlphp/saml2/idp/SSOService.php
{

"SAMLRequest": "< see above, base 64 encoded >",
"RelayState": "4vuHEBlr-1kWNvElsxy4si8qgTCfnTM77J8Z7AIb5P8.gt_dghNpMEY.python—
—client"

}

10. Redirect: login form

Here she gets a redirect to the login form...

Location: https://ucs-sso.school2.intranet/simplesamlphp/module.php/core/
—~loginuserpass.php?
AuthState=_008efe5d4af5d17b53125e25abd5cf49d80b6b4215%3Ahttps$3A%2F%$2Fucs—sso.
—school2.intranet%$2Fsimplesamlphp%2Fsaml2%2Fidp%$2FSSOService.php%$3Fspentityid
—%3Dhttps%$253A%252F%252F1login.keycloak.idbroker.intranet%$252Fauth%252Frealms
—%252FID-Broker%$252Fbroker$252FExampleSA2%252Fendpoint$252Fdescriptor%26cookieTime
—%3D1643718600%26RelayState$3D4VvuHEBlr—-1kWNvElsxy4si8qgTCEnTM77J8Z7AIb5P8.gt_

—dghNpMEY .python-client
J

11. Request login form

...which she requests. ..

Location: https://ucs-sso.school2.intranet/simplesamlphp/module.php/core/
—loginuserpass.php?
AuthState=_008efe5d4af5d17b53125e25abd5cf49d80b6b4215%3Ahttps%s3A%2F%2Fucs—sso.
—school2.intranet%$2Fsimplesamlphp%2Fsaml2%2Fidp%$2FSSOService.php%3Fspentityid
—%3Dhttps%$253A%252F%252F1login.keycloak.idbroker.intranet%252Fauth%252Frealms
—%252FID-Broker%252Fbroker%$252FExampleSA2%252Fendpoint$252Fdescriptor%26cookieTime
—%3D1643718600%26RelayState$3D4vuHEBlr—1kWNvElsxy4si8qgTCEnTM77J8Z7AIb5P8.gt_

—dghNpMEY .python-client

34 Chapter 6. Appendix

ID Broker architecture

12. login form

And gets as a plain html form. She fills out the form...

13. login post

And posts the form to the UCS server.

POST https://ucs-sso.school2.intranet/simplesamlphp/module.php/core/loginuserpass.
—php?
{

"username": "84h5x0g7ex",
"password": "univention",
"AuthState": "_008efe5d4af5d17b53125e25abd5¢c£49d80b6b4215:https://ucs-sso.

<school2.intranet/simplesamlphp/saml2/idp/SSOService.php?spentityid=https$3A%2F
—%2Flogin.keycloak.idbroker.intranet%$2Fauth%2Frealms%$2FID-Broker%2Fbroker
—%$2FExampleSA2%2Fendpoint$2Fdescriptor&cookieTime=1643718600&RelayState=4vuHEBlr—
—1kWNVvElsxy4si8ggTCEfnTM77J8Z7AIb5P8.gt_dghNpMEY.python-client",

"submit": ""

14. redirect SSO Broker

Upon successful login the user needs to do a POST to the Keycloak server. But we can’t redirect to there, because
http doesn’t allow POST redirects. Hence, this is done in JavaScript.

15. follow redirect (POST)

So we have this POST to Keycloak with the SAML ticket in the body. We have left out the certificates for readability.

POST https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker/broker/
—ExampleSA2/endpoint
{

"SAMLResponse": "< see below, base 64 encoded >",
"RelayState": "4vuHEBlr-1kWNvElsxy4si8qgTCfnTM77J8Z7AIb5P8.qgt_dghNpMEY.python—
—client"

}

<samlp:Response xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:saml="urn:ocasis:names:tc:SAML:2.0:assertion"
ID="_93d030b688ccacl98bclOoaddada76ff67eb8d18a25"
Version="2.0"
IssuelInstant="2022-02-01T12:30:022"
Destination="https://login.keycloak.idbroker.intranet/auth/realms/
—ID-Broker/broker/ExampleSA2/endpoint"
InResponseTo="ID_cc9da054-144b-4c42-8dbc-2008860£f2f01">
<saml:Issuer>https://ucs—sso.school2.intranet/simplesamlphp/saml2/idp/metadata.
—php</saml:Issuer>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml—
—exc—cl4n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more
—#rsa-sha256"/>
<ds:Reference URI="#_93d030b688ccacl98bcl6baddada’76ff67eb8dl18a25">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig
(continues on next page)

6.1. ID Broker architecture and flows 35

ID Broker architecture

(continued from previous page)

—#enveloped-signature"/>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n
‘—)#"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256
<—>"/>
<ds:DigestValue>1dFmdN5RyX9MpzoWNdn7HOUVYHJACURaVVeIHVQ/4SQ=</
—ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>...</ds:SignatureValue>
<ds :KeyInfo>
<ds:X509Data>
<ds:X509Certificate>...</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</ds:Signature>
<samlp:Status>
<samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
</samlp:Status>
<saml:Assertion xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
ID="_£f0579590dbceed44e77ca6f5p15924d446del9e5e41"
Version="2.0"
IssuelInstant="2022-02-01T12:30:02Z2">
<saml:Issuer>https://ucs-sso.school2.intranet/simplesamlphp/saml2/idp/
—metadata.php</saml:Issuer>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/
wxml-exc-cl4n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig—
wmore#rsa-sha256" />
<ds:Reference URI="#_f0579590dbceedde77cab6f5b15924d446del9%e5e41">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig
—#enveloped-signature"/>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc—
—cldn#"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc
—#sha256" />
<ds:DigestValue>wEtCbO7niagdS3jSyksx2v1oMN/ZXsemkngzug8aSrc=</
—ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>...</ds:SignaturevValue>
<ds:KeyInfo>
<ds:X509Data>
<ds:X509Certificate>...</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</ds:Signature>
<saml:Subject>
<saml :NameID SPNameQualifier="https://login.keycloak.idbroker.intranet/
—auth/realms/ID-Broker/broker/ExampleSA2/endpoint/descriptor"
Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient
"> b5c01ldce5bcblc6df188£00994452edb2ac344f£8c</saml :NameID>
<saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer
">

<saml:SubjectConfirmationData NotOnOrAfter="2022-02-01T12:35:027"

(continues on next page)

36 Chapter 6. Appendix

ID Broker architecture

(continued from previous page)

Recipient="https://login.keycloak.
—idbroker.intranet/auth/realms/ID-Broker/broker/ExampleSA2/endpoint"
InResponseTo="ID_cc9da054-144b-4c42-
—8dbc-2008860£f2£01"/>
</saml:SubjectConfirmation>
</saml:Subject>
<saml :Conditions NotBefore="2022-02-01T12:29:32Z" NotOnOrAfter="2022-02-
—01T12:35:022">
<saml :AudienceRestriction>
<saml :Audience>https://login.keycloak.idbroker.intranet/auth/
—realms/ID-Broker/broker/ExampleSA2/endpoint/descriptor</saml:Audience>
</saml:AudienceRestriction>
</saml:Conditions>
<saml:AuthnStatement AuthnInstant="2022-02-01T12:30:022"
SessionNotOnOrAfter="2022-02-02T00:30:022"
SessionIndex="_
—76728957¢c11b9423982865245e078b2555e7478eeb">
<saml :AuthnContext>
<saml :AuthnContextClassRef>urn:oasis:names:tc:SAML:2.
—0:ac:classes:PasswordProtectedTransport</saml:AuthnContextClassRef>
</saml:AuthnContext>
</saml:AuthnStatement>
<saml:AttributeStatement>
<saml:Attribute Name="entryUUID"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname—
—format:uri">
<saml:AttributeValue xsi:type="xs:string">602ac394-17a6-103c-89%a6—
—49p4f56blbc0</saml:AttributeValue>
</saml:Attribute>
</saml:AttributeStatement>
</saml:Assertion>
</samlp:Response>

16. redirect:

TODO description

https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker/login-actions/first-
—broker-login?
client_id=python-clienté&
tab_id=qgt_dghNpMEY

17. redirect:

TODO description

https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker/broker/after-first-
—broker-login?
session_code=KHfAM1xOVSIyISKwo4EuK41--gTxk6QkCe26dI-UCS8&
client_id=python-clienté&
tab_id=gt_dghNpMEY

6.1. ID Broker architecture and flows 37

ID Broker architecture

18. redirect: service provider

Now, with the correct SAML ticket being sent to Keycloak the browser is authenticated. From the OAuth2 point

of view this has happened “behind the scenes”. The OAuth2 flow continues with a session, and an auth code, and a
redirect to the festapp.

—state=eyJjc3ImX3Rva2vVuIljogImliT19ncWVXRFANYNFtTUxnNUczZmVjM3BjLXREYnRXIiwgImR1c3Rp
—%3D%3D&

session_state=e3lac9la-a628-425f-9b36-aecedalce2fds

code=bbd3bdc4-£5dd-486b-bcd7-e2b70823cadb.e31lac91a-a628-425f-9b36—aecedalce2fd.
—343f8446-c6e1-4911-b890-c37a52fd47e9

19. request

The browser follows the redirect to the festapp, delivering the auth code.

http://10.205.2.110:5000/0idc_callback?

—state=eyJjc3ImX3Rva2vuljogImliT19ncWVXREFANYNnFtTUxXxnNUczZmVjM3BjLXREYnNRXIiwgImR1c3Rp

session_state=e3lac9la-a628-425f-9b36-aecedalce2fds

code=bbd3bdc4-£5dd-486b-bcd7-e2b70823cadb.e3lac91a-a628-425f-9b36—-aecedalce2fd.
—>343f8446-c6e1-4911-b890-c37a52fd47e9

20. request

The festapp now wants to exchange the auth code for an access token and an id token. So the festapp queries Keycloak
directly to do just that.

POST https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker/protocol/
—openid-connect/token

21. response

The testapp actually gets three tokens - the access token, the id token and also a refresh token, which allows it to
refresh the access once the access token has expired.

{

"access_token":

—"eyJhbGciOiJSUzIINiIsInR5¢cCIgOiAiS1dUTIiwia2lkIiA6ICIJUuRHBIM2sz2TkFzZ2Gc4YndIJbGRZRnk5M
—eyJleHA1OJE2NDM4MDE10DQs ImlhdCI6MTYOMzgwMTI4NCwiYXV0aF90aWllIjoxNjQzNzk3MjkyLCIqdG
—tip2fcB61it5ECMfUXRbE0Zfvc90fpBijbrGXQJIJHD6yXYyWnImGJIsWBdA8—
—6wfukxwIu433sVCIFy5k0bYkygO90HDs5RZJ406FTNS8EEY4rNINeOr4dWR_3kA0JPxiQMrC9K—-6__
—1GgtsOQyAbQOns74zVeBj2zis1JlcusSNyIDidQ6beqgsVBQalfdgnzrhejvh3LnVjPOedNtrFurUdbZ-
—JIsWsv3uwo_0OX6ZrtvUCvBzNEFT85gmgluPgFTk4stW7jpVZSc5—
—UKMcFNJjVsMCHTDRaTffIL2WiUVPWQh239M7Q4NSPN7JBDm__
—PMBtowOBgVEAda9Y¥eXDgJUlrqc2cYjdZGX1GQ6dGtApeVCiCOVv60pmhFOmT4-fKKmpgatc_
—A1a5NinJ21PstJDRIXe4F8T43KYt fAwx jwACMxGzyiuvdDphrbDDTNxBsUH7IFDUw1QCyuzUavus3r8vw03]
——BuXnQrCO0fkPLhgzshFnZGFJ8vJ024Fn2vhkaSh3CKct fusSEB1SRA9K12icT5BRZ_bNeEvyXk—hzmZ_
—NhCiVdOPfIw4i_ Cfb8KRA6BWONk68BSmMWATVIAAFRE3x9UBS5sSEOZooLK4AgYwkX0kEduz—
—aGxK6t2Tz45XLCR_vsTonKe706F5D47b-VVhm4N8PQHQgq28Bd8VCZ1lyTgipUu",

"expires_in": 300,

"refresh_expires_in": 1800,

"refresh_token":

(continues on next page)

38 Chapter 6. Appendix

Location: http://10.205.2.110:5000/0idc_callback?

mEO0aWouIjogl

pmE0aWouIjogl:
—%3D%3D&

I VQYWxBR2g5bD!
k1i01iIzNjk20TJ

r 9XOiNINg

ID Broker architecture

(continued from previous page)

—"eyJhbGci0iJIUzIINiIsInR5cCIgOiA1S1dUTIiwia2lkIiA6ICI3ZWEWMDYzNiOyZTBILTQOYzMt OGRhM$1kMGMIM2USZ T
—eyJ1leHAiOjE2NDM4MDMwODQsImlhdCI6MTYOMzgwMTI4NCwianRpI joiMmZhNjdmZGUtNzUwNyOONDYzLT1lhYzAtZGJmMDI
—DkTZc2H_ygN8QJPV4YuUkltgdbdpzCd56sCKZ7pDDQQ",

"token_type": "Bearer",

"id_token":
—"eyJhbGciOiJSUzIINiIsInR5¢cCIgOiAiS1dUTIiwia2lkIiA6ICIJURHBIM2szTkFzZ2Gc4YndJbGRZRNkSMjVQYWxBR2g5bD]
—eyJ1leHA1OjE2NDM4MDE10DQsIm1lhdCI6MTYOMzgwMTI4ANCwiYXV0aF90aWllIjoxNjQzNzk3MjkyLCJIJqdGkiOiJhODBiZ jh!
—gVaJTVNwWwNRhO4aat 9BV80bWavVuGZt S1O0MybLkt zwERJrG8TBJI8wpk 9rWzaym7v134QJ30cLmCLALgHHEXN_
—rYpLiAkE6_L6sjfIwPgPHSCzMFCtohpnwdwHI—
—tA011i3eR6ms4EqutXNVrZN1uR3ApIOGW8owGELit4SQQstBm_
—gwYYMRSOAfkAUuIxh24glU2NvGO5ZrtBU207zcO0M2 6hgWQoy9MAaMa—PYaVecK-u21d_MkWbccm2Kg—
< J2ErNDX4N_116WELAZ jppzSnH-zYY-TV7FbhV_jgS2FPoVt 3SDOhsH6CBjxm4J5t48Vow 1l f0vk0V6lm
—ysbbatZ5Z21fvcd9-DcY8RjmHUvU_T50cKrrK2dKcKNnjrnBZUiwQzosz jNYOt 02HLmAISmEL5nzyO—
—OM6jX9YDaljy_6QkeInQXN4Dgh2YNd333F91PrnJph50ul2vo-
—51V6scD2hPRSwrnPVBAsVcW14WA2nttvYEQoJ-J6370X0okP2XCaftcd5zYFV3mjzDEyuHOGMvkO8kpK6_
—4s2hh9KFDzeIWTRoF£SbLhgbb_rpSasGzEb3tfR20Y1ICTAQol1j061iBsAkBdebopn8TKU__
—eLFpExxc90pX00oNmznWGmMZT36buIUQJIfiJh0C2WIWvU7au_gVKzU9cFuub4F2xUmQA97JEKsDCU",

"not-before-policy": O,

"session_state": "134eae83-970a-4d3a-84a5-a8e331be7d22",

"scope": "openid email profile"

Overview over some 3letter abbreviations

Before we look at the details of the tokens, here are some of the abbreviations used in the tokens.

6.1. ID Broker architecture and flows 39

ID Broker architecture

Table 6.1: Abbreviations used in tokens

Field example name details
acr 0 Authen- 0: identified by session cookie, 1: fresh login with
tication username & password, 2: fresh login with username
Context & password & second factor
Class Ref-
erence
alg RS256 algorithm
used to sign
the JWT
token
aud account Audience Audience(s) that this ID Token is intended for, e.g.
Bettermarks. Can be more then one!
azp python-client Authorized The party to which the ID Token was issued. This
party Claim is only needed when the ID Token has a single
audience value and that audience is different than the
authorized party
exp 1643801311 Expiration secs since epoch
time
iat 1643801011 Issued At secs since epoch
iss https://login. Issuer
keycloak.idbroker.
intranet/auth/realms/
ID-Broker
Jti 975616e5-£847-43c8~-abal- JWTID can be used to prevent reuse of the token
kid nDpc3k3NAsdg8bwIldYFy92t Key Identi-
Havv0 fier
scope openid email profile Scope Val-
ues
sub f:d7edceld-cf07-4el1f-80: Subject A locally unique and never reassigned identifier blbcO
within the Issuer for the End-User, which is intended
to be consumed by the Client
typ Bearer Type media type of this complete JWT

More details:

¢ https://darutk.medium.com/understanding-id-token-5f83f50fa02e

* https://datatracker.ietf.org/doc/html/rfc7519#section-4.1

* https://www.iana.org/assignments/jwt/jwt.xhtml

* https://openid.net/specs/openid-connect-core- 1_0.html#IDToken

access token

Details of the access token

{

"header":

n” alg" g
lltyp " .
"kid":

Hy

"payload":
"w exp " B
"iat":

{

"RS256",
n JWT " ,
"nDpc3k3NAsdg8bwIldYFy925PalAGh913gb2geHavvO"

{
1643801311,
1643801011,

(continues on next page)

40

Chapter 6. Appendix

https://darutk.medium.com/understanding-id-token-5f83f50fa02e
https://datatracker.ietf.org/doc/html/rfc7519#section-4.1
https://www.iana.org/assignments/jwt/jwt.xhtml
https://openid.net/specs/openid-connect-core-1_0.html#IDToken

ID Broker architecture

"auth_time":

1643797292,

(continued from previous page)

"Jti": "975616e5-f847-43c8-abal-9e77d97a401c",
"iss": "https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker",
"aud": "account",
"sub": "f:d7edceld-cf07-4el1f-803c-de996dd24da7:5bf644e6-178e-103c-8451~
—49b4f56blbcO",
"typ": "Bearer",
"azp": "python-client",
"session_state": "134eae83-970a-4d3a-84a5-a8e331be7d22",
"acr": "O",
"allowed—-origins": |
wn
Is
"realm_access": {
"roles": [

by

"offline_access",
"default-roles-id-broker",
"uma_authorization"

"resource_access": {
"account": {

i
AL scope "
"gid":

"email_verified":

"name":

"preferred_username":
"given_name":
"family_ name":

ty

"signature"

Ly f+PONFz7W1TkddueTASNFECGzhCPXgZXDo6gn0I1ASs3+bnQNhD5zUEDTUYGg40c1JAQbWENI I3Wxrunk

"roles": |
"manage—account",
"manage—-account-1links",
"view-profile"

: "openid email profile",
"134eae83-970a-4d3a-84a5-a8e331be7d22",

false,
"student one one",

"student one",
n One "

"5bf644e6-178e-103c-8451-49p4£f56blbcO",

: "MRg4+jDWPQyK5F0egZfNpD6IU5VJ20IDUTerywCpvJ4Uwr8/
—DhBZgsmSL8EO7As4ZBgP0gZ jHVGkYOrx90MtCxdzF8ygNauIMve/
—rhdzfynL3mJv12gqzaliT3QcW3wN1xF3t/
—20UBEfQ5Jtm2SJkAJJZ3NmM3EMt igqWboi1VEykzPPrpdWeixBt 9U1ldYb2nU/
<ME7XuCcFcQ9807exB0dom4 IMEf+74022ETCeBObIrIFeHfrSUL f2uZOLkwwE SKpat+wFeL1ln4K2GoO63F4RT
—hSsDcQANS5Kx1JRysVcr8JgjliVpZDgTAhSNNNEf/CXyZDe6/pXRf316K+2n1PMxgpDsl1hdKdDti8/

—BgRq70kF7aBAVGDIHr09rmaSGgb8KTp400KwISPY1ki4PBW2 fQOMs O9PNTmNcmTknLOSELh7rBF /ByaE="

}

1WsOnSVi+£2t

HALTIFiugDSZPE

ID Token

Details of the id token.

"header": {
"algll .
"typll g
"kid":

Hy

"payload":
"expﬂ .

"RS256",
n JWT " ,
"nDpc3k3NAsdg8bwIldYFy925PalAGh913gb2geHavv0O"

{
1643801311,

(continues on next page)

ID Broker architecture and flows

41

ID Broker architecture

(continued from previous page)

"iat": 1643801011,
"auth_time": 1643797292,

"Jti": "b2be83a3-5064-4d72-8d34-bc4150976cdc",
"iss": "https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker",
"aud": "python-client",
"sub": "f:d7ed4celd-cf07-4el1f-803c-de996dd24da7:5bf644e6-178e-103c-8451~
—49b4£f56blbcO",
TPy TDT,
"azp": "python-client",
"session_state": "134eae83-970a-4d3a-84a5-a8e331be7d22",
"at_hash": "1j9X-mi3DZF1QsxzwdFecw",
"acr": "O",
"sid": "134eae83-970a-4d3a-84a5-aB8e331be7d22",
"email_verified": false,
"name": "student one one",
"preferred_username": "5bf644e6-178e-103c-8451-49b4£f56blbcO",
"given_name": "student one",
"family name": "one"
}l
"signature": "eHEx/

-Ltgtra¥Yg3mnlUYSWzaBIpIloz79g05svjqzvsxtvESL+5PhSUPENImYreL5CEALUSevIAOPMrMvLiapTMtwCy
—A6UDeknfkcfXsPO/
—Smd61DmBgoTCjIsv4FrPCquWlBsfTNWy 9ZINgo0i01 9k 6AOF zEObDDNkvJcJevYxPtuTDxa 9RBQO4 9cRROF |
—VY7rpeDn2hnkCik1gPPWgK1QzPNpo9z3D8jUJ3hGKakP 7dgbPdedy/

—Kaqw0Zwh0IKhdFUnaoUmg3VmdqUPNDTsZfPfT8NMATL7HeDzugrFH142Bwl 5WEUQWsZGguLSJcC4HmGv It v:

n
—

}

yu2KxddLzBh6H

faAZuua7Gd5Q4!

KvOWT6UN76M+

Refresh Token

And the details of the refresh token.

{

"header": ({
"alg": "RS256",
"typ": "JWI",
"kid": "nDpc3k3NAsdg8bwIldYFy925PalAGh913gb2geHavv0O"

}I

"payload": {
"exp": 1643801311,
"iat": 1643801011,
"auth_time": 1643797292,
"Jti": "b2be83a3-5064-4d72-8d34-bc4150976cdc",
"iss": "https://login.keycloak.idbroker.intranet/auth/realms/ID-Broker",
"aud": "python-client",
"sub": "f:d7e4dceld-cf07-4el1f-803c-de996dd24da7:5bf644e6-178e-103c-8451~

—49b4f56blbcO",

TeweTs IEDT,
"azp": "python-client",
"session_state": "134eae83-970a-4d3a-84a5-a8e331be7d22",
"at_hash": "1j9X-mi3DZFlQsxzwdFecw",
"acr": "O",
"sid": "134eae83-970a-4d3a-84a5-a8e331be7d22",
"email_ verified": false,
"name": "student one one",
"preferred_username": "5bf644e6-178e-103c-8451-49p4£f56blbcO",
"given_name": "student one",
"family_name": "one"

by

(continues on next page)

42 Chapter 6. Appendix

ID Broker architecture

(continued from previous page)

"signature": "eHEx/

—Ltgtra¥Yg3mnlUYSWzaBIpIoz7905svjqzvsxtvEsL+5PhSUPENImYreL5CfALUSevIAOPMrMvLiapTMtwCYu2KxddLzBh6H

—A6UDeknfkcfXsPO/

—Smd61DmBgoTCjJIsv4FrPCquiWlBs fTNWy 9ZINgo0i01 9k 6A0OF zEObDDNkvJcJevYxPtuTDxa9RBQ4 9cRRoF JaAZuua7Gd5Q4

—VY7rpeDn2hnkCik1gPPWgK1QzPNpo9z3D8jUJ3hGKakP7dgbPdedy/

—Kaqw0Zwh0IKhdFUnaoUmg3VmdqUPNDTsZfPfT8NMATL7HeDzuqrFH142Bwl SWEUQWS ZGguLSJcC4HMGv It vinKvOWT 6Un7 6M+.

n
—

}

22. request student_details

Now the festapp (a.k.a as client in OAuth2 terms) could do something magical with the access token, e.g. ask the
resource server for student details. We haven’t documented this step, but one thing is required: the access token needs
to be passed along with the request.

23. response

Before fetching data the resource server (e.g. the Self-disclosure API) would need to validate the signature of the
access token.

import jwt

see step 19

access_token =
—"eyJhbGciOiJSUzIINiIsInR5¢cCIgOiAiS1dUTIiwia2lkIiA6ICIJUuRHBjM2s2TkFzZ2Gc4YndJbGRZRnk 5M]

<MRg4-jDWPQYK5F0egZ fNpD6IUSVI20IDUTerywCpvI4Uwr8_
—DhBZgsmSL8EO7As4ZBgP0gZ jHVGkYOrx90MtCxdzF8ygNauIMVe6_
—rhdzfynlL3mJv12gzaliT3QcW3wN1IxF3t__

—20UBEfQ5Jtm2SJkAFJZ3NM3Emt igWboiVEykzPPrpdWeixBt 9UldYb2nU_
—ME7XuCcFcQ9807exB0dom4 IMf-74022ETCeBObIrIFeHfrSULf2uZOLkwwF SKpa—
—WFeL1ln4K2GoO63F4RIA1WsONSVi—
—fZtzRYDHzbXIiVErFj7ig4tAXLDQgfBp8nE110K3CO0OghnpiLlhutocAUl7yKaZuxiHeP7L0Jx1G43SdGpo
—hSsDcQAnSS5Kx1JRysVer8JqjliVpZDgTAhSNNNEE CXyZDe6_pXRf31i6K-2nl1PMxgpDslhdKdDti8__
—Lyf-PONFz7W1TkddueTASNFECGzhCPXgZXDo6gnOI1ASs3—
—bnQONhD5zUEDTUYGg40c1JAQbwENI I3WxrunHAlITIFiugDSZPEtse4U8vVvLtAjVIGp_
—BgRq70kF7aBAVGDIHgr09rmaSGgb8KTp400KwISPY1ki4PBW2 £QOMs 9PNTmNcmTknLOSE1h7rBF_ByaE"

This is the public key from Keycloak, from https://login.keycloak.idbroker.
—intranet/auth/realms/ID-Broker

keycloak_public_key =
—"MIICIJjANBgkghkiGO9wOBAQEFAAOCAg8AMIICCgKCAGEA6hJhC3946VIZORQ7SLRVzZnM7ei10CEDFSRnPy6
—BKmjZo2u+YCEumpDMg+2rarzHFyFLkXAOsRIkQkbvrDGnOJz5¢cpjn0m21p4KJ/
—y4+0KA0er3YQxDWDwplPsCTv3wsPF/ubp8P5/

—QJElesxwkMQOEsGGgiidyduBZ+04alNzF71+WGeYt jtdeHkcgzJfjbrh7orP/
—TEogqtb+5LT1alSRbH3ejstNjS+0rnTCS+jZ5+aQdGn3TO+sNDgw2F IIWG4USCteBiLgr+GK6X9YFv3wX+7]
—1nlwdd/
—OFEetEBTKETGcNyz8hvSBCAQ8BagiWe40gF1MKs9FcjfI4BTFjj920a0Z2ix1Cn+vJ6anbAOVWS952RsQSEVY
—2GDIUeCkYNIJmSOBANC8SPOAOrsEjT3rE37meWgiKEfG57YUFA/
—8aYipXtiPufKBhvPBL+MAM+ZW8REf2Ri0yVE7FORCCAWEAAQ=="

The key needs to have a header and a footer...

keycloak_with_headers = "———— BEGIN PUBLIC KEY————- \n" + keycloak_public_key + "\n-
e====HND PUBLIC Ko¥{===== "
... and can then be verified directly.

Once can disable the expiration date verification, when debugging a session.
—~later on.

VQYWxBR2g5DbD!

—eyJ1leHAiOjE2NDM4MDEzMTESIm1hdCI6MTYOMzgwMTAXMSwiYXV0aF90aWl1lIjoxNjQzNzk3MjkyLCIqdGkiOiI5NzU2MTZ

S3AgeGIbdOco

PwzUeIspBHwWU

|IDGVJjGul+DDjn

k JK4N77PaoKfL

(continues on next page)

6.1. ID Broker architecture and flows 43

ID Broker architecture

(continued from previous page)

Of course, you wouldn't do this in production.
verified_token = jwt.decode (
access_token,
key=keycloak_with_headers,
audience="account',
algorithms=['RS256'],
options=dict (verify exp=False) # disable expiration checking

24. follow redirect URL

The user follows the redirect to the protected resource.

[http://10.205.2.110:5000/private J

25. content

Which she can now access because of the id_token in the content of /private.

6.1.4 Alternatives

‘We have thought about alternatives, which we note here.

Auth code flow Il - First SAML

First SAML, then OIDC - doesn’t work:
1. no login session with Keycloak (bomb in step 5). Could be worked around using a mini login app

2. if the Keycloak session expires and somehow the service provider needs to restart the OIDC session, they don’t
have the IDP information and hence can’t redirect automatically to the right SAML login server

Client credentials flow

This flow would give the client application (service provider) complete access to all student data on the resource
server. We hope that we won’t need it.

6.2 Data model

Users, school classes and schools each have been extended by the following attributes:
* ucsschoolRecordUID saves the ent ryUUID of the object on source system (school authority).
e ucsschoolSourceUID saves the name of the school authority.

* idBrokerPseudonym0001 - idBrokerPseudonym0030 save service provider specific pseudonyms.

44 Chapter 6. Appendix

ID Broker architecture

student School portal School IDP (SAML) 550 Broker (Keycloak) Self-disclosure API Service provider

visit

link: school_idp
“ o

login
o »

target:service provider
redirect: id_broker

N (]

‘ target:service provider, idp: school_idp, sami_ticket ‘

‘ login G - there is no login with keycloak, mini login app?
>

‘ target:service provider, idp: school_idp, sami_ticket

redirect: service provider

" []
session (school_idp)

visit

o >

redirect: id_broker
“ []
request

o >

session (school_idp), auth request
redirect: service provider

N ®
auth code, service_provider_pseudo123
request

® "
auth code, service_provider_pseudo123

request access token

N [J
auth code, client credentials

response

® "
acccess token, id_token

request
“ [J
student_details
o >
student details

response with content

student School portal School IDP (SAML) 550 Broker (Keycloak) Self-disclosure API Service provider

6.2. Data model 45

ID Broker architecture

6.2.1 Mapping LDAP / UDM / UCS@school attributes

As written in ID Broker components (page 15) the Self-disclosure API and the Provisioning API use the Kelvin REST
API to access user / group data. The Kelvin REST API exposes the UCS@school library models in its API and uses
the UDM REST API to access the IDMs LDAP database.

The UCS@school library, the UDM REST API and OpenLDAP target different scenarios / layers and thus have
different data models and use slightly different names for the same attributes. Below are tables that should help
navigate the different data layers.

Users
Table 6.2: Users mapping of LDAP attribute — UDM property —
UCS@school attribute
LDAP attribute UDM property UCS@school Example
attribute
uid username name demo_student
entryUUID 4e2d101a-b843-48d0-81d3-68a74940adc7
givenName firstname firstname Alice
mailPrimaryAd- mailPrimaryAd- email first.last\Q@example.com
dress dress
sn lastname lastname Bauer
ucsschoolRole ucsschoolRole ucss-— student :school :DEMOSCHOOL
chool_role
ucsschoolRecor- ucsschoolRecor— 4e2d101a-b843-48d0-81d3-68a74940adc7
dUID dUID
ucsschool- ucsschool- school authority name
SourceUID SourceUID
idBro— idBro— 4e2d101a-b843-48d0-81d3-68a74940adc7

kerPseudonym00XX kerPseudonymO0XX

Groups

Table 6.3: Groups mapping of LDAP attribute — UDM property —

UCS@school attribute
LDAP attribute ~ UDM property UCS@school Example

attribute

cn name name DEMOSCHOOL-Democlass
description description Math work group
ucsschool- ucsschool- ucss-— school_class:school :DEMOSCHOOL
Role Role chool_role
uniqueMem- users users ['uid=demo_student, cn=schueler, cn=.
ber .'", 'uid=demo_teacher,..."']
ucsschool- ucsschool- 4e2d101a-b843-48d0-81d3-68a74940adc7
RecordUID RecordUID
ucsschool- ucsschool— school authority name
SourceUID SourceUID
idBro— idBro— 4e2d101a-b843-48d0-81d3-68a74940adc7

kerPseudonym(kerPseudonym(

46

Chapter 6. Appendix

ID Broker architecture

Schools
Table 6.4: Schools mapping of LDAP attribute — UDM property —
UCS@school attribute
LDAP attribute UDM property UCS@school Example
attribute
ou name name DEMOSCHOOL
displayName displayName dis— Demo School
play_name
ucsschoolRole ucsschoolRole ucss-— school:school :DEMOSCHOOL
chool_role
ucsschoolRecor—- ucsschoolRecor-— 4e2d101a-b843-48d0-81d3-68a74940adc7
dUuID duID
ucsschool— ucsschool- school authority name
SourceUID SourceUID
idBro- idBro- 4e2d101a-b843-48d0-81d3-68a74940adc7

kerPseudonym00XX kerPseudonym00XX

6.3 manage-service-providers

The tool manage-service-providers is used to add service providers and generate pseudonyms for existing
users, school classes and schools. This document describes how the script works internally. Visit Backup - Provi-
sioning API' for information about how to use it.

The tool adds a mapping of the service provider name to one of the UDM properties in the set of idBro-—
kerPseudonym0001 to idBrokerPseudonym0030, in which the corresponding pseudonym is saved. The
first property, which hasn’t been added to the mapping, is chosen. The tool also generates a salt and saves it as another
mapping (service provider to salt). Both are saved ina settings/data object. The values are protected by ACLs
and can be read/ written by the groups id-broker-settings—-secrets-read and id-broker—-set-
tings, which are created during the installation process.

After that, the script iterates over all existing users, groups and school and generates a pseudonym using the salt of
the service provider, the name of the school authority as well as the entry uuid of the object on school authority side:

[hash(service_provider_salt, entry_uuid , school_authority) }

We save the entry_uuid inside ucsschoolRecordUID and the school_authority inside ucss—
choolSourceUID for each user, school class and school.

15 https://univention.gitpages.knut.univention.de/id- broker/operations-manual/installation.html#install-id- broker- backup- provisioning

6.3. manage-service-providers 47

https://univention.gitpages.knut.univention.de/id-broker/operations-manual/installation.html#install-id-broker-backup-provisioning
https://univention.gitpages.knut.univention.de/id-broker/operations-manual/installation.html#install-id-broker-backup-provisioning

ID Broker architecture

48

Chapter 6. Appendix

CHAPTER
SEVEN

GLOSSARY

Identity Provider (IDP)
Instance that provides information to authenticate and authorize identities. In case of ID Broker scenarios
typically an SAML or OpenlD Connect IDP hosted by a school authority.

Provisioning API
REST API of the ID Broker which is used by school authorities to send pseudonyms and a limited set of meta
information on users and groups to the ID Broker.

School Authority
In context of this document school authority subsumes the various institutions which serve one or several schools
with IT infrastructure. That includes that the school authority holds the identity store for all learners and teach-
ers of an environment. This can be a single School, a school authority with several schools, or an environment
hosting services for a federal state. Typically these are environments hosting a UCS @school domain.

Self-disclosure API
REST API of the ID Broker which allows retrieval of meta information of an authorized user (focus is role of
the user and the assigned learning groups). The API is derived from an API introduced by Bettermarks and
sometimes referred to as Bettermarks API.

Service Provider (SP)
Instance that provides a service that is configured for a single sign-on with the ID Broker, typically content
providers or applications for pupils and teachers.

SSO Broker
The main job of the SSO Broker component is to handle multiple-tenant authentication, using pseudonyms.

This involves the student (or her browser) doing the login and passing authentication tokens/tickets back and
forth.

49

ID Broker architecture

50

Chapter 7. Glossary

CHAPTER
EIGHT

INDICES AND TABLES

* genindex

¢ search

51

ID Broker architecture

52

Chapter 8. Indices and tables

Identity Provider (IDP), 49

P

Provisioning API, 49

S

School Authority, 49
Self-disclosure API, 49
Service Provider (SP), 49
SSO Broker, 49

INDEX

53

	Introduction
	About this document
	Big Picture - what is the Univention ID Broker?
	Use Cases
	Overview
	End user single sign-on
	End user comfort in SaaS offering
	Onboarding of new IDPs
	Onboarding of new Service Providers
	Operation if the ID Broker environment
	Univention as software vendor

	Requirements and demarcation
	Requirements
	Functional requirements
	Nonfunctional requirements

	Demarcation

	Stakeholder

	High level architectural overview
	Participants
	Components

	School authority components
	School authorities / schools
	Identity management
	Identity provider
	UCS@school ID Connector
	ID Connector Plugin

	ID Broker components
	Modules
	UCS / UCS@school core system
	LDAP structure
	UDM
	UDM REST API
	UCS@school Kelvin REST API

	Provisioning API
	Self-disclosure API
	Self-disclosure database builder
	SSO Broker

	Pseudonymization
	Management of Service Providers
	Form of the Pseudonyms
	Generation of pseudonyms
	Future evolutions of the pseudonymization

	Scaling

	Interactions between components
	Authentication and user data retrieval

	Appendix
	ID Broker architecture and flows
	Theory
	Requirements for the auth flow
	ID Broker Flow
	Mapping of terms and roles
	Flowchart - “OIDC first”
	Details with messages
	1. visit site
	2. link: service provider
	3. Request to protected resource on client
	4. redirect:SSO Broker
	5. auth request
	6. redirect: Keycloak SAML login
	7. follow redirect
	8. redirect: School IDP
	9. login
	10. Redirect: login form
	11. Request login form
	12. login form
	13. login post
	14. redirect SSO Broker
	15. follow redirect (POST)
	16. redirect:
	17. redirect:
	18. redirect: service provider
	19. request
	20. request
	21. response
	Overview over some 3letter abbreviations
	access token
	ID Token
	Refresh Token
	22. request student_details
	23. response
	24. follow redirect URL
	25. content

	Alternatives
	Auth code flow II - First SAML
	Client credentials flow

	Data model
	Mapping LDAP / UDM / UCS@school attributes
	Users
	Groups
	Schools

	manage-service-providers

	Glossary
	Indices and tables
	Index

